| v

ERLANG

STDLIB

Copyright © 1997-2011 Ericsson AB. All Rights Reserved.
STDLIB 1.17.3
August 11 2011

Copyright © 1997-2011 Ericsson AB. All Rights Reserved.

The contents of this file are subject to the Erlang Public License, Version 1.1, (the "License"); you may not use
this file except in compliance with the License. You should have received a copy of the Erlang Public License
along with this software. If not, it can be retrieved online at http://www.erlang.org/. Software distributed under the
License is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
the License for the specific language governing rights and limitations under the License. Ericsson AB. All Rights
Reserved..

August 11 2011

Ericsson AB. All Rights Reserved.: STDLIB | 1

1.1 The Erlang 1/O-protocol

1 User's Guide

The Erlang standard library STDLIB.

1.1 The Erlang I/O-protocol

The 1/O-protocol in Erlang specifiesaway for aclient to communicatewith anio_server and viceversa. Theio_server
isaprocess handling the requests and that performsthe requested task oni.e. adevice. The client isany Erlang process
wishing to read or write data from/to the device.

The common I/O-protocol has been present in OTP since the beginning, but has been fairly undocumented and has al so
somewhat evolved over the years. In an addendum to Robert Virdings rationale the original |/O-protocol is described.
This document describes the current 1/O-protocol.

The original 1/O-protocol was simple and flexible. Demands for spacial and execution time efficiency has triggered
extensions to the protocol over the years, making the protocol larger and somewhat less easy to implement than the
original. It can certainly be argumented that the current protocol is to complex, but this text describes how it looks
today, not how it should have looked.

The basic ideas from the original protocol still holds. The io_server and client communicate with one single, rather
simplistic protocol and no server stateis ever present in the client. Any io_server can be used together with any client
code and client code need not be aware of the actual device theio_server communicates with.

1.1.1 Protocol basics

As described in Roberts paper, servers and clients communicate using io_request/io_reply tuples as follows:
{io_request, From, ReplyAs, Request}

{io_reply, ReplyAs, Reply}

The client sends an io_request to the io_server and the server eventually sends a corresponding reply.

* Fromisthe pid() of the client, the process which theio_server sends the reply to.

* ReplyAs can be any datum and is simply returned in the corresponding io_reply. The io-module in the Erlang
standard library simply usesthe pid() of theio_server as the ReplyAs datum, but a more complicated client
could have severa outstanding io-requests to the same server and would then usei.e. areference() or something
else to differentiate among the incoming io_reply's. The ReplyAs element should be considered opague by
theio_server. Note that the pid() of the server is not explicitly present intheio_reply. The reply can be sent
from any process, not necessarily the actual io_server. The ReplyAs element is the only thing that connects one
io_request withanio_reply.

* Reguest and Reply are described below.

When anio_server receives an io_request, it acts upon the actual Request part and eventually sends an io_reply with
the corresponding Reply part.

1.1.2 Output requests

To output characters on a device, the following Reguests exist:

{put_chars, Encoding, Characters}
{put_chars, Encoding, Module, Function, Args}

2 | Ericsson AB. All Rights Reserved.: STDLIB

1.1 The Erlang I/O-protocol

e Encoding is either 'latin1' or 'unicode’, meaning that the characters are (in case of binaries) encoded as either
UTF-8 or iso-latin-1 (pure bytes). A well behaved io_server should also return error if list elements contain
integers > 255 when the Encoding is set to latinl. Note that this does not in any way tell how characters should
be put on the actual device or how theio_server should handle them. Different io_servers may handle the
characters however they want, this simply tellstheio_server which format the data is expected to have. In the
M odul e/Function/argument case, the Encoding tells which format the designated function produces. Note that
byte-oriented datais simplest sent using latinl Encoding

» Characters are the data to be put on the device. If encoding islatini, thisisaniolist(). If encoding is unicode,
thisis an Erlang standard mixed unicode list (oneinteger in alist per character, charactersin binaries
represented as UTF-8).

e Module, Function, Args denotes a function which will be called to produce the data (likeio_lib:format), Args
isalist of arguments to the function. The function should produce data in the given Encoding. Theio_server
should call the function as apply(Mod, Func, Args) and will put the returned data on the device as if it was sent
ina{put_chars, Encoding, Characters} request. If the function returns anything else than abinary or list or
throws an exception, an error should be sent back to the client.

The server replies to the client with anio_reply where the Reply element is one of:

ok
{error, Error}

» Error describes the error to the client, which may do whatever it wants with it. The Erlang io-module typically
returnsit asis.

For backward compatibility the following Requests should also be handled by an io_server (these messages should
not be present after R15B of OTP):

{put_chars, Characters}
{put_chars, Module, Function, Args}

These should behave as {put_chars, latinl, Characters} and { put_chars, latinl, Module, Function, Args} respectively.

1.1.3 Input Requests
To read characters from a device, the following Requests exist:
{get_until, Encoding, Prompt, Module, Function, ExtraArgs}

« Encoding denotes how datais to be sent back to the client and what data is sent to the function denoted by
Module/Function/Arity. If the function supplied returns data as alist, the data is converted to this encoding. If
however the function supplied returns datain some other format, no conversion can be done and it's up to the
client supplied function to return datain a proper way. If Encoding islatinl, lists of integers 0..255 or binaries
containing plain bytes are sent back to the client when possible, if Encoding is unicode, lists with integersin the
whol e unicode range or binaries encoded in UTF-8 are sent to the client. The user supplied function will always
see lists of integers, never binaries, but the list may contain numbers > 255 if the Encoding is ‘unicode’.

* Promptisalist of characters (not mixed, no binaries) or an atom() to be output as a prompt for input on the
device. The Prompt is often ignored by theio_server and a Prompt set to " should always be ignored (and result
in nothing being written to the device).

e Module, Function, ExtraArgs denotes a function and arguments to determine when enough data is written. The
function should take two additional arguments, the last state, and a list of characters. The function should return
one of:

{done, Result, RestChars}
{more, Continuation}

The Result can be any Erlang term, but if it is alist(), the io_server may convert it to a binary() of appropriate
format before returning it to the client, if the server is set in binary mode (see below).

Ericsson AB. All Rights Reserved.: STDLIB | 3

1.1 The Erlang 1/O-protocol

The function will be called with the data the io_server finds on its device, returning { done, Result, RestChars}
when enough data is read (in which case Result is sent to the client and RestChars are kept in theio_server as
a buffer for subsequent input) or { more, Continuation}, indicating that more characters are needed to complete
the request. The Continuation will be sent as the state in subsequent calls to the function when more characters
are available. When no more characters are available, the function shall return { done,eof,Rest}. The initial state
is the empty list and the data when an end of file is reached on the device is the atom 'eof'. An emulation of the
get_line request could be (inefficiently) implemented using the following functions:

- modul e(deno) .
-export([until_newine/3, get_line/l]).

until _new i ne(_Thi sFar, eof, M/StopCharacter) ->
{done, eof ,[]};
until _new i ne(Thi sFar, Char Li st, MySt opChar acter) ->
case lists:splitwith(fun(X) -> X =/= MyStopCharacter end, Charlist) of

{L. 1} ->
{nore, Thi sFar ++L};
{L2, [M/St opCharacter| Rest]} ->
{done, Thi sFar ++L2++[MySt opChar acter], Rest}
end.

get_line(loServer) ->
loServer ! {io_request, self(), loServer, {get _until, unicode, "',
?MODULE, until_newline, [$\n]}},
receive
{io_reply, l|oServer, Data} ->
Dat a
end.

Note especially that thelast element in the Request tuple ([$\n]) is appended to the argument list when the function
iscalled. The function should be called like apply(Module, Function, [State, Data | ExtraArgs]) by theio_server

A defined number of charactersis requested using this Request:
{get_chars, Encoding, Prompt, N}

» Encoding and Prompt as for get_until.
¢ N isthe number of charactersto be read from the device.

A singleline (like in the example above) is requested with this Request:
{get_line, Encoding, Prompt}
» Encoding and prompt as above.

Obviously, get_chars and get_line could be implemented with the get_until request (and indeed was originally), but
demands for efficiency has made these additions necessary.

The server replies to the client with anio_reply where the Reply element is one of:

Data

eof

{error, Error}

e Dataisthe charactersread, in either list or binary form (depending on theio_server mode, see below).

» Error describes the error to the client, which may do whatever it wants with it. The Erlang io-module typically
returnsit asis.

« eof isreturned when input end is reached and no more data is available to the client process.

4 | Ericsson AB. All Rights Reserved.: STDLIB

1.1 The Erlang I/O-protocol

For backward compatibility the following Requests should also be handled by an io_server (these messages should
not be present after R15B of OTP):

{get_until, Prompt, Module, Function, ExtraArgs}
{get_chars, Prompt, N}
{get_line, Prompt}

These should behave as{ get_until, latin1, Prompt, Module, Function, ExtraArgs}, {get_chars, latinl, Prompt, N} and
{get_line, latinl, Prompt} respectively.

1.1.4 1/O-server modes

Demands for efficiency when reading data from an io_server has not only lead to the addition of the get_line and
get_charsreguests, but has also added the concept of i0_server options. No options are mandatory to implement, but all
io_serversin the Erlang standard libraries honor the 'binary’ option, which allowsthe Datain theio_reply to be binary
instead of in list form when possible. If the data is sent as a binary, Unicode data will be sent in the standard Erlang
unicode format, i.e. UTF-8 (note that the function in get_until still getslist data regardless of theio_server mode).

Note that i.e. theget _unti | request allows for a function with the data specified as always being a list. Also the
return value data from such a function can be of any type (asis indeed the case when an io:fread request is sent to
anio_server). The client has to be prepared for data received as answers to those requests to be in avariety of forms,
but the server should convert the results to binaries whenever possible (i.e. when the function supplied to get_until
actualy returns alist). The example shown later in this text does just that.

An 1/O-server in binary mode will affect the data sent to the client, so that it hasto be able to handle binary data. For
convenience, it is possible to set and retrieve the modes of anio_server using the following 1/O-requests:

{setopts, Opts}
» Optsisalist of optionsin the format recognized by proplists (and of course by theio_server itself).
Asan example, theio_server for the interactive shell (in group.erl) understands the following options:

{binary, bool()} (or 'binary'/'list")

{echo, bool ()}

{expand_fun, fun()}

{encoding, 'unicode/'latin1'} (or 'unicode/'latinl')

- of which the 'binary' and 'encoding' options are common for all io_serversin OTP, while ‘echo’ and ‘expand’ isvalid
only for thisio_server. It'sworth noting that the ‘unicode’ option notifies how charactersare actually put on the physical
device, i.e. if theterminal per seisunicode aware, it does not affect how characters are sent in the I/O-protocol, where
each request contains encoding information for the provided or returned data.

The server should send one of the following as Reply:

ok
{error, Error}

An error (preferably enotsup) isto be expected if the option is not supported by theio_server (like if an 'echo’ option
is sent in a setopt Request to aplain file).

To retrieve options, this message is used:

getopts

The 'getopts message requests a complete list of all options supported by theio_server aswell astheir current values.
The server replies:

OptList
{error,Error}

e OptListisalist of tuples{Option, Value} where Option is aways an atom.

Ericsson AB. All Rights Reserved.: STDLIB | 5

1.1 The Erlang 1/O-protocol

1.1.5 Multiple I/O requests

The Request element can in itself contain several Requests by using the following format:
{requests, Requests}

* Reguestsisalist of valid Request tuples for the protocol, they shall be executed in the order in which they
appear in the list and the execution should continue until one of the requests result in an error or thelistis
consumed. The result of the last request is sent back to the client.

The server can for alist of requests send any of the valid resultsin the reply:

ok

{ok, Data}
{ok, Options}
{error, Error}

- depending on the actual requestsin thelist.

1.1.6 Optional I/O-requests

Thefollowing 1/0 request is optional to implement and a client should be prepared for an error return:
{get_geometry, Geometry}

e Geometry is either the atom 'rows' or the atom 'columns.

The server should send the Reply as:

{ok, N}
{error, Error}

* Nisthe number of character rows or columns the device has, if applicable to the device theio_server handles,
otherwise { error, enotsup} isagood answer.

1.1.7 Unimplemented request types:

If anio_server encounters a request it does not recognize (i.e. the io_request tuple is in the expected format, but the

actual Request is unknown), the server should send avalid reply with the error tuple:

{error, request}

This makes it possible to extend the protocol with optional messages and for the clients to be somewhat backwards

compatible.

1.1.8 An annotated and working example io_server:

Anio_server is any process capable of handling the protocol. There is no generic io_server behavior, but could well
be. Theframework is simple enough, a process handling incoming requests, usually bothio_requests and other device-

specific requests (for i.e. positioning , closing etc.).

Our example io_server stores characters in an ets table, making up a fairly crude ram-file (it is probably not useful,

but working).
The module begins with the usual directives, afunction to start the server and amain loop handling the requests:

-nmodul e(ets_io_server).

-export([start_link/0, init/0, loop/1, until_new ine/3, until_enough/3]).

- def i ne(CHARS_PER REC, 10).

6 | Ericsson AB. All Rights Reserved.: STDLIB

1.1 The Erlang I/O-protocol

-record(state, {

tabl e,

posi tion, % absol ute
mode % binary | |ist
b

start_link() ->
spawn_l i nk(?MODULE, i nit,[]).

init() ->
Tabl e = ets: new(nonane, [ordered_set]),
?MODULE: | oop(#state{tabl e = Table, position = 0, node=list}).

| oop(State) ->
receive
{io_request, From ReplyAs, Request} ->
case request (Request, State) of
{Tag, Reply, NewState} when Tag =:= ok; Tag =:= error ->
repl y(From ReplyAs, Reply),
?MODULE: | oop(NewSt at e) ;
{stop, Reply, _NewState} ->
repl y(From ReplyAs, Reply),
exit (Reply)
end;
%% Private message
{From rew nd} ->
From! {self(), ok},
?MODULE: | oop(St at e#st at e{ position = 0});
_Unknown ->
?MODULE: | oop(St at e)
end.

The main loop receives messages from the client (which might be using the io-module to send requests). For each
reguest the function request/2 is called and areply is eventually sent using the reply/3 function.

The "private" message { From, rewind} resultsin the current position in the pseudo-file to be reset to O (the beginning
of the "file"). Thisis atypical example of device-specific messages not being part of the I/O-protocoal. It isusually a
bad idea to embed such private messagesinio_request tuples, as that might be confusing to the reader.

Let'slook at the reply function first...

repl y(From ReplyAs, Reply) ->
From! {io_reply, ReplyAs, Reply}.

Simple enough, it sends the io_reply tuple back to the client, providing the ReplyAs element received in the request
along with the result of the request, as described above.

Now look at the different requests we need to handle. First the requests for writing characters:

request ({put _chars, Encoding, Chars}, State) ->
put _char s(uni code: characters_to_|ist(Chars, Encodi ng), State);
request ({put _chars, Encodi ng, Mdule, Function, Args}, State) ->
try
request ({put _chars, Encoding, apply(Mdule, Function, Args)}, State)
cat ch
_ ->
{error, {error, Function}, State}

Ericsson AB. All Rights Reserved.: STDLIB | 7

1.1 The Erlang 1/O-protocol

end;

The Encoding tells us how the characters in the message are represented. We want to store the characters as lists
in the ets-table, so we convert them to lists using the unicode:characters to list/2 function. The conversion function
conveniently accepts the encoding types unicode or latinl, so we can use the Encoding parameter directly.

When Module, Function and Arguments are provided, we ssimply apply it and do the same thing with the result as if
the data was provided directly.

Let's handle the requests for retrieving data too:

request ({get _until, Encoding, _Pronpt, M F, As}, State) ->
get _until (Encoding, M F, As, State);

request ({get _chars, Encoding, _Pronpt, N}, State) ->
%6 To sinplify the code, get_chars is inplemented using get_until
get _until (Encodi ng, ?MODULE, until _enough, [N], State);

request ({get _l i ne, Encoding, _Pronpt}, State) ->
%% To sinplify the code, get_line is inplenented using get_until
get _until (Encodi ng, ?MODULE, until_newine, [$\n], State);

Here we have cheated a little by more or less only implementing get_until and using internal helpers to implement
get__charsand get_line. In production code, this might be to inefficient, but that of course depends on the frequency
of the different requests. Before we start actually implementing the functions put_chars/2 and get_until/5, lets look
into the few remaining requests:

request ({get _geonetry, }, State) ->
{error, {error,enotsup}, State};

request ({setopts, Opts}, State) ->
setopts(Opts, State);

request (getopts, State) ->
getopts(State);

request ({requests, Reqs}, State) ->
mul ti _request (Reqs, {ok, ok, State});

The get_geometry request has no meaning for thisio_server, so the reply will be { error, enotsup} . The only option we
handle is the binary/list option, which is done in separate functions.

Themulti-request tag (requests) is handled in aseparate loop function applying the requestsin the list one after another,
returning the last result.

What's left is to handle backward compatibility and the file-module (which uses the old requests until backward
compatibility with pre-R13 nodes is no longer needed). Note that theio_server will not work with asimple file:write
if these are not added:

request ({put _chars, Chars}, State) ->

request ({put _chars, |l atinl, Chars}, State);
request ({put _chars, M F, As}, State) ->

request ({put _chars,latinl, M F, As}, State);
request ({get _chars, Pronpt, N}, State) ->

request ({get _chars,latinl, Pronpt, N}, State);
request ({get _|ine, Pronpt}, State) ->

request ({get _line,latinl, Pronpt}, State);
request ({get _until, Pronpt, MF, As}, State) ->

request ({get _until,latinl, Pronpt, M F, As}, State);

8 | Ericsson AB. All Rights Reserved.: STDLIB

1.1 The Erlang I/O-protocol

Ok, what's left now isto return { error, request} if the request is not recognized:

request (_Cther, State) ->
{error, {error, request}, State}.

Let's move further and actually handle the different requests, first the fairly generic multi-request type:

mul ti _request ([R|Rs], {ok, _Res, State}) ->
mul ti _request (Rs, request(R, State));
mul ti _request([_|_], Error) ->
Error;
mul ti _request([], Result) ->
Resul t .

We loop through the requests one at the time, stopping when we either encounter an error or the list is exhausted. The
last return valueis sent back to theclient (it'sfirst returned to the main loop and then sent back by thefunctionio_reply).

The getopt and setopt requestsis also simple to handle, we just change or read our state record:

set opt s(OptsO, State) ->
Opts = proplists:unfol d(
proplists:substitute_negations(
[{list,binary}],
Ot s0)),
case check_valid_opts(Opts) of
true ->
case proplists:get_val ue(binary, Opts) of
true ->
{ ok, ok, St at e#st at e{ node=bi nary}};
fal se ->
{ ok, ok, St at e#st at e{ node=bi nary}};
->
{ ok, ok, St at e}

end;
fal se ->
{error, {error, enot sup}, St at e}
end.
check_valid_opts([]) ->
true;

check_val i d_opts([{bi nary, Bool}| T]) when is_bool ean(Bool) ->
check_val id_opts(T);

check_valid_opts(_) ->
fal se.

get opt s(#st ate{node=M = S) ->
{ok, [{binary, case M of
bi nary ->
true;
_ ->
fal se
end}], S}.

As a convention, al io_servers handle both {setopts, [binary]}, {setopts, [list]} and {setopts,[{ binary, bool()}1},
hence the trick with proplists:substitute negations/2 and proplists.unfold/1. If invalid options are sent to us, we send
{ error,enotsup} back to the client.

Ericsson AB. All Rights Reserved.: STDLIB | 9

1.1 The Erlang 1/O-protocol

The getopts request should return alist of { Option, Value} tuples, which has the twofold function of providing both
the current values and the available options of thisio_server. We have only one option, and hence return that.

So far our io_server has been fairly generic (except for the rewind request handled in the main loop and the creation
of an etstable). Most io_servers contain code similar to what's above.

To make the exampl e runnable, we now start implementing the actual reading and writing of the data to/from the ets-
table. First the put_chars function:

put _chars(Chars, #state{table = T, position = P} = State) ->
R = P div ?CHARS_PER REC,
C = P rem ?CHARS_PER_REC,
[apply_update(T,U) || U<- split_data(Chars, R, O],
{ok, ok, State#state{position = (P + length(Chars))}}.

Wealready havethedataas (Unicode) listsand thereforejust split thelistin runs of apredefined sizeand put eachrunin
the table at the current position (and forward). The functions split_data/3 and apply_update/2 are implemented bel ow.

Now we want to read data from the table. The get_until function reads data and applies the function until it saysit's
done. The result is sent back to the client:

get _until (Encodi ng, Md, Func, As,
#state{position = P, nbde = M table = T} = State) ->
case get_Il oop(Md, Func, As, T, P,[]) of
{done, Data, _, NewP} when is_binary(Data); is_list(Data) ->
i f
M =:= binary ->
{ok,
uni code: char act ers_t o_bi nary(Dat a, uni code, Encodi ng),
St at e#st at e{ positi on = NewP}};
true ->
case check(Encodi ng,
uni code: characters_to_list(Data, unicode)) of
{error, _} = E->
{error, E, State};
List ->
{ok, List,
St at e#st at e{ posi ti on = NewP}}
end
end;
{done, Dat a, _, NewP} ->
{ok, Data, State#state{position = NewP}};
Error ->
{error, Error, State}
end.

get_I oop(MF, A T,P,CQ ->
{NewP, L} = get(P, T),
case catch apply(MF,[C L|A]) of
{done, List, Rest} ->
{done, List, [], NewP - length(Rest)};
{nore, NewC} ->
get _l oop(M F, A, T, NewP, NewC) ;
->
{error, F}
end.

Here we also handle the mode (binary or list) that can be set by the setopts request. By default, all OTPio_servers send
data back to the client as lists, but switching mode to binary might increase efficiency if the server handles it in an

10 | Ericsson AB. All Rights Reserved.: STDLIB

1.1 The Erlang I/O-protocol

appropriate way. Theimplementation of get_until ishard to get efficient asthe supplied function is defined to take lists
as arguments, but get_chars and get_line can be optimized for binary mode. This example does not optimize anything
however. It isimportant though that the returned datais of the right type depending on the options set, so we convert
the liststo binaries in the correct encoding if possible before returning. The function supplied in the get_until request
may, asitsfinal result return anything, so only functions actually returning lists can get them converted to binaries. If
the request contained the encoding tag unicode, the lists can contain all unicode codepoints and the binaries should be
in UTF-8, if the encoding tag was|atinl, the client should only get charactersin the range 0..255. The function check/2
takes care of not returning arbitrary unicode codepointsin listsif the encoding was given aslatinl. If the function did
not return alist, the check cannot be performed and the result will be that of the supplied function untouched.

Now we are more or less done. We implement the utility functions below to actually manipulate the table;

check(uni code, List) ->
Li st;
check(latinl, List) ->
try
[throw(not __unicode) || X <- List,
X > 255],
Li st
catch
throw _ ->
{error, {cannot _convert, unicode, latinl}}
end.

The function check takes care of providing an error tuple if unicode codepoints above 255 is to be returned if the
client requested latinl.

The two functions until_newline/3 and until_enough/3 are helpers used together with the get_until function to
implement get_chars and get_line (inefficiently):

until _new ine([],eof, M/StopCharacter) ->
{done, eof ,[]};
until _new i ne(Thi sFar, eof, M/StopCharacter) ->
{done, Thi sFar,[]};
until _new i ne(Thi sFar, Char Li st, MySt opChar acter) ->
case lists:splitwith(fun(X) -> X =/= MyStopCharacter end, Charlist) of

{L. 1} ->
{nore, Thi sFar ++L};
{L2, [M/St opChar acter| Rest]} ->
{done, Thi sFar ++L2++[MySt opChar acter], Rest}
end.

until _enough([],eof,_N) ->
{done, eof ,[]};

unti | _enough(Thi sFar, eof, _N) ->
{done, Thi sFar,[]};

unti | _enough(Thi sFar, CharLi st, N)

when | engt h(Thi sFar) + |length(CharList) >= N ->

{Res, Rest} = ny_split(N, ThisFar ++ CharList, []),
{done, Res, Rest};

unti | _enough(Thi sFar, CharList, N) ->
{nor e, Thi sFar ++Char Li st }.

As can be seen, the functions above are just the type of functions that should be provided in get_until requests.
Now we only need to read and write the table in an appropriate way to complete the server:

Ericsson AB. All Rights Reserved.: STDLIB | 11

1.2 Using Unicode in Erlang

get (P, Tab) ->
R = P div ?CHARS_PER REC,
C = P rem ?CHARS_PER REC,
case ets:|ookup(Tab, R) of
[1 ->
{P, eof };
[{R List}] ->
case nmy_split(C List,[]) of
{11} ->
{ P+l engt h(List), eof };
{_,Data} ->
{ P+l engt h(Dat a) , Dat a}
end
end.

my_split(O, Left, Acc) ->
{lists:reverse(Acc), Left};

ny_split(_[],Acc) ->
{lists:reverse(Acc),[]};

ny_split(N [HT], Acc) ->
my_split(N-1, T, [H Acc]).

split_data([],_,_) ->

[1:

split_data(Chars, Row, Col) ->
{This, Left} = ny_split(?CHARS _PER REC - Col, Chars, []),
[{Row, Col, This} | split_data(Left, Row + 1, 0)].

appl y_updat e(Tabl e, {Row, Col, List}) ->
case ets:|ookup(Tabl e, Row) of
(1 ->
ets:insert(Table, {Row, |ists:duplicate(Col,0) ++ List});
[{Row, O dData}] ->
{Partl, } = ny_split(Col,ddData,[]),
{_,Part2} = ny_split(Col +l engt h(List),ddData,[]),
ets:insert(Tabl e, {Row, Partl ++ List ++ Part2})
end.

The table is read or written in chunks of 2CHARS PER_REC, overwriting when necessary. The implementation is
obviously not efficient, it isjust working.

This concludes the example. It isfully runnable and you can read or writeto theio_server by usingi.e. theio_module
or even the file module. It's as simple as that to implement afully fledged io_server in Erlang.

1.2 Using Unicode in Erlang

Implementing support for Unicode character setsis an ongoing process. The Erlang Enhancement Proposal (EEP) 10
outlinesthe basics of Unicode support and al so specifiesadefault encoding in binariesthat all Unicode-aware modules
should handle in the future.

The functionality described in EEP10 is implemented in Erlang/OTP as of R13A, but that's by no means the end of
it. More functionality will be needed in the future and more OTP-libraries might need updating to cope with Unicode
data. One example of future development is obvious when reading this manual, our documentation format is limited
to the ISO-latin-1 character range, why no Unicode characters beyond that range will occur in this document.

This guide outlines the current Unicode support and gives a couple of recipes for working with Unicode data.

12 | Ericsson AB. All Rights Reserved.: STDLIB

1.2 Using Unicode in Erlang

1.2.1 What Unicode is

Unicode is a standard defining codepoints (numbers) for al known, living or dead, scripts. In principle, every known
symbol used in any language has a Unicode codepoint.

Unicode codepoints are defined and published by the Unicode Consortium, which is anon profit organization.

Support for Unicode isincreasing throughout the world of computing, as the benefits of one common character set are
overwhelming when programs are used in aglobal environment.

Along with the base of the standard, the codepointsfor al the scripts, there are acouple of encoding standardsavailable.
Different operating systems and tools support different encodings. For example Linux and MacOS X has chosen the
UTF-8 encoding, which is backwards compatible with 7-bit ASCII and therefore affects programs written in plain
English the least. Windows® on the other hand supports a limited version of UTF-16, namely all the code planes
where the characters can be stored in one single 16-bit entity, which includes most living languages.

The most widely spread encodings are:

UTF-8
Each character is stored in one to four bytes depending on codepoint. The encoding is backwards compatible
with 7-bit ASCII asal 7-bit characters are stored in one single byte asis. The characters beyond codepoint 127
are stored in more bytes, letting the most significant bit in the first character indicate a multi-byte character. For
details on the encoding, the RFC is publicly available.

UTF-16
This encoding has many similarities to UTF-8, but the basic unit is a 16-bit number. This means that all
characters occupy at least two bytes, some high numbers even four bytes. Some programs and operating
systems claiming to use UTF-16 only allows for characters that can be stored in one 16-bit entity, which is
usualy sufficient to handle living languages. As the basic unit is more than one byte, byte-order issues occur,
why UTF-16 existsin both a big-endian and little-endian variant.

UTF-32
The most straight forward representation, each character is stored in one single 32-bit number. Thereisno need
for escapes or any variable amount of entities for one character, all Unicode codepoints can be stored in one
single 32-hit entity. Aswith UTF-16, there are byte-order issues, UTF-32 can be both big- and little-endian.

UCs4
Basically the same as UTF-32, but without some Unicode semantics, defined by |EEE and hasllittle use
as a separate encoding standard. For all normal (and possibly abnormal) usages, UTF-32 and UCS-4 are
interchangeable.

Certain ranges of charactersareleft unused and certain ranges are even deemed invalid. The most notableinvalid range
is 16#D800 - 16#DFFF, as the UTF-16 encoding does not alow for encoding of these numbers. It can be speculated
that the UTF-16 encoding standard was, from the beginning, expected to be able to hold all Unicode charactersin one
16-hit entity, but then had to be extended, leaving awhole in the Unicode range to cope with backward compatibility.

Additionally, the codepoint 16#FEFF is used for byte order marks (BOM's) and use of that character is not encouraged
in other contexts than that. It actually is valid though, as the character "ZWNBS" (Zero Width Non Breaking Space).
BOM's are used to identify encodings and byte order for programs where such parameters are not known in advance.
Byte order marks are more seldom used than one could expect, put their use is becoming more widely spread as they
provide the means for programs to make educated guesses about the Unicode format of a certain file.

1.2.2 Standard Unicode representation in Erlang

In Erlang, strings are actually lists of integers. A string is defined to be encoded in the ISO-latin-1 (1SO8859-1)
character set, which is, codepoint by codepoint, a sub-range of the Unicode character set.

The standard list encoding for stringsis therefore easily extendible to cope with the whole Unicode range: A Unicode
string in Erlang is simply alist containing integers, each integer being a valid Unicode codepoint and representing
one character in the Unicode character set.

Ericsson AB. All Rights Reserved.: STDLIB | 13

1.2 Using Unicode in Erlang

Regular Erlang stringsin 1SO-latin-1 are a subset of there Unicode strings.

Binarieson the other hand are moretroublesome. For performance reasons, programsoften storetextual datain binaries
instead of lists, mainly because they are more compact (one byte per character instead of two words per character, asis
the case with lists). Using erlang:list_to_binary/1, an regular Erlang string can be converted into a binary, effectively
using the 1SO-latin-1 encoding in the binary - one byte per character. Thisis very convenient for those regular Erlang
strings, but cannot be done for Unicode lists.

Asthe UTF-8 encoding iswidely spread and provides the most compact storage, it is selected asthe standard encoding
of Unicode charactersin binaries for Erlang.

The standard binary encoding is used whenever alibrary function in Erlang should cope with Unicode datain binaries,
but isof course not enforced when communi cating externally. Functions and bit-syntax exist to encode and decode both
UTF-8, UTF-16 and UTF-32 in binaries. Library functions dealing with binaries and Unicode in general, however,
only deal with the default encoding.

Character data may be combined from several sources, sometimes availablein amix of stringsand binaries. Erlang has
for long had the concept of iodata or iolists, where binaries and lists can be combined to represent a sequence of bytes.
In the same way, the Unicode aware modules often allow for combinations of binaries and lists where the binaries
have characters encoded in UTF-8 and the lists contain such binaries or numbers representing Unicode codepoints:

uni code_bi nary() = binary() with characters encoded i n UTF-8 codi ng standard
uni code_char () = integer() representing valid uni code codepoi nt

chardata() = charlist() | unicode_binary()

charlist() = [unicode_char() | unicode_binary() | charlist()]
a uni code_binary is allowed as the tail of the |ist

The module uni code in stdlib even supports similar mixes with binaries containing other encodings than UTF-8,
but that is a specia case to allow for conversions to and from external data:

ext ernal _uni code_binary() = binary() with characters coded in a user specified Unicode
encodi ng ot her than UTF-8 (UTF-16 or UTF-32)

external _chardata() = external _charlist() | external _unicode_binary()

external _charlist() = [unicode_char() | external _unicode_binary() | external charlist()]
an external _unicode_binary is allowed as the tail of the |ist

1.2.3 Basic language support for Unicode

First of all, Erlang is still defined to be written in the 1SO-latin-1 character set. Functions have to be named in that
character set, atoms are restricted to | SO-latin-1 and regular strings are still lists of characters 0..255 in the |SO-latin-1
encoding. This has not (yet) changed, but the language has been dlightly extended to cope with Unicode characters
and encodings.

Bit-syntax

The hit-syntax contains types for coping with binary data in the three main encodings. The types are named ut f 8,
ut f 16 and ut f 32 respectively. Theut f 16 and ut f 32 types can bein abig- or little-endian variant:

<<Ch/utf8, /binary>> = Binl
<<Ch/utfi16-little,_/binary>> = Bin2

14 | Ericsson AB. All Rights Reserved.: STDLIB

1.2 Using Unicode in Erlang

Bin3 = <<$H utf32-little, $e/utf32-little, $l/utf32-1ittle, $I/utf32-little,
$o/utf32-1ittle>>,

For convenience, literal strings can be encoded with a Unicode encoding in binaries using the following (or similar)
syntax:

Bin4d = <<"Hel | 0"/ utf16>>,

String- and character-literals

Warning:

The literal syntax described here may be subject to change in R13B, it has not yet passed the usual process for
language changes approval .

It is convenient to be able to write alist of Unicode characters in the string syntax. However, the language specifies
strings as being in the | SO-latin-1 character set which the compiler tool chain as well as many other tools expect.

Alsothesourcecodeis(for now) still expected to bewritten using the | SO-latin-1 character set, why Unicode characters
beyond that range cannot be entered in string literals.

To make it easier to enter Unicode characters in the shell, it alows strings with Unicode characters on input,
immediately converting them to regular lists of integers. They will, by the evaluator etc be viewed asif they wereinput
using the regular list syntax, which is - in the end - how the language actually treats them. They will in the same way
not be output as stringsby i.ei o: wite/ 2 orio: format/ 3 unlessthe format string supplied to i o: f or mat

uses the Unicode trandation modifier (which we will talk about later).

For source code, there is an extension to the \OOO (backsl ash followed by three octal numbers) and \xHH (backslash
followed by 'x', followed by two hexadecimal characters) syntax, namely \x{H ...} (a backslash followed by an 'x’,
followed by left curly bracket, any number of hexadecimal digits and a terminating right curly bracket). This allows
for entering characters of any codepoint literally in a string. The string is immediately converted into a list by the
scanner however, which is obvious when calling it directly:

1> erl _scan:string("\"X\".").

{ok, [{string, 1,"X"}, {dot, 1}], 1}

2> erl _scan:string("\"\x{400}\".").
{ok,[{'[',1},{integer,1,1024},{"]", 1}, {dot, 1}], 1}

Character literals, or rather integers representing Unicode codepoints can be expressed in a similar way using $
\X{H ..}:

4> $\ x{ 400} .
1024

Thisalso is atrandation by the scanner:

5> erl _scan:string("$Y.").
{ok, [{char, 1,89}, {dot, 1}], 1}

Ericsson AB. All Rights Reserved.: STDLIB | 15

1.2 Using Unicode in Erlang

6> erl _scan:string("$\x{400}.").
{ok, [{integer, 1,1024}, {dot, 1}], 1}

In the shell, if using aUnicode input device, '$' can be followed directly by a Unicode character producing an integer.
In the following example, let'simagine the character 'c' isactually a Cyrillic's (looking fairly similar):

7> $c.
1089

The literal syntax allowing Unicode charactersisto be viewed as "syntactic sugar”, but is, as such, fairly useful.

1.2.4 The interactive shell

The interactive Erlang shell, when started towards a terminal or started using the wer | command on windows, can
support Unicode input and output.

On Windows®, proper operation requires that a suitable font is installed and selected for the Erlang application to
use. If no suitable font is available on your system, try installing the DejaV u fonts (dejavu-fonts.org), which are freely
available and then select that font in the Erlang shell application.

On Unix®-like operating systems, the terminal should be able to handle UTF-8 on input and output (modern versions
of XTerm, KDE konsole and the Gnome terminal do for example) and your locale settings have to be proper. As an
example, my LANG environment variableis set as this:

$ echo $LANG
en_US. UTF- 8

Actually, most systems handle the LC_CTY PE variable before LANG, so if that is set, it hasto be set to UTF-8:

$ echo $LC _CTYPE
en_US. UTF- 8

TheLANG or LC_CTY PE setting should be consistent with what theterminal iscapable of, thereisno portableway for
Erlang to ask the actual terminal about its UTF-8 capacity, we haveto rely on the language and character type settings.

To investigate what Erlang thinks about the terminal, thei o: get opt s() call can be used when the shell is started:

$ LC CTYPE=en_US. | SO-8859-1 erl
Erl ang R13A (erts-5.7) [source] [64-bit] [snp:4:4] [rq:4] [async-threads: 0] [kernel-poll:false]

Eshell V5.7 (abort with ~"Q

1> |ists: keyfind(encoding,1,io:getopts()).

{encodi ng, | ati n1}

2> q().

ok

$ LC CTYPE=en_US. UTF-8 erl

Erl ang R13A (erts-5.7) [source] [64-bit] [snp:4:4] [rq:4] [async-threads: 0] [kernel-poll:false]

Eshell V5.7 (abort with ~"QG

1> |ists: keyfind(encoding, 1,io:getopts()).
{encodi ng, uni code}

2>

16 | Ericsson AB. All Rights Reserved.: STDLIB

1.2 Using Unicode in Erlang

When (finally?) everything isin order with the local e settings, fonts and the terminal emulator, you probably also have
discovered away to input characters in the script you desire. For testing, the simplest way is to add some keyboard
mappingsfor other languages, usually done with some applet in your desktop environment. In my KDE environment, |
start the KDE Control Center (Personal Settings), select "Regional and Accessibility” and then"Keyboard Layout". On
Windows XP®, | start Control Panel->Regional and Language Options, select the Language tab and click the Details...
button in the square named "Text services and input Languages'. Y our environment probably provides similar means
of changing the keyboard layout. Make sure you have a way to easily switch back and forth between keyboards if
you are not used to this, entering commands using a Cyrillic character set is, as an example, not easily done in the
Erlang shell.

Now you are set up for some Unicodeinput and output. The simplest thing to dois of courseto enter astring in the shell:

T erl
Erlang R13A (erts-5.7) [source] [64-bit] [smp:4:4] [rg:4] [async-threads:0] [ker
nel-poll :falsel

Eshell W5.7 (abort with *G)

1» lists:keufind(encoding,l,io:getopts()).
tencoding ,unicode}

2> "yHmuyoae ",

[1091,1085,1080,1094 ,1086,1076,1077]

3 io:format("“ts~n",[v(2)]]).

UHMLoaS

ok
4> []

Figure 2.1: Cyrillic characters in an Erlang shell

While strings can be input as Unicode characters, the language elements are still limited to the 1SO-latin-1 character
set. Only character constants and strings are allowed to be beyond that range:

Eshell ¥5.7 (abort with *~G)

958

2> Bviyobe.

* 1: illegal character
Z

Figure 2.2: Unicode characters in allowed and disallowed context

1.2.5 Unicode file names

Most modern operating systems support Unicode file namesin some way or another. There are several different ways
to do this and Erlang by default treats the different approaches differently:

Mandatory Unicode file naming

Windows and, for most common uses, MacOSX enforces Unicode support for file names. All files created in the
filesystem have names that can consistently be interpreted. In MacOSX, al file names are retrieved in UTF-8
encoding, while Windows has selected an approach where each system call handling file names has a specia
Unicode aware variant, giving much the same effect. Thereare no file names on these systemsthat are not Unicode
file names, why the default behavior of the Erlang VM is to work in "Unicode file name translation mode",
meaning that a file name can be given as a Unicode list and that will be automatically translated to the proper
name encoding for the underlying operating and file system.

Doingi.e.afil e: i st _dir/ 1ononeof thesesystemsmay return Unicode lists with codepoints beyond 255,
depending on the content of the actual filesystem.

Asthefeatureisfairly new, you may still stumble upon non core applications that cannot handle being provided
with file names containing characters with codepoints larger than 255, but the core Erlang system should have
no problems with Unicode file names.

Ericsson AB. All Rights Reserved.: STDLIB | 17

1.2 Using Unicode in Erlang

Transparent file naming

Most Unix operating systems have adopted a simpler approach, namely that Unicode file naming is not enforced,
but by convention. Those systems usually use UTF-8 encoding for Unicode file names, but do not enforce it. On
such asystem, afile name containing characters having codepoints between 128 and 255 may be named either as
plain 1SO-latin-1 or using UTF-8 encoding. As no consistency is enforced, the Erlang VM can do no consistent
tranglation of all file names. If the VM would automatically select encoding based on heuristics, one could get
unexpected behavior on these systems, therefore file names not being encoded in UTF-8 are returned as "raw file
names' if Unicode file naming support isturned on.

A raw file name is not alist, but a binary. Many non core applications still do not handle file names given as
binaries, why such raw names are avoided by default. This means that systems having implemented Unicode file
naming through transparent file systems and an UTF-8 convention, do not by default have Unicode file naming
turned on. Explicitly turning Unicode file name handling on for these types of systemsis considered experimental .

The Unicode file naming support was introduced with OTP release R14B01. A VM operating in Unicode file mode
can work with files having names in any language or character set (as long as it's supported by the underlying OS
and file system). The Unicode character list is used to denote file or directory names and if the file system content
is listed, you will also be able to get Unicode lists as return value. The support lies in the kernel and stdlib modules,
why most applications (that does not explicitly require the file names to be in the | SO-latin-1 range) will benefit from
the Unicode support without change.

On Operating systems with mandatory Unicode file names, this means that you more easily conform to the file
names of other (non Erlang) applications, and you can also process file names that, at least on Windows, were
completely inaccessible (due to having names that could not be represented in ISO-latin-1). Also you will avoid
creating incomprehensible file names on MacOSX asthe vfslayer of the OSwill accept al your file namesas UTF-8
and will not rewrite them.

For most systems, turning on Unicode file name tranglation is no problem even if it uses transparent file naming.
Very few systems have mixed file name encodings. A consistent UTF-8 named system will work perfectly in
Unicode file name mode. It is still however considered experimental in R14B01. Unicode file name trandation is
turned on with the +f nu switch to the er | program. If the VM is started in Unicode file name trandation mode,
file:native_nane_encodi ng/ 0 will return theatom ut f 8.

In Unicode file name mode, file names given to the BIF open_port/2 with the option
{spawn_execut abl e, ...} areadso interpreted as Unicode. So is the parameter list given in the ar gs option
availablewhen using spawn_execut abl e. The UTF-8 trand ation of arguments can be avoided using binaries, see
the discussion about raw file names below.

It is worth noting that the file encodi ng options given when opening a file has nothing to do with the file name
encoding convention. Y ou can very well openfilescontaining UTF-8 but having filenamesin | SO-latin-1 or viceversa.

Note:

Erlang drivers and NIF shared objects still can not be named with names containing codepoints beyond 127. This
is a known limitation to be removed in a future release. Erlang modules however can, but it is definitely not a
good idea and is still considered experimental.

Notes about raw file names and automatic file name conversion

Raw file names is introduced together with Unicode file name support in erts-5.8.2 (OTP R14B01). The reason "raw
filenames' isintroduced in the system isto be able to consistently represent file names given in different encodings on
the same system. Having the VM automatically trandate afile namethat isnot in UTF-8 to alist of Unicode characters
might seem practical, but thiswould open up for both duplicate file names and other inconsistent behavior. Consider a
directory containing afile named "bjorn" in | SO-latin-1, while the Erlang VM is operating in Unicode file name mode
(and therefore expecting UTF-8 file naming). The | SO-latin-1 name is not valid UTF-8 and one could be tempted to

18 | Ericsson AB. All Rights Reserved.: STDLIB

1.2 Using Unicode in Erlang

think that automatic conversion in for examplefil e: i st _dir/ 1 isagood idea. But what would happen if we
later tried to open the file and have the name as a Unicode list (magically converted from the 1SO-latin-1 file name)?
The VM will convert the file name given to UTF-8, as this is the encoding expected. Effectively this means trying to
open the file named <<"bjérn"/utf8>>. Thisfile does not exist, and even if it existed it would not be the same file as
the one that was listed. We could even create two files named "bjérn”, one named in the UTF-8 encoding and one not.
Iffile:list_dir/1wouldautomaticaly convert the ISO-latin-1 file name to alist, we would get two identical
file names as the result. To avoid this, we need to differentiate between file names being properly encoded according
to the Unicode file naming convention (i.e. UTF-8) and file names being invalid under the encoding. Thisis done by
representing invalid encoding as "raw" file names, i.e. as binaries.

The core system of Erlang (kernel and stdlib) accepts raw file names except for loadable drivers and executables

invoked using open_port({spawn, ...} ...).open_port({spawn_executable, ...} ...)
however does accept them. As mentioned earlier, the arguments given in the option list to
open_port ({spawn_executable, ...} ...) undergothesame conversion asthefile names, meaning that

the executable will be provided with argumentsin UTF-8 as well. This trandation is avoided consistently with how
the file names are treated, by giving the argument as a binary.

To force Unicode file name translation mode on systems where this is not the default is considered experimental in
OTP R14B01 due to the raw file names possibly being a new experience to the programmer and that the non core
applications of OTP are not tested for compliance with raw file names yet. Unicode file name tranglation is expected
to be default in future rel eases.

If working with raw file names, one can still conform to the encoding convention of the Erlang VM by using the
file:native_nanme_encodi ng/ 0 function, whichreturnseither theatoml| at i n1 ortheatomut f 8 depending
onthefilenametranslation mode. OnLinux, aVM started without explicitly stating the file name translation mode will
defaulttol at i n1 asthe native file name encoding, why file names on the disk encoded as UTF-8 will be returned as
alist of the namesinterpreted as | SO-latin-1. The"UTF-8 list" isnot a practical type for displaying or operating onin
Erlang, but it is backward compatible and usablein all functionsrequiring afile name. On Windows and MacOSX, the
default behavior is that of file name trandation, why thefi | e: nati ve_nane_encodi ng/ 0 by default returns
ut f 8 on those systems (the fact that Windows actually does not use UTF-8 on the file system level can safely be
ignored by the Erlang programmer). The default behavior can be changed using the +f nu or +f nl options to the
VM, seetheer| command manual page.

Even if you are operating without Unicode file naming transl ation automatically done by the VM, you can access and
create fileswith namesin UTF-8 encoding by using raw file names encoded as UTF-8. Enforcing the UTF-8 encoding
regardless of the mode the Erlang VM is started in might, in some circumstances be a good idea, as the convention
of using UTF-8 file names is spreading.

Notes about MacOSX

MacOSXs vfs layer enforces UTF-8 file names in a quite aggressive way. Older versions did this by simply refusing
to create non UTF-8 conforming file names, while newer versions replace offending bytes with the sequence "%HH",
where HH isthe original character in hexadecimal notation. As Unicode translation is enabled by default on MacOSX,
the only way to come up against thisisto either start the VM with the +f nl flag or tousearaw filenameinl at i nl
encoding. In that case, the file can not be opened with the same name as the one used to create this. The problem is
by design in newer versions of MacOSX.

MacOSX also reorganizesthe names of files so that the representation of accents etc is denormalized, i.e. the character
0 isrepresented as the codepoints [111,776], where 111 is the character 0 and 776 is a special accent character. This
type of denormalized Unicode is otherwise very seldom used and Erlang normalizes those file names on retrieval, so
that denormalized file namesis not passed up to the Erlang application. In Erlang the file name "bjorn" isretrieved as
[98,106,246,114,110], not as[98,106,117,776,114,110], even though the file system might think differently.

Ericsson AB. All Rights Reserved.: STDLIB | 19

1.2 Using Unicode in Erlang

1.2.6 Unicode-aware modules

Most of the modules in Erlang/OTP are of course Unicode-unaware in the sense that they have no notion of Unicode
and really shouldn't have. Typically they handle non-textual or byte-oriented data (likegen_t cp etc).

Modules that actually handle textual data (like i o_li b, string etc) are sometimes subject to conversion or
extension to be able to handle Unicode characters.

Fortunately, most textual data has been stored in lists and range checking has been sparse, why moduleslikest ri ng
works well for Unicode lists with little need for conversion or extension.

Some modules are however changed to be explicitly Unicode-aware. These modules include:
uni code

The module unicodeis obviously Unicode-aware. It contains functions for conversion between different Unicode
formats as well as some utilities for identifying byte order marks. Few programs handling Unicode data will
survive without this module.

The io module has been extended along with the actual 1/0-protocol to handle Unicode data. This means that
severa functions require binariesto bein UTF-8 and there are modifiersto formatting control sequencesto allow
for outputting of Unicode strings.

file,groupanduser

|/O-servers throughout the system are able both to handle Unicode data and has options for converting data upon
actual output or input to/from the device. As shown earlier, the shell has support for Unicode terminals and the
file module allows for tranglation to and from various Unicode formats on disk.

The actual reading and writing of files with Unicode data is however not best done with the f i | e module as
its interface is byte oriented. A file opened with a Unicode encoding (like UTF-8), is then best read or written
using theio module.

re

The re module allows for matching Unicode strings as a special option. As the library is actually centered on
matching in binaries, the Unicode support is UTF-8-centered.

The wx graphical library has extensive support for Unicode text

The module string works perfect for Unicode strings as well as for 1SO-latin-1 strings with the exception of the
language-dependent to_upper andto_lower functions, which areonly correct for the | SO-latin-1 character set. Actually
they can never function correctly for Unicode charactersin their current form, there are language and locale issues as
well as multi-character mappings to consider when conversion text between cases. Converting casein an international
environment is a big subject not yet addressed in OTP.

1.2.7 Unicode recipes

When starting with Unicode, one often stumbles over some common issues. | try to outline some methods of dealing
with Unicode dataiin this section.

Byte order marks

A common method of identifying encoding in text-filesis to put a byte order mark (BOM) first in the file. The BOM
isthe codepoint 16#FEFF encoded in the same way astherest of thefile. If such afileisto beread, thefirst few bytes
(depending on encoding) is not part of the actual text. This code outlines how to open afile which is believed to have
aBOM and set the files encoding and position for further sequential reading (preferably using the io module). Note
that error handling is omitted from the code:

20 | Ericsson AB. All Rights Reserved.: STDLIB

1.2 Using Unicode in Erlang

open_bom file_for_reading(File) ->
{ok,F} = file:open(File,[read,binary]),
{ok,Bin} = file:read(F,4),
{Type, Byt es} = uni code: bom t o_encodi ng(Bi n),
file:position(F, Bytes),
i 0:setopts(F, [{encodi ng, Type}]),
{ok, F}.

The uni code: bom t o_encodi ng/ 1 function identifies the encoding from a binary of at least four bytes. It
returns, along with an term suitable for setting the encoding of the file, the actual length of the BOM, so that the file
position can be set accordingly. Notethat f i | e: posi ti on always works on byte-offsets, so that the actual byte-
length of the BOM is needed.

To open afilefor writing and putting the BOM first is even simpler:

open_bom file_for_witing(File, Encoding) ->
{ok,F} = file:open(File,[wite,binary]),
ok = file:wite(File, unicode: encodi ng_to_bon{Encodi ng)),
i 0: setopts(F, [{encodi ng, Encodi ng}]),
{ok, F}.

In both casesthefileisthen best processed using thei o module, asthefunctionsini o can handle codepoints beyond
the ISO-latin-1 range.

Formatted input and output

When reading and writing to Unicode-aware entities, like the User or afile opened for Unicode translation, you will
probably want to format text strings using the functions in io or io_lib. For backward compatibility reasons, these
functions don't accept just any list asastring, but require e special "translation modifier" when working with Unicode
texts. The modifier is "t". When applied to the "s" control character in a formatting string, it accepts al Unicode
codepoints and expect binariesto bein UTF-8:

1> jo:format ("~ts~n", [<<"&a6"/utf8>>]).
440

ok

2> jo:format ("~s~n", [<<"&406"/utf8>>]).
A¥AcAY

ok

Obviously the second i o: f or mat gives undesired output because the UTF-8 binary is not in latinl. Because |SO-
latin-1 is till the defined character set of Erlang, the non prefixed "'s" control character expects | SO-latin-1 in binaries
aswell aslists.

Aslong asthe datais aways lists, the "t" modifier can be used for any string, but when binary dataisinvolved, care
must be taken to make the tight choice of formatting characters.

The function f or mat inio_li b behaves similarly. This function is defined to return a deep list of characters
and the output could easily be converted to binary data for outputting on a device of any kind by a simple
erlang: i st_to_binary. When the trandation modifier is used, the list can however contain characters that
cannot bestoredinonebyte. Thecall toer | ang: | i st _t o_bi nary will inthat casefail. However, if theio_server
you want to communicate with is Unicode-aware, the list returned can still be used directly:

Ericsson AB. All Rights Reserved.: STDLIB | 21

1.2 Using Unicode in Erlang

Eshell V5.7 (abort with *G)

1> io_lib:format("~“ts™n",["BviLyobs"]).
[[952,957,953,968,959,948,349], "\n"]

Z> io:put_chars(io_lib:format("~ts™n",["Bvipobe"1)).
B Lpoids

[=]3§

Figure 2.3: io_lib:format with Unicode translation

The Unicode string is returned as a Unicode list, why the return value of i o_1 i b: f or mat no longer qualifies as
aregular Erlang string (the function io_lib:deep_char_list will, as an example, return f al se). The Unicode list is
however valid input to the io:put_chars function, so data can be output on any Unicode capable device anyway.
If the device is a terminal, characters will be output in the \x{H ...} format if encoding is| ati n1 otherwise in
UTF-8 (for the non-interactive terminal - "oldshell" or "noshell") or whatever is suitable to show the character properly
(for an interactive terminal - the regular shell). The bottom line is that you can always send Unicode data to the
st andar d_i o device. Fileswill however only accept Unicode codepoints beyond I SO-latin-1 if encodi ng isset
to something elsethan| at i nl.

Heuristic identification of UTF-8

Whileit's strongly encouraged that the actual encoding of charactersin binary datais known prior to processing, that
is not always possible. On atypical Linux® system, there is a mix of UTF-8 and |SO-latin-1 text files and there are
seldom any BOM'sin the files to identify them.

UTF-8 isdesigned in such away that |SO-latin-1 characters with numbers beyond the 7-bit ASCII range are seldom
considered valid when decoded as UTF-8. Therefore one can usually use heuristics to determineif afileisin UTF-8
or if it isencoded in 1SO-latin-1 (one byte per character) encoding. The uni code module can be used to determine
if data can be interpreted as UTF-8:

heuri stic_encodi ng_bi n(Bi n) when is_binary(Bin) ->
case uni code: characters_to_binary(Bin, utf8, utf8) of
Bin ->
utf 8;
_ ->
latinl
end.

If one does not have a complete binary of the file content, one could instead chunk through the file and check
part by part. Thereturn-tuple {i nconpl et e, Decoded, Rest} fromuni code: characters_to_bi nary/
{1, 2, 3} comesinhandy. Theincompleterest from one chunk of dataread from thefileisprepended to the next chunk
and we therefore circumvent the problem of character boundaries when reading chunks of bytesin UTF-8 encoding:

heuristic_encoding file(FileName) ->
{ok,F} = file:open(FileNang,[read, binary]),
| oop_t hrough_file(F, <<>> file:read(F, 1024)).

| oop_t hrough_file(_, <<>> eof) ->
ut f 8;
| oop_t hrough_file(_, _,eof) ->
| atini;
| oop_t hrough_fil e(F, Acc, {ok, Bin}) when is_binary(Bin) ->
case uni code: characters_to_binary([Acc, Bin]) of
{error, _,_} ->
| atini;
{inconpl ete, _,Rest} ->
| oop_t hrough_file(F, Rest,file:read(F, 1024));
Res when is_bi nary(Res) ->

22 | Ericsson AB. All Rights Reserved.: STDLIB

1.2 Using Unicode in Erlang

| oop_t hrough_fil e(F, <<>>,file:read(F, 1024))
end.

Another option isto try to read the whole file in utf8 encoding and see if it fails. Here we need to read the file using
i 0: get _char s/ 3, aswe haveto succeed in reading characters with a codepoint over 255:

heuristic_encoding _fil e2(FileNane) ->
{ok, F} = file:open(FileNang,[read, binary, {encodi ng,utf8}]),
| oop_t hrough_fil e2(F,io:get_chars(F,'"', 1024)).

| oop_t hrough_file2(_,eof) ->
ut f 8;
l oop_through_file2(_,{error,_Err}) ->
latinil;
| oop_t hrough_fil e2(F, Bin) when is_binary(Bin) ->
| oop_t hrough_fil e2(F,io:get_chars(F,'"', 1024)).

Ericsson AB. All Rights Reserved.: STDLIB | 23

1.2 Using Unicode in Erlang

2 Reference Manual

The Standard Erlang Libraries application, STDLIB, contains modules for manipulating lists, strings and files etc.

24 | Ericsson AB. All Rights Reserved.: STDLIB

STDLIB

STDLIB

Application

The STDLIB ismandatory in the sense that the minimal system based on Erlang/OTP consists of Kernel and STDLIB.
The STDLIB application contains no services.

Configuration

The following configuration parameters are defined for the STDLIB application. See app(4) for more information
about configuration parameters.

shell _esc = icl | abort

This parameter can be used to alter the behaviour of the Erlang shell when ~G is pressed.
restricted_shell = nodul e()

This parameter can be used to run the Erlang shell in restricted mode.
shel | _catch_exception = bool ()

This parameter can be used to set the exception handling of the Erlang shell's evaluator process.
shel |l _history_length = integer() >= 0

This parameter can be used to determine how many commands are saved by the Erlang shell.
shel | _pronpt _func = {Md, Func} | default

where

« Md = atom()

e Func = atom()

This parameter can be used to set a customized Erlang shell prompt function.
shel | _saved_results = integer() >= 0

This parameter can be used to determine how many results are saved by the Erlang shell.

See Also
app(4), application(3), shell(3),

Ericsson AB. All Rights Reserved.: STDLIB | 25

array

array

Erlang module

Functional, extendible arrays. Arrays can have fixed size, or can grow automatically as needed. A default valueisused
for entries that have not been explicitly set.

Arrays uses zero based indexing. Thisis a deliberate design choice and differs from other erlang datastructures, e.g.
tuples.

Unless specified by the user whenthearray iscreated, the default valueistheatomundef i ned. Thereisno difference
between an unset entry and an entry which has been explicitly set to the same value as the default one (cf. reset/2). If
you need to differentiate between unset and set entries, you must make sure that the default value cannot be confused
with the values of set entries.

The array never shrinks automatically; if anindex | has been used successfully to set an entry, al indicesin the range
[O,1] will stay accessible unless the array size is explicitly changed by calling resize/2.

Examples:
%6 Create a fixed-size array with entries 0-9 set to 'undefined'

A0 array: new 10).
10 array: si ze(A0) .

%6 Create an extendible array and set entry 17 to 'true',
% causing the array to grow automatically

Al array: set (17, true, array:new()).

18 array: si ze(Al).

%% Read back a stored val ue
true = array:get (17, Al).

%% Accessing an unset entry returns the default val ue
undefined = array: get(3, Al).

%% Accessing an entry beyond the |ast set entry also returns the
%6 default value, if the array does not have fixed size
undefined = array: get (18, Al).

%% "sparse" functions ignore default-valued entries
A2 = array:set(4, false, Al).
[{4, false}, {17, true}] = array:sparse_to_orddict(A2).

%% An extendi bl e array can be made fixed-size |ater
A3 = array:fix(A2).

%6 A fixed-size array does not grow autonatically and does not
%% al | ow accesses beyond the | ast set entry

{"EXIT ,{badarg, _}} (catch array:set (18, true, A3)).

{"EXIT ,{badarg, _}} (catch array: get (18, A3)).

DATA TYPES

array()

A functional, extendible array. The representation is not documented and is subject to change without notice.
Note that arrays cannot be directly compared for equality.

26 | Ericsson AB. All Rights Reserved.: STDLIB

array

Exports

defaul t (Array::array()) -> term()
Get the value used for uninitialized entries.
See also: new/2.

fix(Array::array()) -> array()
Fix the size of the array. This preventsit from growing automatically upon insertion; see also set/3.
Seealso: relax/1.

foldl (Function, InitialAcc::term(), Array::array()) -> term))
Types:
Function = (Index::integer (), Value::term(), Acc::term()) -> term()

Fold the elements of the array using the given function and initial accumulator value. The elements are visited in order
from the lowest index to the highest. If Funct i on isnot afunction, the call fails with reason badar g.

See also: foldr/3, map/2, sparse foldl/3.

foldr(Function, InitialAcc::term(), Array::array()) -> term()
Types.
Function = (Index::integer (), Value::term(), Acc::term()) -> term()

Fold the elements of the array right-to-left using the given function and initial accumulator value. The elements are
visited in order from the highest index to thelowest. If Funct i on isnot afunction, the call failswith reasonbadar g.

See also: foldl/3, map/2.

fromlist(List::list()) -> array()
Equivalent to from list(List, undefined).

fromlist(List::list(), Default::term()) -> array()

Convert alist to an extendible array. Def aul t is used as the value for uninitialized entries of the array. If Li st is
not a proper list, the call fails with reason badar g.

See also: new/2, to_list/1.

fromorddict(Orddict::list()) -> array()
Equivalent to from_orddict(Orddict, undefined).

fromorddict(List::list(), Default::term()) -> array()

Convert an ordered list of pairs { | ndex, Val ue} to acorresponding extendible array. Def aul t is used as the
value for uninitialized entries of the array. If Li st is not a proper, ordered list of pairs whose first elements are
nonnegative integers, the call fails with reason badar g.

See also: new/2, to_orddict/1.

Ericsson AB. All Rights Reserved.: STDLIB | 27

array

get(l::integer(), Array::array()) -> term)

Getthevalueof entry | . If | isnot anonnegativeinteger, or if thearray hasfixedsizeand | islarger than the maximum
index, the call failswith reason badar g.

If the array does not have fixed size, this function will return the default value for any index | greater than
size(Array)-1.

See also: set/3.

is_array(X :term()) -> bool ()

Returnst r ue if X appearsto bean array, otherwisef al se. Notethat the check isonly shallow; thereisno guarantee
that X isawell-formed array representation even if this function returnst r ue.

is_fix(Array::array()) -> bool ()
Check if the array hasfixed size. Returnst r ue if the array isfixed, otherwisef al se.
See also: fix/1.

map(Function, Array::array()) -> array()
Types:
Function = (Index::integer (), Value::term()) -> term()

Map the given function onto each element of the array. The elements are visited in order from the lowest index to the
highest. If Funct i on isnot afunction, the call fails with reason badar g.

See also: foldl/3, foldr/3, sparse_map/2.

new() -> array()
Create anew, extendible array with initial size zero.

See also: new/1, new/2.

new(Options::tern()) -> array()

Create a new array according to the given options. By default, the array is extendible and has initial size zero. Array
indices start at 0.

Opt i ons isasingleterm or alist of terms, selected from the following:
N::integer() or{size, N :integer()}

Specifiestheinitia size of the array; thisalso implies{ f i xed, true}.If Nisnot anonnegative integer, the
call failswith reason badar g.

fixedor{fixed, true}
Creates afixed-size array; see also fix/1.
{fixed, false}
Creates an extendible (non fixed-size) array.
{default, Value}
Sets the default value for the array to Val ue.
Options are processed in the order they occur inthelist, i.e., later options have higher precedence.
The default value is used as the value of uninitialized entries, and cannot be changed once the array has been created.

28| Ericsson AB. All Rights Reserved.: STDLIB

array

Examples:
array: new(100)

creates afixed-size array of size 100.
array: new {default, 0})

creates an empty, extendible array whose default value is 0.
array: new([{si ze, 10}, {fi xed, fal se}, {defaul t,-1}])

creates an extendible array with initial size 10 whose default valueis-1.
See also: fix/1, from list/2, get/2, new/0, new/2, set/3.

new(Si ze::integer(), Options::term()) -> array()

Create a new array according to the given size and options. If Si ze is not a nonnegative integer, the call fails with
reason badar g. By default, the array has fixed size. Note that any size specificationsin Opt i ons will override the
Si ze parameter.

If Opti ons isaligt, thisissimply equivalenttonew([{ si ze, Size} | Options], otherwiseitisequivalent
tonew([{size, Size} | [Options]].However, using thisfunction directly is more efficient.

Example:
array: new(100, {default, 0})

creates afixed-size array of size 100, whose default value is 0.
See also: new/1.

relax(Array::array()) -> array()
Make the array resizable. (Reverses the effects of fix/1.)
See also: fix/l.

reset(I::integer(), Array::array()) -> array()

Reset entry | to the default value for the array. If the value of entry | isthe default value the array will be returned
unchanged. Reset will never change size of the array. Shrinking can be done explicitly by calling resize/2.

If I isnot a nonnegative integer, or if the array hasfixed sizeand | islarger than the maximum index, the call fails
with reason badar g; cf. set/3

See also: new/2, set/3.

resize(Array::array()) -> array()

Change the size of the array to that reported by sparse size/1. If the given array has fixed size, the resulting array
will also have fixed size.

See also: resize/2, sparse_size/l.

Ericsson AB. All Rights Reserved.: STDLIB | 29

array

resize(Size::integer(), Array::array()) -> array()

Change the size of the array. If Si ze is not a honnegative integer, the call fails with reason badar g. If the given
array has fixed size, the resulting array will also have fixed size.

set(l::integer(), Value::term), Array::array()) -> array()

Set entry | of thearray to Val ue. If | isnot a nonnegative integer, or if the array hasfixed sizeand | islarger than
the maximum index, the call fails with reason badar g.

If the array does not have fixed size, and | isgreater thansi ze(Arr ay) - 1, thearray will grow tosizel +1.
See also: get/2, reset/2.

size(Array::array()) -> integer()

Get the number of entriesinthe array. Entriesare numbered from0tosi ze(Arr ay) - 1; hence, thisisalso theindex
of the first entry that is guaranteed to not have been previously set.

See also: set/3, sparse_size/l.

sparse_foldl (Function, InitialAcc::ternm(), Array::array()) -> term()
Types:
Function = (Index::integer (), Value::term(), Acc::term()) -> term()

Fold the elements of the array using the given function and initial accumulator value, skipping default-valued entries.
The elements are visited in order from the lowest index to the highest. If Funct i on isnot afunction, the call fails
with reason badar g.

See also: foldl/3, sparse foldr/3.

sparse_foldr(Function, InitialAcc::tern(), Array::array()) -> term()
Types.
Function = (Index::integer (), Value::term(), Acc::term()) -> term()

Fold the elements of the array right-to-left using the given function and initial accumulator value, skipping default-
valued entries. The elements are visited in order from the highest index to the lowest. If Funct i on isnot afunction,
the call fails with reason badar g.

See also: foldr/3, sparse foldl/3.

sparse_map(Function, Array::array()) -> array()
Types:
Function = (Index::integer (), Value::term()) -> term()

Map the given function onto each element of the array, skipping default-valued entries. The elements are visited in
order from the lowest index to the highest. If Funct i on isnot afunction, the call fails with reason badar g.

See also: map/2.

sparse_size(A: :array()) -> integer()

Get the number of entriesin the array up until the last non-default valued entry. In other words, returns| +1 if | isthe
last non-default valued entry in the array, or zero if no such entry exists.

See also: resize/l, size/l.

30 | Ericsson AB. All Rights Reserved.: STDLIB

array

sparse_to_list(Array::array()) -> list()
Convertsthe array to alist, skipping default-valued entries.
Seealso: to_list/1.

sparse_to_orddict(Array::array()) -> [{Index::integer(), Value::tern()}]
Convert the array to an ordered list of pairs{ | ndex, Val ue}, skipping default-valued entries.
See also: to_orddict/1.

to_list(Array::array()) -> list()
Convertsthe array to alist.
See also: from list/2, sparse to_list/1.

to_orddict(Array::array()) -> [{Index::integer(), Value::term)}]
Convert the array to an ordered list of pairs{ | ndex, Val ue}.
See also: from _orddict/2, sparse to_orddict/1.

Ericsson AB. All Rights Reserved.: STDLIB | 31

base64

base64

Erlang module

Implements base 64 encode and decode, see RFC2045.

Exports
encode(Data) -> Baseb64

encode_to_string(Data) -> Base64String
Types:
Data = string() | binary()
Base64 = binary()
Base64String = string()
Encodes aplain ASCII string into base64. The result will be 33% larger than the data.

decode(Base64) -> Data
decode to_string(Base64) -> DataString
m ne_decode(Base64) -> Data

m ne_decode_to_string(Base64) -> DataString
Types.
Base64 = string() | binary()
Data = binary()
DataString = string()
Decodes a hase64 encoded string to plan ASCIl. See RFC4648. m ne_decode/1 and

m nme_decode_to_string/ 1 strips away illega characters, while decode/ 1 and decode_to_string/1
only strips away whitespace characters.

32| Ericsson AB. All Rights Reserved.: STDLIB

beam_lib

beam_lib

Erlang module

beam | i b providesaninterface to files created by the BEAM compiler ("BEAM files"). The format used, avariant
of "EA IFF 1985" Standard for Interchange Format Files, divides datainto chunks.

Chunk data can be returned as binaries or as compound terms. Compound terms are returned when chunks are
referenced by names (atoms) rather than identifiers (strings). The names recognized and the corresponding identifiers
are;

e abstract _code ("Abst")

e attributes ("Attr")

e conmpile_info ("Clnf")

e exports ("ExpT")

« labeled exports ("ExpT")

e inports ("InmpT")

e« indexed_inports ("InpT")

e locals ("LocT")

e Jlabeled locals ("LocT")

e atons ("Atont)

Debug Information/Abstract Code

The option debug_i nf o can be given to the compiler (see compile(3)) in order to have debug information in the
form of abstract code (see The Abstract Format in ERTS User's Guide) stored intheabst r act _code chunk. Tools
such as Debugger and Xref require the debug information to be included.

Warning:

Source code can be reconstructed from the debug information. Use encrypted debug information (see below) to
prevent this.

The debug information can also be removed from BEAM files using strip/1, strip_files/1 and/or strip_release/1.

Reconstructing source code

Here is an example of how to reconstruct source code from the debug information in a BEAM file Beam

{ok,{_,[{abstract_code,{_,ACt}]}} = beam.|ib: chunks(Beam [abstract code]).
io:fwite("~s~n", [erl_prettypr:format(erl_syntax:formlist(AC))]).

Encrypted debug information

The debug information can be encrypted in order to keep the source code secret, but still being able to use tools such
as Xref or Debugger.

To use encrypted debug information, a key must be provided to the compiler and beam | i b. The key isgiven asa
string and it is recommended that it contains at least 32 characters and that both upper and lower case letters as well
as digits and special characters are used.

Ericsson AB. All Rights Reserved.: STDLIB | 33

beam _lib

The default type -- and currently the only type -- of crypto algorithm is des3_cbc, three rounds of DES. The key
string will be scrambled using er | ang: nd5/ 1 to generate the actual keys used for des3_chc.

Note:

Asfar aswe know by the time of writing, it isinfeasible to break des3_chbc encryption without any knowledge
of thekey. Therefore, aslong asthe key is kept safe and is unguessabl e, the encrypted debug information should
be safe from intruders.

There are two ways to provide the key:

* Usethe compiler option { debug_i nf o, Key}, see compile(3), and the function crypto_key_fun/1 to register a
fun which returns the key whenever beam | i b needsto decrypt the debug information.

If no such funisregistered, beam | i b will instead search for a. er | ang. crypt file, see below.
 Storethekey inatext filenamed . er | ang. crypt .

In this case, the compiler optionencr ypt _debug_i nf o can be used, see compile(3).
.erlang.crypt

beam | i b searchesfor. er | ang. cr ypt inthecurrent directory and then the home directory for the current user.
If thefileisfound and contains akey, beam | i b will implicitly create a crypto key fun and register it.

The. erl ang. crypt fileshould contain asinglelist of tuples:

{debug_i nfo, Mdde, Mdule, Key}

Mode isthetype of crypto agorithm; currently, the only allowed valuethusisdes3_chbc. Modul e iseither an atom,
in which case Key will only be used for the module Modul e, or [], in which case Key will be used for all modules.
Key isthe non-empty key string.

The Key in thefirst tuple where both Mbde and Modul e matches will be used.
Hereisan exampleof an. er | ang. cr ypt filethat returns the same key for all modules:

[{debug_i nfo, des3_chc, [], "%7}| pc/ DM6Cga*68$M\ L#& Gejr] GM"}].

And here is a dightly more complicated example of an . er | ang. cr ypt which provides one key for the module
t , and another key for al other modules:

[{debug_i nfo, des3_chc, t, "My KEY"},
{debug_i nfo, des3_cbc, [], "%7}|pc/ DM6Cga* 68$M\| L#& Gejr] G'\"}].

Note:

Do not use any of the keysin these examples. Use your own keys.

34 | Ericsson AB. All Rights Reserved.: STDLIB

beam_lib

DATA TYPES

beanm() -> Mdule | Filenane | binary()
Modul e = at om()
Fil enane = string() | atom()

Each of the functions described below accept either the module name, the filename, or a binary containing the beam
module.

chunkdat a() = {Chunkld, DataB} | {ChunkNane, DataT}

Chunkl d = chunki d()

Dat aB = binary()

{ChunkNane, DataT} =

{abstract _code, Abstract Code}

| {attributes, [{Attribute, [AttributeValue]}]}
| {conpile_info, [{InfoKey, [InfoValue]}]}
| {exports, [{Function, Arity}]}
| {label ed_exports, [{Function, Arity, Label}]}
| {imports, [{Mddule, Function, Arity}]}
| {indexed_inports, [{lndex, Mdule, Function, Arity}]}
| {locals, [{Function, Arity}]}]1}
| {labeled_locals, [{Function, Arity, Label}]}]}
| {atons, [{integer(), atom()}]}

Abstract Code = {Abst Version, Forns} | no_abstract_code

Abst Versi on = aton()

Attribute = atom()

AttributeValue = term)

Mbdul e = Function = aton()

Arity int()

Label int()

It is not checked that the forms conform to the abstract format indicated by Abst Ver si on. no_abst ract _code
meansthat the" Abst " chunk is present, but empty.

The list of attributes is sorted on At t r i but e, and each attribute name occurs once in the list. The attribute values
occur in the same order asin thefile. The lists of functions are also sorted.

chunkid() = "Abst" | "Attr" | "Cnf"
| "ExpT" | "InpT" | "LocT"
| "Atont
chunknanme() = abstract_code | attributes | conpile_info
| exports | |abel ed_exports
| inmports | indexed_inports
| locals | |abeled_|ocals
| atons

chunkref () = chunknane() | chunkid()

Exports
chunks(Beam [ChunkRef]) -> {ok, {Mddule, [ChunkData]}} | {error, beamlib,

Reason}
Types.

Ericsson AB. All Rights Reserved.: STDLIB | 35

beam _lib

Beam = beam()

ChunkRef = chunkref()

M odule = atom()

ChunkData = chunkdata()

Reason = {unknown_chunk, Filename, atom()}
| {key_missing_or_invalid, Filename, abstract_code}
| Reasonl -- seeinfo/l

Filename = string()

Reads chunk data for selected chunks refs. The order of the returned list of chunk data is determined by the order of
thelist of chunks references.

chunks(Beam [ChunkRef], [Option]) -> {ok, {Mddule, [ChunkResult]}} | {error,
beam |i b, Reason}
Types:
Beam = beam()
ChunkRef = chunkref()
M odule = atom()
Option = allow_missing_chunks
ChunkResult = {chunkref(), ChunkContents} | {chunkref(), missing_chunk}
Reason = {missing_chunk, Filename, atom()}
| {key_missing _or_invalid, Filename, abstract_code}
| Reasonl -- seeinfo/l
Filename = string()
Reads chunk data for selected chunks refs. The order of the returned list of chunk data is determined by the order of
thelist of chunks references.

By default, if any requested chunk is missing in Beam an error tuple is returned. However, if the option
al I ow_m ssi ng_chunks has been given, a result will be returned even if chunks are missing. In the result list,
any missing chunks will be represented as { ChunkRef , m ssi ng_chunk} . Note, however, that if the " At onf
chunk if missing, that is considered afatal error and the return value will bean er r or tuple.

version(Beam) -> {ok, {Mddule, [Version]}} | {error, beamlib, Reason}
Types.

Beam = beam()

M odule = atom()

Version = term()

Reason -- see chunks/2
Returns the module version(s). A version is defined by the module attribute - vsn(Vsn) . If this attribute is not
specified, the version defaults to the checksum of the module. Note that if the version Vsn is not a list, it is made
into one, that is{ ok, { Modul e, [Vsn] }} isreturned. If there are several - vsn module attributes, the result isthe
concatenated list of versions. Examples:

1> beam |ib:version(a). %-vsn(1l).

{ok,{a, [1]}}

2> beam | i b:version(b). %-vsn([1]).

{ok,{b, [1]}}

36 | Ericsson AB. All Rights Reserved.: STDLIB

beam_lib

3> beam | i b:version(c). %-vsn([1]). -vsn(2).

{ok,{c,[1,2]}}
4> peam | i b:version(d). % no -vsn attribute
{ok, {d, [275613208176997377698094100858909383631] } }

md5(Bean) -> {ok, {Mddule, NMD5}} | {error, beamlib, Reason}
Types:

Beam = beam()

M odule = atom()

MD5 = binary()

Reason -- see chunks/2

Calculates an MD5 redundancy check for the code of the module (compilation date and other attributes are not
included).

info(Bean) -> [{Item Info}] | {error, beamlib, Reasonl}
Types.
Beam = beam()
Item, Info -- see below
Reasonl = {chunk_too_big, Filename, Chunkld, ChunkSize, FileSize}
[{invalid_beam_file, Filename, Pos}
| {invalid_chunk, Filename, Chunkld}
| {missing_chunk, Filename, Chunkld}
[{not_a beam_file, Filename}
| {file_error, Filename, Posix}
Filename = string()
Chunkld = chunkid()
ChunkSize = FileSize = int()
Pos=int()
Posix = posix() -- seefile(3)
Returns alist containing some information about a BEAM fileastuples{1tem | nf 0}:
{file, Filenane} | {binary, Binary}
The name (string) of the BEAM file, or the binary from which the information was extracted.
{nodul e, Modul e}
The name (atom) of the module.
{chunks, [{Chunkld, Pos, Size}]}

For each chunk, the identifier (string) and the position and size of the chunk data, in bytes.

cnp(Beaml, BeanR) -> ok | {error, beamlib, Reason}
Types.
Beam1 = Beam2 = beam()
Reason = {modules _different, Modulel, Module2}
| {chunks_different, Chunkld}
| different_chunks

Ericsson AB. All Rights Reserved.: STDLIB | 37

beam _lib

| Reasonl -- seeinfo/l

Modulel = Module2 = atom()

Chunkld = chunkid()
Compares the contents of two BEAM files. If the module names are the same, and all chunks
except for the "Cl nf" chunk (the chunk containing the compilation information which is returned by

Modul e: modul e_i nf o(conpi | €)) have the same contents in both files, ok is returned. Otherwise an error
message is returned.

cnp_dirs(Dirl, Dir2) -> {Onlyl, Only2, Different} | {error, beamlib,
Reasonl}
Types:
Dirl1=Dir2 =string() | atom()
Different = [{Filenamel, Filename2}]
Onlyl = Only2 = [Filenameg]
Filename = Filenamel = Filename2 = string()
Reasonl ={not_a directory, term()} | -- seeinfo/l
The cnp_di r s/ 2 function compares the BEAM files in two directories. Only files with extension " . beant' are
compared. BEAM files that exist in directory Di r 1 (Di r 2) only arereturned in Onl y1 (Onl y2). BEAM files that

exist on both directories but are considered different by cnp/ 2 are returned as pairs {Fi | enanel, Fi | enane?2}
whereFi | enanel (Fi | enane2) existsin directory Di r 1 (Di r 2).

diff dirs(Dirl, Dir2) -> ok | {error, beamlib, Reasonl}
Types:

Dirl=Dir2 =string() | atom()

Reasonl = {not_a directory, term()} | -- seeinfo/l

Thedi ff _di r s/ 2 function compares the BEAM files in two directories the way cnp_di r s/ 2 does, but names
of filesthat exist in only one directory or are different are presented on standard outpui.

strip(Beaml) -> {ok, {Mdule, BeanR}} | {error, beamlib, Reasonl}
Types:

Beam1 = Beam2 = beam()

Module = atom()

Reasonl -- seeinfo/l

Thestri p/ 1 function removes all chunks from a BEAM file except those needed by the loader. In particular, the
debug information (abst r act _code chunk) isremoved.

strip_files(Files) -> {ok, [{Mdule, BeanR}]} | {error, beamlib, Reasonl}
Types:

Files=[Beaml]

Beam1 = beam()

Module = atom()

Beam?2 = beam()

Reasonl -- seeinfo/l

38| Ericsson AB. All Rights Reserved.: STDLIB

beam_lib

Thestri p_fil es/ 1 functionremovesall chunksexcept those needed by theloader from BEAM files. In particular,
the debug information (abst r act _code chunk) isremoved. The returned list contains one element for each given
filename, in the sameorder asinFi | es.

strip_release(Dir) -> {ok, [{Mdule, Filenane]}} | {error, beamlib, Reasonl}
Types.

Dir =string() | atom()

Module = atom()

Filename = string()

Reasonl ={not_a directory, term()} | -- seeinfo/l
Thestri p_rel ease/ 1 function removes all chunks except those needed by the loader from the BEAM files of a

release. Di r should be the installation root directory. For example, the current OTP release can be stripped with the
cal beam | ib:strip_rel ease(code:root_dir()).

format _error (Reason) -> Chars
Types:
Reason -- see other functions
Chars=[char() | Charg|

Given the error returned by any function in this module, the function f or mat _er r or returns a descriptive string of
the error in English. For file errors, the functionf i | e: f or mat _er r or (Posi x) should be called.

crypto_key_fun(CryptoKeyFun) -> ok | {error, Reason}
Types.

CryptoKeyFun = fun() -- see below

Reason = badfun | exists | term()

The crypt o_key_ fun/ 1 function registers a unary fun that will be caled if beam | i b needs to read an
abstract _code chunk that has been encrypted. The funisheld in aprocessthat is started by the function.

If there aready is afun registered when attempting to register afun, { err or, exi st s} isreturned.
The fun must handl e the following arguments:

Crypt oKeyFun(init) -> ok | {ok, NewCryptoKeyFun} | {error, Tern}

Called when the fun is registered, in the process that holds the fun. Here the crypto key fun can do any necessary
initializations. If { ok, NewCr ypt oKeyFun} isreturned then NewCr ypt oKeyFun will be registered instead of
Crypt oKeyFun. If {error, Tern} isreturned, the registration is aborted and cr ypt o_key fun/ 1 returns
{error, Tern} aswdll.

Crypt oKeyFun({debug_i nfo, Mdde, Mdule, Filenane}) -> Key

Called when the key is needed for the module Modul e in the file named Fi | enane. Mode is the type of crypto
agorithm; currently, the only possible value thusisdes3_chc. The call should fail (raise an exception) if thereis
no key available.

Ericsson AB. All Rights Reserved.: STDLIB | 39

beam _lib

Crypt oKeyFun(cl ear) -> term)

Called beforethefunisunregistered. Here any cleaning up can bedone. Thereturn valueisnot important, but is passed
back to the caller of cl ear _crypt o_key_fun/ 0 aspart of its return value.

clear_crypto_key fun() -> {ok, Result}
Types:
Result = undefined | term()
Unregisters the crypto key fun and terminates the process holding it, started by cr ypt o_key_fun/ 1.

Thecl ear _crypto_key fun/1 either returns{ ok, undefi ned} if there was no crypto key fun registered,
or{ok, Tern},whereTer misthereturnvauefrom Crypt oKeyFun(cl ear),seecrypto_key_fun/ 1.

40 | Ericsson AB. All Rights Reserved.: STDLIB

binary

binary

Erlang module

This module contains functions for manipulating byte-oriented binaries. Although the majority of functions could be
implemented using bit-syntax, the functions in this library are highly optimized and are expected to either execute
faster or consume less memory (or both) than a counterpart written in pure Erlang.

The module isimplemented according to the EEP (Erlang Enhancement Proposal) 31.

Note:

Thelibrary handles byte-oriented data. Bitstrings that are not binaries (does not contain whole octets of bits) will
result in abadar g exception being thrown from any of the functions in this module.

DATA TYPES

cp()
- Opaque data-type representing a conpil ed search-pattern. CGuaranteed to be a tuple()

to allow progranms to distinguish it fromnon preconpil ed search patterns.

part() = {Start, Length}
Start = int()
Length = int()

- Arepresentaion of a part (or range) in a binary. Start is a
zero-based offset into a binary() and Length is the |ength of
that part. As input to functions in this nodule, a reverse
part specification is allowed, constructed with a negative
Length, so that the part of the binary begins at Start +
Length and is -Length long. This is useful for referencing the
last N bytes of a binary as {size(Binary), -N}. The functions
in this nmodul e al ways return part()'s with positive Length.

Exports

at (Subj ect, Pos) -> int()

Types:
Subject = binary()
Pos=int() >=0

Returns the byte at position Pos (zero-based) in the binary Subj ect as an integer. If Pos >=
byt e_si ze(Subj ect),abadar g exceptionisraised.

bin to list(Subject) -> list()

Types.
Subject = binary()

Ericsson AB. All Rights Reserved.: STDLIB | 41

binary

Thesameasbin_to_|ist(Subject, {0, byte _size(Subject)}).

bin to |ist(Subject, PosLen) -> list()
Types.

Subject = binary()

PosL en = part()

Converts Subj ect to alist of i nt () s, each representing the value of one byte. The part () denotes which part
of thebi nar y() to convert. Example:

1> binary:bin_to_list(<<"erlang">> {1,3}).
“rla"
%6 or [114,108,97] in list notation.

If PosLen in any way references outside the binary, abadar g exception israised.

bin to |ist(Subject, Pos, Len) -> list()

Types.
Subject = binary()
Pos=int()
Len =int()

Thesameas bin_to_|ist(Subject, {Pos, Len}).

conpil e pattern(Pattern) -> cp()
Types:
Pattern = binary() | [binary()]

Builds an internal structure representing a compilation of a search-pattern, later to be used in the match/3, matches/3,
split/3 or replace/4 functions. The cp() returned is guaranteed to be at upl e() to alow programs to distinguish
it from non pre-compiled search patterns

When a list of binaries is given, it denotes a set of aternative binaries to search for.
l.e if [<<"functional">> <<"progranm ng">>] is given as Pattern, this means "either
<<"functional ">> or <<" programm ng" >>". The pattern is a set of aternatives; when only a single binary
isgiven, the set has only one element. The order of aternativesin a pattern is not significant.

Thelist of binaries used for search alternatives shall be flat and proper.
If Pat t er n isnot abinary or aflat proper list of binaries with length > 0, abadar g exception will be raised.

copy(Subj ect) -> binary()
Types:

Subject = binary()
Thesameascopy(Subj ect, 1).

copy(Subject, N -> binary()

Types:
Subject = binary()
N=int()>=0

42 | Ericsson AB. All Rights Reserved.: STDLIB

binary

Creates a binary with the content of Subj ect duplicated N times.

This function will always create a new binary, evenif N = 1. By using copy/ 1 on abinary referencing a larger
binary, one might free up the larger binary for garbage collection.

Note:

By deliberately copying a single binary to avoid referencing a larger binary, one might, instead of freeing up
the larger binary for later garbage collection, create much more binary data than needed. Sharing binary datais
usually good. Only in special cases, when small parts reference large binaries and the large binaries are no longer
used in any process, deliberate copying might be agood idea.

If N< 0, abadar g exception israised.

decode_unsi gned(Subj ect) -> Unsi gned
Types:

Subject = binary()

Unsigned =int() >=0
Thesameasdecode_unsi gned(Subj ect, bi g) .

decode_unsi gned(Subj ect, Endi aness) -> Unsi gned
Types.
Subject = binary()
Endianess = big | little
Unsigned =int() >=0
Convertsthe binary digit representation, in big or little endian, of apositiveinteger in Subj ect toanErlangi nt () .
Example:

1> bi nary: decode_unsi gned(<<169, 138, 199>>, bi g) .
11111111

encode_unsi gned(Unsi gned) -> binary()
Types.

Unsigned =int() >=0
Thesameasencode_unsi gned(Unsi gned, bi g) .

encode_unsi gned(Unsi gned, Endi aness) -> binary()
Types.

Unsigned =int() >=0

Endianess = big | little

Converts a positive integer to the smallest possible representation in a binary digit representation, either big or little
endian.

Ericsson AB. All Rights Reserved.: STDLIB | 43

binary

Example:

1> bi nary: encode_unsi gned(11111111, bi g) .
<<169, 138, 199>>

first(Subject) ->int()
Types:
Subject = binary()
Returns the first byte of the binary Subj ect as an integer. If the size of Subj ect is zero, abadar g exception
israised.

| ast (Subject) -> int()
Types:
Subject = binary()
Returns the last byte of the binary Subj ect as an integer. If the size of Subj ect is zero, abadar g exception
israised.
list_to_bin(ByteList) -> binary()
Types:
BytelL ist = iodata() (see module erlang)
Worksexactly aserl ang: | i st _to_bi nary/ 1, added for completeness.

| ongest _comon_prefix(Binaries) ->int()
Types:
Binaries=[binary()]
Returns the length of the longest common prefix of the binariesin thelist Bi nar i es. Example:

1> bi nary: | ongest _comon_prefi x([<<"erl| ang">>, <<"er gonony">>]).
2

2> binary: | ongest _comon_prefix([<<"erlang">>, <<"per|">>]).

0

If Bi nari es isnot aflat list of binaries, abadar g exception is raised.

| ongest _conmon_suffix(Binaries) -> int()
Types:
Binaries=[binary()]
Returns the length of the longest common suffix of the binariesin thelist Bi nari es. Example:

1> binary: | ongest _common_suffi x([<<"erl ang">>, <<"fang">>]).
8
2> binary: | ongest _common_suffix([<<"erlang">>, <<"perl|">>]).

44 | Ericsson AB. All Rights Reserved.: STDLIB

binary

If Bi nari es isnot aflat list of binaries, abadar g exception israised.

mat ch(Subj ect, Pattern) -> Found | nomatch
Types:

Subject = binary()

Pattern = binary() | [binary()] | cp()

Found = part()

Thesameasnmat ch(Subj ect, Pattern, []).

mat ch(Subj ect, Pattern, Opti ons) -> Found | nonatch
Types:
Subject = binary()
Pattern = binary() | [binary()] | cp()
Found = part()
Options=[Option]
Option = {scope, part()}
Searches for the first occurrence of Pat t er n in Subj ect and returns the position and length.

The function will return { Pos, Lengt h} for the binary in Pat t er n starting at the lowest position in Subj ect ,
Example:

1> bi nary: mat ch(<<"abcde">>, [<<"bcde">> <<"cd">>],[]).
{1, 4}

Even though <<" cd" >> ends before <<" bcde" >>, <<" bcde" >> begins first and is therefore the first match. If
two overlapping matches begin at the same position, the longest is returned.

Summary of the options:
{'scope, { Start, Length}}

Only the given part is searched. Return values still have offsets from the beginning of Subj ect . A negative
Lengt h isallowed as described in the TYPES section of this manual.

If none of the stringsin Pat t er n isfound, the atom nonat ch isreturned.
For adescription of Pat t er n, see compile_pattern/1.

If {scope, {Start,Length}} isgivenin the options such that St art islarger than the size of Subj ect,
Start + Lengt hislessthanzeroor St art + Lengt hislarger thanthesizeof Subj ect ,abadar g exception
israised.
mat ches(Subj ect, Pattern) -> Found
Types:

Subject = binary()

Pattern = binary() | [binary()] | cp()

Found =[part()]|1]
Thesameasnmat ches(Subj ect, Pattern, []).

Ericsson AB. All Rights Reserved.: STDLIB | 45

binary

mat ches(Subj ect, Pattern, Opti ons) -> Found
Types:
Subject = binary()
Pattern = binary() | [binary()] | cp()
Found =[part()][]
Options=[Option]
Option = {scope, part()}
Works like match, but the Subj ect is searched until exhausted and a list of all non-overlapping parts matching
Pat t er n isreturned (in order).

Thefirst and longest match is preferred to a shorter, which isillustrated by the following example:

1> bi nary: mat ches(<<"abcde" >>
[<<"bcde">>, <<"bc">>>, <<"de">>],[]).

({1, 4]

The result shows that <<bcde">> is selected instead of the shorter match <<"bc">> (which would have given raise to
one more match,<<"de">>). This corresponds to the behavior of posix regular expressions (and programs like awk),
but is not consistent with alternative matches in re (and Perl), where instead lexical ordering in the search pattern
selects which string matches.

If none of the stringsin pattern is found, an empty list is returned.
For adescription of Pat t er n, see compile_pattern/1 and for a description of available options, see match/3.

If {scope, {Start, Length}} isgivenin the options such that St art is larger than the size of Subj ect,
Start + Lengthislessthanzeroor St art + Lengt hislarger thanthesizeof Subj ect ,abadar g exception
israised.
part (Subj ect, PosLen) -> binary()
Types:
Subject = binary()
PosL en = part()
Extracts the part of the binary Subj ect described by PosLen.
Negative length can be used to extract bytes at the end of a binary:

1> Bin = <<1,2,3,4,5,6,7,8,9, 10>>
2> binary: part(Bin,{byte_size(Bin), -5)).
<<6,7,8,9, 10>>

Note:
part/2and part/3 are also available in the erl ang module under the names bi nary part/2 and
bi nary_part/ 3. Those BlFs are alowed in guard tests.

If PosLen in any way references outside the binary, abadar g exception israised.

46 | Ericsson AB. All Rights Reserved.: STDLIB

binary

part (Subject, Pos, Len) -> binary()

Types:
Subject = binary()
Pos=int()
Len =int()

Thesameaspart (Subj ect, {Pos, Len}).

referenced_byte_size(binary()) -> int()

If a binary references a larger binary (often described as being a sub-binary), it can be useful to get the size of the
actual referenced binary. This function can be used in a program to trigger the use of copy/ 1. By copying abinary,
one might dereference the original, possibly large, binary which asmaller binary is areference to.

Example:

store(Binary, GBSet) ->
NewBi n =
case binary:referenced_byte_size(Binary) of
Large when Large > 2 * byte_size(Binary) ->
bi nary: copy(Bi nary);
->
Bi nary

end,
gb_sets:insert(NewBi n, GBSet) .

In this example, we chose to copy the binary content before inserting it in the gb_set () if it references a binary
more than twice the size of the data we're going to keep. Of course different rules for when copying will apply to
different programs.

Binary sharing will occur whenever binaries are taken apart, this is the fundamental reason why binaries are
fast, decomposition can always be done with O(1) complexity. In rare circumstances this data sharing is however
undesirable, why this function together with copy/ 1 might be useful when optimizing for memory use.

Example of binary sharing:

1> A = binary: copy(<<1>>, 100).
<<1,1,1,1,1 ...

2> byte_size(A).

100

3> binary:referenced_byte_size(A)
100

4> << _:10/ bi nary, B: 10/ bi nary, _/ bi nary>> = A
<<1,1,1,1,1 ...

5> byte_size(B).

10

6> bi nary: referenced_byte_size(B)
100

Ericsson AB. All Rights Reserved.: STDLIB | 47

binary

Note:

Binary datais shared among processes. If another process still references the larger binary, copying the part this
process uses only consumes more memory and will not free up the larger binary for garbage collection. Use this
kind of intrusive functions with extreme care, and only if areal problem is detected.

repl ace(Subj ect, Patt ern, Repl acenent) -> Result
Types:

Subject = binary()

Pattern = binary() | [binary()] | cp()

Replacement = binary()

Result = binary()

Thesameasr epl ace(Subj ect, Patt ern, Repl acenent,[]).

repl ace(Subj ect, Patt ern, Repl acenent, Opti ons) -> Result
Types.
Subject = binary()
Pattern = binary() | [binary()] | cp()
Replacement = binary()
Result = binary()
Options=[Option]
Option = global | {scope, part()} | {insert_replaced, | nsPos}
InsPos = OnePos | [OnePos |
OnePos = int() =< byte _size(Replacement)
Constructsanew binary by replacing the partsin Subj ect matching Pat t er n with the content of Repl acenent .
If the matching sub-part of Subj ect giving raise to the replacement is to be inserted in the result, the option

{insert _replaced, |nsPos} will insert the matching part into Repl acenent at the given position (or
positions) before actually inserting Repl acenent into the Subj ect . Example:

1> bi nary: repl ace(<<"abcde">>, <<"b">>, <<"[]">>, [{insert_repl aced, 1}]).

<<"a[b] cde" >>

2> binary: repl ace(<<"abcde">>, [<<"b">>, <<"d">>], <<"[]">>
[gl obal , {i nsert_repl aced, 1}]).

<<"a[b]c[d] e">>

3> binary: repl ace(<<"abcde">>, [<<"b">> <<"d">>], <<"[]">>
[gl obal , {insert_replaced, [1,1]}]).

<<"a[bb] c[dd] e" >>

4> binary: repl ace(<<"abcde">>, [<<"b">> <<"d">>], <<"[-]">>
[gl obal , {insert_replaced, [1,2]}]).

<<"a[b-b] c[d-d] e">>

If any position givenin | nsPos is greater than the size of the replacement binary, abadar g exception israised.
Theoptionsgl obal and{scope, part ()} work asfor split/3. Thereturn typeisalwaysabi nary() .
For a description of Pat t er n, see compile pattern/1.

48 | Ericsson AB. All Rights Reserved.: STDLIB

binary

split(Subject,Pattern) -> Parts
Types:
Subject = binary()
Pattern = binary() | [binary()] | cp()
Parts=[binary()]

Thesameasspl it (Subj ect, Pattern, []).

split(Subject,Pattern, Options) -> Parts
Types:
Subject = binary()
Pattern = binary() | [binary()] | cp()
Parts=[binary()]
Options=[Option]
Option = {scope, part()} | trim | global
Splits Binary into a list of binaries based on Pattern. If the option global is not given, only the first occurrence of
Pattern in Subject will give rise to a split.
The parts of Pattern actually found in Subject are not included in the result.

Example:

1> binary:split(<<1, 255, 4,0,0,0, 2,3>>, [<<0,0,0>><<2>>],[]).

[<<1, 255, 4>>, <<2, 3>>]

2> binary:split(<<0,1,0,0,4, 255, 255, 9>>, [<<0, 0>>, <<255, 255>>],[global]).
[<<0, 1>>, <<4>>, <<9>>]

Summary of options:

{scope, part()}

Works as in match/3 and matches/3. Note that this only defines the scope of the search for matching strings,
it does not cut the binary before splitting. The bytes before and after the scope will be kept in the result. See
example below.

trim
Removes trailing empty parts of the result (asdoestriminre: split/ 3)
global

Repeats the split until the Subj ect is exhausted. Conceptually the global option makes split work on the
positions returned by matches/3, while it normally works on the position returned by match/3.

Example of the difference between a scope and taking the binary apart before splitting:

1> bi nary:split(<<"banana">>,[<<"a">>],[{scope, {2,3}}]).

[<<"ban">>, <<"na" >>]

2> binary:split(binary: part(<<"banana">> {2,3}),[<<"a">>],[]).
[<<"n">>, << n" >>]

The return type is always alist of binaries that are all referencing Subj ect . This means that the datain Subj ect
is not actually copied to new binaries and that Subj ect cannot be garbage collected until the results of the split are
no longer referenced.

Ericsson AB. All Rights Reserved.: STDLIB | 49

binary

For adescription of Pat t er n, see compile_pattern/1.

50 | Ericsson AB. All Rights Reserved.: STDLIB

C

Erlang module

The ¢ module enables users to enter the short form of some commonly used commands.

Note:

These functions are are intended for interactive use in the Erlang shell only. The module prefix may be omitted.

Exports

bt (Pid) -> void()
Types:
Pid = pid()
Stack backtrace for a process. Equivalent toer | ang: process_di spl ay(Pi d, backtrace).

c(File) -> {ok, Mdule} | error

c(File, Options) -> {ok, Mddule} | error
Types:
File = name() -- see filename(3)
Options = [Opt] -- see compile:file/2
¢/ 1, 2 compiles and then purges and loads the code for afile. Opt i ons defaultsto []. Compilation is equivalent to:

conpile:file(File, Options ++ [report_errors, report_warnings])

Note that purging the code means that any processes lingering in old code for the module are killed without warning.
Seecode/ 3 for moreinformation.

cd(Dir) -> void()
Types:
Dir = name() -- see filename(3)

Changes working directory to Di r, which may be a relative name, and then prints the name of the new working
directory.

2> cd("../erlang").
/ hore/ ron/ erl ang

flush() -> void()
Flushes any messages sent to the shell.

Ericsson AB. All Rights Reserved.: STDLIB | 51

hel p() -> void()
Displays help information: al valid shell internal commands, and commands in this module.

i() -> void()

ni () -> void()

i / 0 displays information about the system, listing information about all processes. ni / O does the same, but for al
nodes the network.

i(X, Y, Z) -> void()
Types:
X=Y=Z=int()
Displaysinformation about a process, Equivalent to pr ocess_i nfo(pi d(X, Y, Z)), butlocation transparent.

| (Modul e) -> void()
Types.
Module = atom()

Purges and loads, or reloads, a module by «caling code: purge(Mdule) followed by
code: |l oad_fil e(Modul e).

Note that purging the code means that any processes lingering in old code for the module are killed without warning.
Seecode/ 3 for moreinformation.

lc(Files) -> ok
Types.
Files=[Filg]
File = name() -- see filename(3)

Compiles alist of filesby caling conpil e: file(File, [report_errors, report_warnings]) for
eachFileinFil es.

Is() -> void()
Listsfilesin the current directory.

Is(Dir) -> void()
Types:

Dir = name() -- see filename(3)
Listsfilesin directory Di r .

n() -> void()
Displays information about the loaded modules, including the files from which they have been loaded.

m Modul e) -> voi d()

Types:
M odule = atom()

52 | Ericsson AB. All Rights Reserved.: STDLIB

Displaysinformation about Modul e.

menory() -> [{Type, Size}]
Types.
Type, Size -- see erlang:memory/0
Memory allocation information. Equivalent to er | ang: nenor y/ 0.

menory(Type) -> Size

memory([Type]) -> [{Type, Size}]
Types.
Type, Size -- see erlang:memory/0
Memory allocation information. Equivalentto er | ang: nenory/ 1.

nc(File) -> {ok, Mddule} | error

nc(File, Options) -> {ok, Mddule} | error
Types:
File = name() -- see filename(3)
Options = [Opt] -- see compile:file/2
Compiles and then loads the code for afile on al nodes. Opt i ons defaultsto []. Compilation is equivalent to:

conpile:file(File, Opts ++ [report_errors, report_warnings])

nl (Modul €) -> voi d()
Types.

Module = atom()
Loads Modul e on all nodes.

pid(X, Y, Z) -> pid()
Types:
X=Y=Z=int()
Converts X, Y, Z to the pid <X. Y. Z>. Thisfunction should only be used when debugging.

pwd() -> void()
Prints the name of the working directory.

a() -> void()
Thisfunction is shorthand fori ni t : st op() , that is, it causes the node to stop in a controlled fashion.

Ericsson AB. All Rights Reserved.: STDLIB | 53

regs() -> void()

nregs() -> void()
r egs/ 0 displaysinformation about all registered processes. nr egs/ 0 doesthe same, but for all nodesin the network.

xm(MbdSpec) -> voi d()
Types:
ModSpec = Module | Filename
Module = atom()
Filename = string()

This function finds undefined functions, unused functions, and calls to deprecated functions in a module by calling
xref:m 1.

y(File) -> YeccRet
Types:
File = name() -- see filename(3)
Y eccRet = -- see yecc:file/2
Generates an LALR-1 parser. Equivalent to:

yecc:file(File)

y(File, Options) -> YeccRet
Types:
File = nameg() -- see filename(3)
Options, YeccRet = -- see yecc:file/2
Generates an LALR-1 parser. Equivalent to:

yecc:file(File, Options)

See Also
compile(3), filename(3), erlang(3), yecc(3), xref(3)

54 | Ericsson AB. All Rights Reserved.: STDLIB

calendar

calendar

Erlang module

Thismodul e provides computation of local and universal time, day-of-the-week, and several time conversion functions.

Timeisloca when it isadjusted in accordance with the current time zone and daylight saving. Timeisuniversal when
it reflects the time at longitude zero, without any adjustment for daylight saving. Universal Coordinated Time (UTC)
timeisaso caled Greenwich Mean Time (GMT).

Thetimefunctions| ocal _ti nme/ 0anduni versal _ti nme/ 0 provided in this module both return date and time.
Thereason for thisisthat separate functionsfor date and time may result in a date/time combination which is displaced
by 24 hours. This happensif one of the functionsis called before midnight, and the other after midnight. This problem
also applies to the Erlang BIFsdat e/ 0 and t i e/ 0, and their use is strongly discouraged if areliable date/time
stamp is required.

All dates conform to the Gregorian calendar. This calendar was introduced by Pope Gregory XlI1 in 1582 and was
used in al Catholic countries from this year. Protestant parts of Germany and the Netherlands adopted it in 1698,
England followed in 1752, and Russia in 1918 (the October revolution of 1917 took place in November according
to the Gregorian calendar).

The Gregorian calendar in this module is extended back to year 0. For a given date, the gregorian days is the number
of days up to and including the date specified. Similarly, the gregorian seconds for a given date and time, is the the
number of seconds up to and including the specified date and time.

For computing differences between epochs in time, use the functions counting gregorian days or seconds. If epochs
are given aslocal time, they must be converted to universal time, in order to get the correct value of the elapsed time
between epochs. Use of the functiont i me_di f f er ence/ 2 isdiscouraged.

There exists different definitions for the week of the year. The calendar module contains a week of the year
implementation which conforms to the 1SO 8601 standard. Since the week number for a given date can fall on the
previous, the current or on the next year it is important to provide the information which year is it together with the
week number. The functioni so_week _nunber/ 0 andi so_week_nunber/ 1 returns a tuple of the year and
the week number.

DATA TYPES

date() = {Year, Month, Day}

Year = int()
Month = 1..12
Day = 1..31

Year cannot be abbrevi ated. Exanple: 93 denotes year 93, not 1993.
Val id range depends on the underlying CS.
The date tuple nust denote a valid date.

time() {Hour, M nute, Second}
Hour 0..23
M nute = Second = 0..59

Ericsson AB. All Rights Reserved.: STDLIB | 55

calendar

Exports
date_to_gregori an_days(Date) -> Days

date_to_gregori an_days(Year, Mnth, Day) -> Days

Types:
Date = date()
Days=int()

This function computes the number of gregorian days starting with year 0 and ending at the given date.

datetinme_to_gregorian_seconds({Date, Tine}) -> Seconds
Types:
Date = date()
Time=time()
Seconds = int()
This function computes the number of gregorian seconds starting with year 0 and ending at the given date and time.

day_of the_week(Date) -> DayNunber

day_of the_week(Year, Mnth, Day) -> DayNunber
Types:

Date = date()

DayNumber = 1..7

This function computes the day of the week given Year , Mont h and Day. The return value denotes the day of the
week as 1: Monday, 2: Tuesday, and so on.

gregorian_days_to_date(Days) -> Date

Types.
Days=int()
Date = date()

This function computes the date given the number of gregorian days.

gregori an_seconds_t o_dat eti me(Seconds) -> {Date, Tine}
Types:

Seconds = int()

Date = date()

Time=time()
This function computes the date and time from the given number of gregorian seconds.

i s_|leap_year(Year) -> bool ()
Thisfunction checksif ayear isaleap year.

56 | Ericsson AB. All Rights Reserved.: STDLIB

calendar

i so_week_nunber () -> | soWeekNunber
Types:
I soWeekNumber = {int(), int()}

This function returns the tuple {Year, WeekNum} representing the iso week number for the actual date. For
determining the actual date, the function| ocal _ti ne/ 0 isused.

i so_week_nunber (Date) -> | soWeekNumnber
Types:

Date = date()

I soWeekNumber = {int(), int()}

This function returns the tuple { Y ear, WeekNum} representing the iso week number for the given date.

| ast _day_of the_month(Year, Mnth) -> int()
This function computes the number of daysin amonth.

local _time() -> {Date, Tine}

Types:
Date = date()
Time = time&()

This function returns the local time reported by the underlying operating system.

| ocal _time_to_universal time({Datel, Tinel}) -> {Date2, Tinme2}

This function converts from local time to Universal Coordinated Time (UTC). Dat e1 must refer to aloca date after
Jan 1, 1970.

Warning:

This function is deprecated. Use| ocal _tine_to_uni versal tinme_dst/ 1 instead, as it gives a more
correct and complete result. Especially for the period that does not exist since it gets skipped during the switch
to daylight saving time, this function still returns a result.

| ocal time_to_universal _time_dst({Datel, Tinel}) -> [{Date, Tine}]
Types:
Datel = Date = date()
Timel =Time=timeg()
This function converts from local time to Universal Coordinated Time (UTC). Dat e1 must refer to alocal date after
Jan 1, 1970.

Thereturn valueisalist of 0, 1 or 2 possible UTC times:

[]

For aloca { Dat e1, Ti mel} during the period that is skipped when switching to daylight saving time, there
is no corresponding UTC since the local timeisillegal - it has never happened.

Ericsson AB. All Rights Reserved.: STDLIB | 57

calendar

[Dst Dat eTi neUTC, Dat eTi neUTC]

For alocal { Dat el, Ti nmel} during the period that is repeated when switching from daylight saving time,
there are two corresponding UTCs. One for the first instance of the period when daylight saving time is still
active, and one for the second instance.

[Dat eTi neUTC]
For all other local times there is only one corresponding UTC.

now to_ | ocal _tine(Now) -> {Date, Tine}
Types:
Now -- see erlang:now/0
Date = date()
Time=time&()
This function returns local date and time converted from the return value from er | ang: now() .

now to_universal time(Now) -> {Date, Tine}

now to dateti me(Now) -> {Date, Tine}
Types.
Now -- see erlang:now/0
Date = date()
Time=time&()
This function returns Universal Coordinated Time (UTC) converted from the return value from er | ang: now() .

seconds_to_daysti ne(Seconds) -> {Days, Ti ne}
Types:
Seconds = Days = int()
Time=timeg()
This function transforms a given number of seconds into days, hours, minutes, and seconds. The Ti ne part isaways
non-negative, but Days is negativeif the argument Seconds is.

seconds_to tinme(Seconds) -> Tine

Types:
Seconds = int() < 86400
Time = time()

Thisfunction computesthetime from the given number of seconds. Seconds must belessthan the number of seconds
per day (86400).

time_difference(Tl, T2) -> {Days, Tine}
This function returns the difference betweentwo { Dat e, Ti ne} tuples. T2 should refer to an epoch later than T1.

58 | Ericsson AB. All Rights Reserved.: STDLIB

calendar

Warning:

Thisfunction is obsolete. Use the conversion functions for gregorian days and seconds instead.

time_to_seconds(Tine) -> Seconds

Types:
Time=timeg()
Seconds = int()

This function computes the number of seconds since midnight up to the specified time.

universal _tinme() -> {Date, Tine}
Types.

Date = date()

Time=time()

Thisfunction returns the Universal Coordinated Time (UTC) reported by the underlying operating system. Local time
isreturned if universal timeisnot available.

universal _tine_to_local time({Datel, Tinel}) -> {Date2, Tine2}
Types:

Datel = Date2 = date()

Timel =Time2 = time()

This function converts from Universal Coordinated Time (UTC) to local time. Dat el must refer to a date after Jan
1, 1970.

val i d_date(Date) -> bool ()

val i d_date(Year, Month, Day) -> bool ()
Types.

Date = date()
Thisfunction checksif adateisavalid.

Leap Years

The notion that every fourth year is aleap year is not completely true. By the Gregorian rule, ayear Y isaleap year
if either of the following rulesisvalid:

e Y isdivisible by 4, but not by 100; or
e Y isdivisible by 400.
Accordingly, 1996 is aleap year, 1900 is not, but 2000 is.

Date and Time Source

Loca time is obtained from the Erlang BIF | ocal ti ne/ 0. Universal time is computed from the BIF
uni versal tine/ 0.

The following facts apply:

Ericsson AB. All Rights Reserved.: STDLIB | 59

calendar

e there are 86400 secondsin aday

* thereare 365 daysin an ordinary year

» thereare 366 daysin aleap year

* thereare 1461 daysin a4 year period

e thereare 36524 daysin a 100 year period

e thereare 146097 daysin a 400 year period

* thereare 719528 days between Jan 1, 0 and Jan 1, 1970.

60 | Ericsson AB. All Rights Reserved.: STDLIB

dets

dets

Erlang module

The module det s provides a term storage on file. The stored terms, in this module called objects, are tuples such
that one element is defined to be the key. A Dets table is a collection of objects with the key at the same position
stored on afile.

Dets is used by the Mnesia application, and is provided as is for users who are interested in an efficient storage of
Erlang termson disk only. Many applicationsjust need to store sometermsin afile. Mnesiaadds transactions, queries,
and distribution. The size of Dets files cannot exceed 2 GB. If larger tables are needed, Mnesid's table fragmentation
can be used.

There are three types of Detstables: set, bag and duplicate bag. A table of type set has at most one object with agiven
key. If an object with akey aready present in the table isinserted, the existing object is overwritten by the new object.
A table of type bag has zero or more different objects with a given key. A table of type duplicate bag has zero or
more possibly matching objects with a given key.

Dets tables must be opened before they can be updated or read, and when finished they must be properly closed. If a
table has not been properly closed, Detswill automatically repair the table. This can take a substantial timeif the table
islarge. A Detstableisclosed when the process which opened the table terminates. If several Erlang processes (users)
open the same Dets table, they will share the table. The table is properly closed when all users have either terminated
or closed the table. Dets tables are not properly closed if the Erlang runtime system is terminated abnormally.

Note:

A ~C command abnormally terminates an Erlang runtime system in a Unix environment with a break-handler.

Since all operations performed by Dets are disk operations, it is important to realize that a single look-up operation
involves a series of disk seek and read operations. For this reason, the Dets functions are much slower than the
corresponding Ets functions, although Dets exports a similar interface.

Dets organizes dataas alinear hash list and the hash list grows gracefully as more dataisinserted into the table. Space
management on the file is performed by what is called a buddy system. The current implementation keeps the entire
buddy system in RAM, which implies that if the table gets heavily fragmented, quite some memory can be used up.
The only way to defragment atableisto closeit and then open it again with ther epai r optionsettof or ce.

Itisworth noting that the ordered_set type present in Etsis not yet implemented by Dets, neither isthe limited support
for concurrent updates which makes asequence of f i r st and next calls safeto use on fixed Etstables. Both these
features will be implemented by Detsin afuture release of Erlang/OTP. Until then, the Mnesia application (or some
user implemented method for locking) has to be used to implement safe concurrency. Currently, no library of Erlang/
OTP has support for ordered disk based term storage.

Two versions of the format used for storing objects on file are supported by Dets. The first version, 8, is the format
always used for tables created by OTP R7 and earlier. The second version, 9, is the default version of tables created
by OTP R8 (and later OTP releases). OTP R8 can create version 8 tables, and convert version 8 tables to version 9,
and vice versa, upon request.

All Detsfunctionsreturn{ er r or, Reason} if anerroroccurs(fi r st/ 1 andnext / 2 areexceptions, they exit the
process with the error tuple). If given badly formed arguments, all functions exit the processwith abadar g message.

Types

Ericsson AB. All Rights Reserved.: STDLIB | 61

dets

access() = read | read_wite
auto_save() = infinity | int()

bi ndi ngs_cont () = tupl e()

bool () = true | fal se

file() = string()

int() = integer() >= 0

keypos() = integer() >=1

name() = aton() | reference()
no_slots() = integer() >= 0 | default
object() = tuple()

object_cont () = tuple()
select_cont () = tuple()

type() = bag | duplicate_bag | set
version() =8 | 9 | default

Exports

all () -> [Nane]
Types:
Name = name()

Returns alist of the names of all open tables on this node.

bchunk(Nanme, Continuation) -> {Continuation2, Data} | '$end_of _table' |
{error, Reason}
Types:

Name = hame()
Continuation = start | cont()
Continuation2 = cont()
Data = binary() | tuple()
Returns a list of objects stored in atable. The exact representation of the returned objects is not public. The lists of

data can be used for initializing atable by giving the value bchunk to thef or mat option of thei nit _t abl e/ 3
function. The Mnesia application uses this function for copying open tables.

Unlessthetableisprotected using saf e_f i xt abl e/ 2, callstobchunk/ 2 may not work as expected if concurrent
updates are made to the table.

Thefirst timebchunk/ 2 iscalled, aninitial continuation, the atom st ar t , must be provided.

The bchunk/ 2 function returns a tuple { Conti nhuati on2, Data}, where Data is a list of objects.
Cont i nuat i on2 isanother continuation which isto be passed on to a subsequent call to bchunk/ 2. With aseries
of callsto bchunk/ 2 it is possible to extract al objects of the table.

bchunk/ 2 returns' $end_of _t abl ' when all objects have been returned, or { error, Reason} if anerror
OCCUrs.

cl ose(Nane) -> ok | {error, Reason}
Types:
Name = name()
Closes atable. Only processes that have opened atable are allowed to close it.

All open tables must be closed before the system is stopped. If an attempt is made to open a table which has not been
properly closed, Dets automatically triesto repair the table.

62 | Ericsson AB. All Rights Reserved.: STDLIB

dets

del et e(Nane, Key) -> ok | {error, Reason}
Types:

Name = name()
Deletes al objects with the key Key from the table Nane.

del ete_all _objects(Nanme) -> ok | {error, Reason}
Types.
Name = hame()

Deletes all objects from atablein amost constant time. However, if thetableif fixed, del et e_al | _obj ect s(T)
isequivalenttomat ch_del ete(T, ' _').

del et e_obj ect (Name, Object) -> ok | {error, Reason}
Types:
Name = name()
Object = object()
Deletes all instances of a given object from atable. If atableis of type bag or dupl i cat e_bag, thedel et e/ 2
function cannot be used to delete only some of the objects with a given key. This function makes this possible.

first(Name) -> Key | '$end_of _table'
Types:

Key =term()

Name = name()
Returns the first key stored in the table Name according to the table's internal order, or ' $end_of _t abl e' if the
tableis empty.
Unlessthe tableis protected using saf e_f i xt abl e/ 2, subsequent callsto next / 2 may not work as expected if
concurrent updates are made to the table.

Should an error occur, the process is exited with an error tuple{ error, Reason}. The reason for not returning
the error tuple is that it cannot be distinguished from akey.

There aretwo reasonswhy f i r st/ 1 and next / 2 should not be used: they are not very efficient, and they prevent
theuseof thekey ' $end_of _t abl e' sincethisatom isused toindicatethe end of thetable. If possible, themat ch,
mat ch_obj ect,and sel ect functions should be used for traversing tables.

foldl (Function, AccO, Nane) -> Accl | {error, Reason}
Types.
Function = fun(Object, Accln) -> AccOut
AccO=Accl = Accln = AccOut =term()
Name = name()
Object = object()
Calls Funct i on on successive elements of the table Name together with an extra argument Accl n. The order in

which the elements of the table are traversed is unspecified. Funct i on must return a new accumulator which is
passed to the next call. AccO isreturned if the tableis empty.

fol dr (Function, AccO, Nane) -> Accl | {error, Reason}
Types:

Ericsson AB. All Rights Reserved.: STDLIB | 63

dets

Function = fun(Object, Accln) -> AccOut
AccO=Accl = Accln = AccOut =term()
Name = hame()
Object = object()
Calls Funct i on on successive elements of the table Nane together with an extra argument Accl n. The order in

which the elements of the table are traversed is unspecified. Funct i on must return a new accumulator which is
passed to the next call. AccO isreturned if the tableis empty.

fromets(Nane, EtsTab) -> ok | {error, Reason}
Types:
Name = name()
EtsTab = - see ets(3) -
Deletes all objects of the table Name and then inserts all the objects of the Ets table Et sTab. The order in which

the objects are inserted is not specified. Since et s: saf e_fi xt abl e/ 2 is called the Ets table must be public or
owned by the calling process.

i nfo(Nane) -> InfolList | undefined
Types:

Name = hame()

InfoList = [{Item, Value}]

Returnsinformation about the table Narre asalistof {1 t em Val ue} tuples:

o {file_size, int()},thesizeof thefilein bytes.

o {filenane, file()},thename of thefilewhere objects are stored.
« {keypos, keypos()},theposition of thekey.

e {size, int()},thenumber of objects stored inthetable.

« {type, type()},thetypeof thetable.

i nffo(Nane, Item) -> Value | undefined
Types:
Name = name()
Returns the information associated with | t emfor thetable Nane. In additiontothe{ |t em Val ue} pairsdefined
fori nf o/ 1, thefollowing items are allowed:
e {access, access()},theaccess mode.
« {auto_save, auto_save()},theautosaveinterval.

e {bchunk format, binary()}, an opaque binary describing the format of the objects returned by
bchunk/ 2. The binary can be used as argument toi s_conpati bl e _chunk_f or mat/ 2. Only available
for version 9 tables.

* {hash, Hash} . Describeswhich BIF isused to cal culate the hash values of the objects stored in the Dets table.
Possible values of Hash arehash, which impliesthat theer | ang: hash/ 2 BIFisused, phash, whichimplies
thattheer | ang: phash/ 2 BIFisused, andphash2, whichimpliesthat theer | ang: phash2/ 1 BIFisused.

« {nmenory, int()},thesizeof thefilein bytes. The samevalueis associated with theitemfil e_si ze.
e {no_keys, int()},thenumber of different keys stored in the table. Only available for version 9 tables.
* {no_objects, int()},thenumber of objectsstored in the table.

64 | Ericsson AB. All Rights Reserved.: STDLIB

dets

e {no_slots, {Mn, Used, Max}},thenumber of dotsof thetable. M n isthe minimum number of dots,
Used isthe number of currently used slots, and Max isthe maximum number of slots. Only available for version
9tables.

« {owner, pid()},thepid of the processthat handles requeststo the Dets table.
« {ramfile, bool ()}, whetherthetableiskeptin RAM.

« {safe_fixed, SafeFixed}. If the table is fixed, SafeFixed is a tuple {Fi xedAtTi ne,
[{Pid, Ref Count }]}.Fi xedAt Ti ne is the time when the table was first fixed, and Pi d is the pid of the
process that fixes the table Ref Count times. There may be any number of processesin the list. If the tableis
not fixed, SafeFixed istheatom f al se.

« {version, int()},theversionof theformat of the table.

init_table(Nanme, InitFun [, Options]) -> ok | {error, Reason}
Types:
Name = atom()
InitFun = fun(Arg) -> Res
Arg=read | close
Res =end_of_input | {[object()], InitFun} | {Data, InitFun} | term()
Data = binary() | tuple()
Replacesthe existing objects of thetable Nane with objects created by calling theinput function | ni t Fun, seebelow.

Thereason for using thisfunction rather than callingi nser t / 2 isthat of efficiency. It should be noted that the input
functions are called by the process that handles requests to the Dets table, not by the calling process.

When called with the argument r ead thefunction | ni t Fun isassumed to returnend_of _i nput whenthereisno
moreinput, or { Gbj ect s, Fun},where Obj ect s isalist of objects and Fun isanew input function. Any other
valueValueisreturned asanerror {error, {init_fun, Val ue}}.Eachinputfunctionwill be called exactly
once, and should an error occur, the last function is called with the argument cl ose, the reply of which isignored.

If thetype of thetableisset and thereis more than one object with agiven key, one of the objectsis chosen. Thisis
not necessarily the last object with the given key in the sequence of objects returned by the input functions. Duplicate
keys should be avoided, or the file will be unnecessarily fragmented. This holds also for duplicated objects stored in
tables of type bag.

Itisimportant that the table has a sufficient number of slotsfor the objects. If not, the hash list will start to grow when
i nit_tabl e/ 2 returns which will significantly slow down access to the table for a period of time. The minimum
number of dotsisset by theopen _fil e/ 2 optionm n_no_sl ot s andreturned by thei nf o/ 2 itemno_sl ot s.
Seeasothem n_no_sl ot s option below.

The Opt i ons argumentisalist of { Key, Val } tupleswhere the following values are allowed:

« {mn_no_slots, no_slots()}. Specifiesthe estimated number of different keys that will be stored in
the table. The open_f i | e option with the same name is ignored unless the table is created, and in that case
performance can be enhanced by supplying an estimate when initializing the table.

« {format, Format}. Specifiestheformat of the objects returned by the function I ni t Fun. If For mat is
t er m(thedefault), | ni t Fun isassumed to return alist of tuples. If For mat isbchunk, I ni t Fun isassumed
to return Dat a asreturned by bchunk/ 2. This option overridestheni n_no_sl ot s option.

i nsert(Nanme, bjects) -> ok | {error, Reason}
Types.

Name = name()

Objects = object() | [object()]

Ericsson AB. All Rights Reserved.: STDLIB | 65

dets

Inserts one or more objects into the table Nane. If there already exists an object with a key matching the key of some
of the given objects and the table typeis set , the old object will be replaced.

i nsert _new(Nane, Objects) -> Bool
Types.
Name = name()
Objects = object() | [object()]
Bool = bool()
Inserts one or more objects into the table Nane. If there already exists some object with a key matching the key of

any of the given objects the table is not updated and f al se isreturned, otherwise the objects areinserted and t r ue
returned.

i s_conpatibl e _bchunk_fornmat (Name, BchunkFormat) -> Bool
Types.
Name = name()
BchunkFormat = binary()
Bool = bool()
Returns true if it would be possible to initiadlize the table Name, using init_tabl e/ 3 with the

option {f or nat, bchunk}, with objects read with bchunk/ 2 from some table T such that calling
i nfo(T, bchunk_format) returnsBchunkFor mat .

is_dets_file(FileNane) -> Bool | {error, Reason}
Types.

FileName = file()

Bool = bool()
Returnst r ue if thefile Fi | eNane isaDetstable, f al se otherwise.

| ookup(Name, Key) -> [Cbject] | {error, Reason}
Types.
Key =term()
Name = name()
Object = object()
Returnsalist of all objects with the key Key stored in the table Narre. For example:

2> dets:open_file(abc, [{type, bag}]).
{ ok, abc}

3> dets:insert(abc, {1,2,63}).

ok

4> dets:insert(abc, {1,3,4}).

ok

5> dets: | ookup(abc, 1).

[{1,2,3},{1, 3, 4}]

If thetableis of type set , the function returns either the empty list or alist with one object, as there cannot be more
than one object with a given key. If the table is of type bag or dupl i cat e_bag, the function returns a list of
arbitrary length.

66 | Ericsson AB. All Rights Reserved.: STDLIB

dets

Note that the order of objects returned is unspecified. In particular, the order in which objects were inserted is not
reflected.

mat ch(Conti nuation) -> {[Match], Continuation2} | '$end of table | {error,
Reason}

Types.
Continuation = Continuation2 = bindings_cont()
Match = [term()]
Matches some objects stored in a table and returns a non-empty list of the bindings that match a given pattern

in some unspecified order. The table, the pattern, and the number of objects that are matched are al defined by
Cont i nuat i on, which has been returned by aprior call tormat ch/ 1 or mat ch/ 3.

When all objects of the table have been matched, ' $end_of _t abl e' isreturned.

mat ch(Name, Pattern) -> [Match] | {error, Reason}
Types:
Name = name()
Pattern = tuple()
Match = [term()]
Returns for each object of the table Nane that matches Pat t er n alist of bindings in some unspecified order. See

ets(3) for a description of patterns. If the keyposth element of Pat t er n is unbound, al objects of the table are
matched. If the keyposth element is bound, only the objects with the right key are matched.

mat ch(Nane, Pattern, N) -> {[Match], Continuation} | '$end_of table' |
{error, Reason}
Types:

Name = name()

Pattern = tuple()

N = default | int()

Match = [term()]

Continuation = bindings_cont()
Matches some or all objects of the table Nanme and returns a non-empty list of the bindings that match Pat t er n in
some unspecified order. See ets(3) for a description of patterns.

A tuple of the bindings and a continuation is returned, unless the table is empty, in which case' $end_of _t abl €'
isreturned. The continuation is to be used when matching further objects by calling mat ch/ 1.

If thekeyposth element of Pat t er nisbound, all objects of thetableare matched. If the keyposth element isunbound,
al objects of the table are matched, N objects at a time, until at least one object matches or the end of the table has
been reached. The default, indicated by giving Nthe value def aul t , isto let the number of objects vary depending
on the sizes of the objects. If Nane isaversion 9 table, all objects with the same key are always matched at the same
time which implies that more than N objects may sometimes be matched.

Thetable should alwaysbe protected usingsaf e_fi xt abl e/ 2 beforecalling mat ch/ 3, or errors may occur when
calingmat ch/ 1.

mat ch_del et e(Nane, Pattern) -> ok | {error, Reason}

Types:
Name = name()

Ericsson AB. All Rights Reserved.: STDLIB | 67

dets

Pattern = tuple()
Deletes all objects that match Pat t er n from the table Nane. See ets:match/2 for a description of patterns.
If the keyposth element of Pat t er n isbound, only the objects with the right key are matched.

mat ch_obj ect (Conti nuation) -> {[Object], Continuation2} | '$end of table' |
{error, Reason}
Types:

Continuation = Continuation2 = object_cont()
Object = object()
Returns a non-empty list of some objects stored in atable that match a given pattern in some unspecified order. The

table, the pattern, and the number of objects that are matched are al defined by Cont i nuat i on, which has been
returned by aprior call tomat ch_obj ect/ 1 or mat ch_obj ect / 3.

When all objects of the table have been matched, ' $end_of _t abl e' isreturned.

mat ch_obj ect (Nane, Pattern) -> [Object] | {error, Reason}
Types.
Name = name()
Pattern = tuple()
Object = object()
Returns a list of all objects of the table Nane that match Pat t er n in some unspecified order. See ets(3) for a
description of patterns.

If the keyposth element of Pat t er n is unbound, all objects of the table are matched. If the keyposth element of
Pat t er n isbound, only the objects with the right key are matched.

Using thenmat ch_obj ect functionsfor traversing all objects of atableis more efficient than callingfi r st/ 1 and
next/2orsl ot/ 2.

mat ch_obj ect (Nanme, Pattern, N) -> {[Object], Continuation} | '$end_of table
| {error, Reason}
Types.

Name = name()

Pattern = tuple()

N = default | int()

Object = object()
Continuation = object_cont()

Matches some or al objects stored in the table Narre and returns anon-empty list of the objectsthat match Pat t er n
in some unspecified order. See ets(3) for a description of patterns.

A list of objects and a continuation is returned, unless the table is empty, in which case ' $end_of t abl e' is
returned. The continuation is to be used when matching further objects by calling mat ch_obj ect/ 1.

If thekeyposth element of Pat t er n isbound, al objectsof thetable are matched. If the keyposth element isunbound,
all objects of the table are matched, N objects at atime, until at least one object matches or the end of the table has
been reached. The default, indicated by giving N the value def aul t , isto let the number of objects vary depending
on the sizes of the objects. If Nane isaversion 9 table, all matching objects with the same key are always returned in
the same reply which implies that more than N objects may sometimes be returned.

68 | Ericsson AB. All Rights Reserved.: STDLIB

dets

The table should always be protected using saf e_f i xt abl e/ 2 beforecalling mat ch_obj ect / 3, or errors may
occur when calling mat ch_obj ect/ 1.

menber (Name, Key) -> Bool | {error, Reason}
Types.

Name = name()

Key =term()

Bool = bool()

Works like | ookup/ 2, but does not return the objects. The function returnst r ue if one or more elements of the
table has the key Key, f al se otherwise.

next (Name, Keyl) -> Key2 | '$end_of table'
Types:
Name = name()
Keyl=Key2=term()
Returns the key following Key1 in the table Nane according to the table's internal order, or ' $end_of _t abl €'
if thereis no next key.
Should an error occur, the processis exited with an error tuple{ er r or, Reason}.

Usefirst/ 1 tofindthefirst key inthetable.

open_file(Filenane) -> {ok, Reference} | {error, Reason}
Types:

FileName = file()

Reference = reference()

Opens an existing table. If the table has not been properly closed, it will be repaired. The returned reference is to be
used as the name of the table. This function is most useful for debugging purposes.

open_file(Nane, Args) -> {ok, Nane} | {error, Reason}
Types:

Name = atom()
Opens atable. An empty Detstableis created if no file exists.

The atom Narre is the name of the table. The table name must be provided in all subsequent operations on the table.
The name can be used by other processes as well, and several process can share onetable.

If two processes open the same table by giving the same name and arguments, then the table will have two users. If
one user closesthetable, it still remains open until the second user closes the table.

The Ar gs argument isalist of { Key, Val } tupleswhere the following values are allowed:

- {access, access()}.Itispossibleto open existing tablesin read-only mode. A table which is opened in
read-only mode is not subjected to the automatic file reparation algorithm if it is later opened after a crash. The
default valueisread_write.

« {auto_save, auto_save()},theautosaveinterval. If theinterval isaninteger Ti me, thetableisflushed
to disk whenever it isnot accessed for Ti me milliseconds. A table that has been flushed will require no reparation
when reopened after an uncontrolled emulator halt. If theinterval istheatomi nf i ni ty, auto save is disabled.
The default value is 180000 (3 minutes).

e {estimated_no_objects, int()}.Equivaenttothemnm n_no_sl ot s option.

Ericsson AB. All Rights Reserved.: STDLIB | 69

dets

« {file, file()},thename of thefileto be opened. The default value isthe name of the table.

e {max_no_slots, no_slots()}, the maximum number of dots that will be used. The default value as
well as the maximal value is 32 M. Note that a higher value may increase the fragmentation of the table, and
conversely, that asmaller value may decrease the fragmentation, at the expense of execution time. Only available
for version 9 tables.

 {mn_no_slots, no_slots()}.Application performance can be enhanced with this flag by specifying,
when thetableis created, the estimated number of different keysthat will be stored in the table. The default value
aswell asthe minimum value is 256.

« {keypos, keypos()}, the position of the element of each object to be used as key. The default value is 1.
The ability to explicitly state the key position is most convenient when we want to store Erlang records in which
the first position of the record is the name of the record type.

« {ramfile, bool ()}, whetherthetableisto be kept in RAM. Keeping the table in RAM may sound like
an anomaly, but can enhance the performance of applications which open atable, insert a set of objects, and then
close the table. When the table is closed, its contents are written to the disk file. The default valueisf al se.

e {repair, Value}.Val ue canbeeither abool () ortheatomf or ce. Theflag specifies whether the Dets
server should invoke the automatic file reparation algorithm. The default ist r ue. If f al se is specified, there
isno attempt to repair thefileand { error, {needs _repair, Fil eNane}} isreturnedif thetable needs
to be repaired.

The value f or ce means that a reparation will take place even if the table has been properly closed. This
is how to convert tables created by older versions of STDLIB. An example is tables hashed with the
deprecated er | ang: hash/ 2 BIF. Tables created with Dets from a STDLIB version of 1.8.2 and later use the
er | ang: phash/ 2 function or theer | ang: phash2/ 1 function, which is preferred.

Ther epai r optionisignored if thetableis already open.
« {type, type()},thetypeof thetable. The default valueisset .

« {version, version()},theversion of theformat used for the table. The default value is 9. Tables on the
format used before OTP R8 can be created by giving the value 8. A version 8 table can be converted to aversion
9 table by giving the options{ ver si on, 9} and{repair, force}.

pi d2name(Pid) -> {ok, Nane} | undefined

Types:
Name = name()
Pid = pid()

Returns the name of the table given the pid of a process that handles requests to atable, or undef i ned if thereis
no such table,

This function is meant to be used for debugging only.

repair_continuation(Continuation, MatchSpec) -> Continuation2
Types.

Continuation = Continuation2 = select_cont()

MatchSpec = match_spec()

Thisfunction can be used to restore an opaque continuation returned by sel ect / 3 or sel ect / 1 if the continuation
has passed through external term format (been sent between nodes or stored on disk).

The reason for this function is that continuation terms contain compiled match specifications and therefore will
be invalidated if converted to external term format. Given that the original match specification is kept intact, the
continuation can be restored, meaning it can once again be used in subsequent sel ect / 1 calls even though it has
been stored on disk or on another node.

70 | Ericsson AB. All Rights Reserved.: STDLIB

dets

Seeaso et s(3) for further explanations and examples.

Note:

Thisfunctionisvery rarely needed in application code. It isused by Mnesiato implement distributed sel ect / 3
and sel ect / 1 sequences. A normal application would either use Mnesia or keep the continuation from being
converted to external format.

The reason for not having an external representation of compiled match specifications is performance. It may be
subject to change in future releases, while thisinterface will remain for backward compatibility.

saf e_fi xtabl e(Nanme, Fix)
Types:
Name = name()
Fix = bool()
If Fi x ist rue, thetable Name isfixed (once more) by the calling process, otherwise the tableis released. The table
is also released when afixing process terminates.

If several processesfix atable, thetablewill remain fixed until all processes havereleased it or terminated. A reference
counter is kept on a per process basis, and N consecutive fixes require N releases to release the table.

It is not guaranteed that callstofi rst/ 1, next/ 2, select and match functions work as expected even if the table
has been fixed; the limited support for concurrency implemented in Ets has not yet been implemented in Dets. Fixing
atable currently only disables resizing of the hash list of the table.

If objects have been added while the table was fixed, the hash list will start to grow when the table is released which
will significantly slow down access to the table for a period of time.

sel ect (Continuation) -> {Sel ection, Continuation2} | '$end_of _table' |
{error, Reason}
Types:

Continuation = Continuation2 = select_cont()
Selection = [term()]
Applies a match specification to some objects stored in a table and returns a non-empty list of the results. The table,

the match specification, and the number of objects that are matched are all defined by Cont i nuat i on, which has
been returned by aprior call tosel ect/ 1 or sel ect/ 3.

When all objects of the table have been matched, ' $end_of _t abl e' isreturned.

sel ect (Name, MatchSpec) -> Selection | {error, Reason}
Types.
Name = name()
MatchSpec = match_spec()
Selection = [term()]
Returns the results of applying the match specification Mat chSpec to al or some objects stored in the table Name.
The order of the objectsis not specified. See the ERTS User's Guide for a description of match specifications.

If the keyposth element of Mat chSpec is unbound, the match specification is applied to all objects of the table. If
the keyposth element is bound, the match specification is applied to the objects with the right key(s) only.

Ericsson AB. All Rights Reserved.: STDLIB | 71

dets

Usingthesel ect functionsfor traversing all objects of atableis more efficient than callingf i r st/ 1 andnext/ 2
orslot/2.

sel ect (Name, MatchSpec, N) -> {Selection, Continuation} | '$end of table' |
{error, Reason}
Types:

Name = name()

MatchSpec = match_spec()
N = default | int()

Selection = [term()]
Continuation = select_cont()

Returns the results of applying the match specification Mat chSpec to some or al objects stored in the table Name.
The order of the objectsis not specified. See the ERTS User's Guide for a description of match specifications.

A tuple of the results of applying the match specification and a continuation is returned, unless the table is empty,
in which case ' $end_of _t abl e' isreturned. The continuation is to be used when matching further objects by
calingsel ect/ 1.

If the keyposth element of Mat chSpec is bound, the match specification is applied to all objects of the table with
theright key(s). If the keyposth element of Mat chSpec isunbound, the match specification is applied to all objects
of thetable, N objects at atime, until at least one object matches or the end of the table has been reached. The default,
indicated by giving Nthe value def aul t , isto let the number of objects vary depending on the sizes of the objects.
If Name isaversion 9 table, all objects with the same key are always handled at the same time which implies that the
match specification may be applied to more than N objects.

The table should always be protected using saf e_f i xt abl e/ 2 before calling sel ect/ 3, or errors may occur
when calling sel ect/ 1.

sel ect _del et e(Nanme, MatchSpec) -> N | {error, Reason}
Types:

Name = hame()

MatchSpec = match_spec()

N =int()
Deletes each object from the table Narre such that applying the match specification Mat chSpec to the object returns
thevaluet r ue. Seethe ERTS User's Guide for a description of match specifications. Returns the number of deleted
objects.
If the keyposth element of Mat chSpec is bound, the match specification is applied to the objects with the right
key(s) only.

slot(Nanme, |) -> "$end_of _table'" | [Cbject] | {error, Reason}
Types:

Name = name()

I =int()

Object = object()

The objects of atable are distributed among dlots, starting with slot 0 and ending with slot n. This function returnsthe
list of objects associated with slot | . If | isgreater thann' $end_of _t abl e' isreturned.

72 | Ericsson AB. All Rights Reserved.: STDLIB

dets

sync(Nane) -> ok | {error, Reason}
Types:
Name = name()

Ensuresthat all updates made to the table Name are written to disk. This also appliesto tables which have been opened
withtheram fil e flagsettot r ue. Inthis case, the contents of the RAM file are flushed to disk.

Note that the space management data structures kept in RAM, the buddy system, is also written to the disk. This may
take some time if the table is fragmented.

tabl e(Nane [, Options]) -> QueryHandl e
Types:
Name = name()
QueryHandle = - aquery handle, see glc(3) -
Options = [Option] | Option
Option ={n_aobjects, Limit} | {traverse, TraverseMethod}
Limit = default | integer() >=1
TraverseMethod = first_next | select | {select, M atchSpec}
MatchSpec = match_spec()
Returns a QLC (Query List Comprehension) query handle. The module gl ¢ implements a query language aimed

mainly at Mnesia but Ets tables, Dets tables, and lists are also recognized by gl ¢ as sources of data. Calling
det s: t abl e/ 1, 2 isthe means to make the Dets table Nane usableto gl c.

When there are only simplerestrictionson thekey position gl ¢ usesdet s: | ookup/ 2 tolook up the keys, but when
that is not possible the whole tableistraversed. The optiont r aver se determines how thisis done:

« first_next.Thetableistraversed onekey at atimeby calingdet s: first/ 1 anddets: next/ 2.

 sel ect.Thetableistraversed by calingdet s: sel ect/ 3 anddet s: sel ect/ 1. Theoptionn_obj ect s
determines the number of objects returned (the third argument of sel ect / 3). The match specification (the
second argument of sel ect/ 3) is assembled by gl c: simple filters are translated into equivalent match
specifications while more complicated filters have to be applied to all objects returned by sel ect/ 3 given a
match specification that matches al objects.

e {select, MatchSpec}. As for sel ect the table is traversed by calling dets: sel ect/3 and
det s: sel ect/ 1. Thedifference isthat the match specification is explicitly given. Thisis how to state match
specifications that cannot easily be expressed within the syntax provided by gl c.

The following example uses an explicit match specification to traverse the table:

1> dets:open_file(t, []),

ok = dets:insert(t, [{1,a},{2,b},{3,c},{4,d}]),

M5 = ets:fun2ns(fun({X Y}) when (X > 1) or (X < 5) ->{Y} end),
HL = dets:table(t, [{traverse, {select, Ms}}]).

An example with implicit match specification:

2> Q2 =qlc:q([{Y} || {X Y} < dets:table(t), (X >1) or (X<5)]).

The latter exampleisin fact equivalent to the former which can be verified using the function gl ¢: i nf o/ 1:

Ericsson AB. All Rights Reserved.: STDLIB | 73

dets

3> glc:info(QHL) =:= qglc:info(QH2).
true

gl c: i nf o/ 1 returnsinformation about a query handle, and in this caseidentical information is returned for the two
guery handles.

to_ets(Nane, EtsTab) -> EtsTab | {error, Reason}
Types:

Name = name()

EtsTab = - seeets(3) -

Inserts the objects of the Dets table Name into the Ets table Et sTab. The order in which the objects are inserted is
not specified. The existing objects of the Ets table are kept unless overwritten.

traverse(Nane, Fun) -> Return | {error, Reason}
Types:

Fun = fun(Object) -> FunReturn

FunReturn = continue | {continue, Val} | {done, Value}

Val = Value=term()

Name = name()

Object = object()

Return = [term()]

Applies Fun to each object stored in the table Name in some unspecified order. Different actions are taken depending
on the return value of Fun. The following Fun return values are allowed:

conti nue
Continue to perform the traversal. For example, the following function can be used to print out the contents of
atable:
fun(X) -> io:format("~p~n", [X]), continue end.

{continue, Val}

Continue the traversal and accumulate Val . The following function is supplied in order to collect all objects of
atableinalist:

fun(X) -> {continue, X} end.

{done, Val ue}
Terminate the traversal and return [Val ue | Acc] .
Any other value returned by Fun terminates the traversal and isimmediately returned.

updat e_count er (Nanme, Key, Increnent) -> Result

Types:
Name = name()
Key =term()

74 | Ericsson AB. All Rights Reserved.: STDLIB

dets

Increment = {Pos, Incr} | Incr
Pos = Incr = Result = integer ()

Updates the object with key Key stored in the table Name of typeset by adding | ncr to the element at the Pos:th
position. The new counter value is returned. If no position is specified, the element directly following the key is
updated.

This functions provides a way of updating a counter, without having to look up an object, update the object by
incrementing an element and insert the resulting object into the table again.

See Also
ets(3), mnesia(3), glc(3)

Ericsson AB. All Rights Reserved.: STDLIB | 75

dict

dict

Erlang module

Di ct implementsaKey - Val ue dictionary. The representation of a dictionary is not defined.

This module provides exactly the same interface as the module or ddi ct . One difference is that while this module
considers two keys as different if they do not match (=: =), or ddi ct considers two keys as different if and only if
they do not compare equal (==).

DATA TYPES

dictionary()
as returned by new 0

Exports

append(Key, Value, Dictl) -> Dict2
Types:

Key = Value=term()

Dictl = Dict2 = dictionary()

This function appends a new Val ue to the current list of values associated with Key. An exception is generated if
theinitial value associated with Key isnot alist of values.

append_list(Key, ValList, Dictl) -> Dict2
Types:

ValList = [Value]

Key =Value=term()

Dictl = Dict2 = dictionary()

This function appends a list of values Val Li st to the current list of values associated with Key. An exception is
generated if the initial value associated with Key isnot alist of values.

erase(Key, Dictl) -> Dict2
Types:
Key =term()
Dictl = Dict2 = dictionary()
Thisfunction erases al items with a given key from adictionary.

fetch(Key, Dict) -> Value
Types.

Key = Value=term()

Dict = dictionary()

This function returns the value associated with Key in the dictionary Di ct . f et ch assumesthat the Key is present
in the dictionary and an exception is generated if Key isnhot in the dictionary.

76 | Ericsson AB. All Rights Reserved.: STDLIB

dict

fetch_keys(Dict) -> Keys
Types:
Dict = dictionary()
Keys=[term()]
Thisfunction returns alist of al keysin the dictionary.

filter(Pred, Dictl) -> Dict2
Types.
Pred = fun(Key, Value) -> bool()
Key =Value=term()
Dictl = Dict2 = dictionary()
Di ct 2 isadictionary of al keysand valuesin Di ct 1 for which Pr ed(Key, Val ue) istrue.

find(Key, Dict) -> {ok, Value} | error
Types:

Key = Value=term()

Dict = dictionary()

This function searches for akey in adictionary. Returns{ ok, Val ue} where Val ue isthe value associated with
Key, or er r or if thekey isnot present in the dictionary.

fol d(Fun, AccO, Dict) -> Accl
Types.
Fun = fun(Key, Value, Accln) -> AccOut
Key = Value=term()
AccO = Accl = Accln = AccOut =term()
Dict = dictionary()
Calls Fun on successive keys and values of Di ct together with an extraargument Acc (short for accumulator). Fun

must return a new accumulator which is passed to the next call. AccO isreturned if the list is empty. The evaluation
order is undefined.

fromlist(List) -> Dict
Types:
List = [{Key, Value}]
Dict = dictionary()
This function convertsthe Key - Val ue list Li st to adictionary.

is_key(Key, Dict) -> bool ()
Types:
Key =term()
Dict = dictionary()
Thisfunction testsif Key is contained in the dictionary Di ct .

Ericsson AB. All Rights Reserved.: STDLIB | 77

dict

map(Fun, Dictl) -> Dict2
Types:
Fun =fun(Key, Valuel) -> Value2
Key = Valuel = Value2 = term()
Dictl = Dict2 = dictionary()

map calls Func on successive keys and values of Di ct to return a new value for each key. The evauation order
is undefined.

nmerge(Fun, Dictl, Dict2) -> Dict3
Types:
Fun = fun(Key, Valuel, Value2) -> Value
Key =Valuel = Value2 = Value3 = term()
Dictl = Dict2 = Dict3 = dictionary()
ner ge merges two dictionaries, Di ct 1 and Di ct 2, to create a new dictionary. All the Key - Val ue pairs from

both dictionaries are included in the new dictionary. If a key occursin both dictionaries then Fun is called with the
key and both values to return anew value. ner ge could be defined as:

mer ge(Fun, D1, D2) ->
fold(fun (K, V1, D ->
update(K, fun (V2) -> Fun(K, V1, V2) end, V1, D)
end, D2, D1).

but isfaster.

new() -> dictionary()
This function creates a new dictionary.

size(Dict) ->int()
Types:
Dict = dictionary()
Returns the number of elementsinaDbDi ct .

store(Key, Value, Dictl) -> Dict2
Types:

Key = Value=term()

Dictl = Dict2 = dictionary()

This function stores a Key - Val ue pair in adictionary. If the Key already existsin Di ct 1, the associated value
isreplaced by Val ue.

to list(Dict) -> List
Types:
Dict = dictionary()
List =[{Key, Value}]
This function converts the dictionary to alist representation.

78 | Ericsson AB. All Rights Reserved.: STDLIB

dict

updat e(Key, Fun, Dictl) -> Dict2
Types:
Key =term()
Fun =fun(Valuel) -> Value2
Valuel = Value2 = term()
Dictl = Dict2 = dictionary()
Update a value in a dictionary by calling Fun on the value to get a new value. An exception is generated if Key is
not present in the dictionary.

updat e(Key, Fun, Initial, Dictl) -> Dict2
Types.
Key = Initial =term()
Fun =fun(Valuel) -> Value2
Valuel = Value2 = term()
Dictl = Dict2 = dictionary()
Update avalue in adictionary by calling Fun on the value to get anew value. If Key isnot present in the dictionary
thenl ni ti al will be stored asthefirst value. For example append/ 3 could be defined as:

append(Key, Val, D) ->
updat e(Key, fun (dd) -> dd ++ [Val] end, [Val], D).

updat e_counter (Key, Increnent, Dictl) -> Dict2
Types:
Key =term()
Increment = number ()
Dictl = Dict2 = dictionary()
Add | ncr enent to the value associated with Key and store this value. If Key is not present in the dictionary then
I ncr enent will be stored as thefirst value.

This could be defined as:

updat e_count er (Key, Incr, D) ->
updat e(Key, fun (dd) -> dd + Incr end, Incr, D).

but isfaster.

Notes

The functions append and append_| i st are included so we can store keyed values in a list accumulator. For
example:

dict:new(),
dict:store(files, [], DO),
dict:append(files, f1, D1),

DO
D1
D2
D3 dict: append(files, f2, D2),

Ericsson AB. All Rights Reserved.: STDLIB | 79

dict

D4 = dict:append(files, f3, D3),
dict:fetch(files, D4).
[f1,f2,f3]

This saves the trouble of first fetching a keyed value, appending a new value to the list of stored values, and storing
the result.

Thefunction f et ch should be used if the key is known to bein the dictionary, otherwisef i nd.

See Also
gb_trees(3), orddict(3)

80 | Ericsson AB. All Rights Reserved.: STDLIB

digraph

digraph

Erlang module

The di gr aph module implements a version of labeled directed graphs. What makes the graphs implemented here
non-proper directed graphs s that multiple edges between vertices are allowed. However, the customary definition of
directed graphs will be used in the text that follows.

A directed graph (or just "digraph™) isapair (V, E) of afinite set V of vertices and afinite set E of directed edges
(or just "edges'). The set of edges E is a subset of V x V (the Cartesian product of V with itself). In this module,
V is alowed to be empty; the so obtained unique digraph is called the empty digraph. Both vertices and edges are
represented by unique Erlang terms.

Digraphs can be annotated with additional information. Such information may be attached to the vertices and to the
edges of the digraph. A digraph which has been annotated is called alabeled digraph, and the information attached
to avertex or an edgeis called alabel. Labels are Erlang terms.

An edge e = (v, w) is said to emanate from vertex v and to be incident on vertex w. The out-degree of avertex isthe
number of edges emanating from that vertex. Thein-degree of avertex isthe number of edgesincident on that vertex.
If thereis an edge emanating from v and incident on w, then w is said to be an out-neighbour of v, and v is said to be
an in-neighbour of w. A path P from v[1] to v[K] in adigraph (V, E) is a non-empty sequence v[1], v[2], ..., V[K] of
vertices in V such that there is an edge (v[i],v[i+1]) in E for 1 <=i < k. The length of the path Pisk-1. Pis simple
if al vertices are distinct, except that the first and the last vertices may be the same. P is a cycle if the length of Pis
not zero and v[1] = v[K]. A loop is acycle of length one. A simple cycleis a path that is both a cycle and ssimple. An
acyclic digraph is a digraph that has no cycles.

Exports
add_edge(G E, Vi, V2, Label) -> edge() | {error, Reason}
add_edge(G V1, V2, Label) -> edge() | {error, Reason}

add_edge(G V1, V2) -> edge() | {error, Reason}
Types:

G =digraph()

E = edge()

V1=V2=vertex()

Label = label()

Reason = {bad_edge, Path} | {bad_vertex, V}

Path = [vertex()]

add_edge/ 5 creates (or modifies) the edge E of the digraph G, using Label asthe (new) label of the edge. The
edge is emanating from V1 and incident on V2. Returns E.

add_edge(G V1, V2, Label) isequivaenttoadd edge(G E, V1, V2, Label),whereEisa
created edge. The created edgeisrepresented by theterm [' $e' | N], where N isaninteger >= 0.

add_edge(G V1, V2) isequivaenttoadd_edge(G V1, V2, []).

If the edge would create acyclein an acyclic digraph, then{ error, {bad_edge, Path}} isreturned. If either
of V1 or V2 isnot avertex of thedigraph G then{error, {bad_vertex, V}} isreturned,V=V1orV =V2.

Ericsson AB. All Rights Reserved.: STDLIB | 81

digraph

add_vertex(G V, Label) -> vertex()
add_vertex(G V) -> vertex()

add_vertex(Q -> vertex()
Types:

G =digraph()
V =vertex()
Label = label()

add_vert ex/ 3 creates (or modifies) the vertex V of the digraph G, using Label asthe (new) label of the vertex.
Returns V.

add_vertex(G V) isequivaenttoadd_vertex(G V, []).

add_vert ex/ 1 creates a vertex using the empty list as label, and returns the created vertex. The created vertex is
represented by theterm [' $v' | N], whereN isan integer >=0.

del _edge(G E) -> true
Types:

G =digraph()

E = edge()
Deletes the edge E from the digraph G.

del _edges(G Edges) -> true
Types.
G =digraph()
Edges = [edge()]
Deletesthe edgesin the list Edges from the digraph G

del _path(G Vi1, V2) -> true
Types:
G =digraph()
V1=V2=vertex()
Deletes edges from the digraph Guntil there are no paths from the vertex V1 to the vertex V2.

A sketch of the procedure employed: Find an arbitrary simple path v[1], v[2], ..., v[K] from V1 to V2 in G. Remove
all edges of Gemanating from v[i] and incident to v[i+1] for 1 <=i <k (including multiple edges). Repeat until there
is no path between V1 and V2.

del _vertex(G V) -> true
Types.

G =digraph()
V =vertex()

Deletes the vertex V from the digraph G. Any edges emanating from V or incident on V are also deleted.

82 | Ericsson AB. All Rights Reserved.: STDLIB

digraph

del _vertices(G Vertices) -> true
Types:

G =digraph()

Vertices = [vertex()]

Deletesthe verticesinthelist Ver t i ces from the digraph G

delete(@ -> true
Types:
G =digraph()
Deletes the digraph G This call is important because digraphs are implemented with Et s. There is no garbage
collection of Et s tables. The digraph will, however, be deleted if the process that created the digraph terminates.

edge(G E) -> {E V1, V2, Label} | false
Types:

G =digraph()

E = edge()

V1=V2=vertex()

Label =label()

Returns{E, V1, V2, Label} wherelLabel isthelabel of the edge E emanating from V1 and incident on V2
of the digraph G. If there is no edge E of the digraph G, then f al se isreturned.

edges(Q -> Edges
Types.
G =digraph()
Edges = [edge()]
Returns alist of all edges of the digraph G, in some unspecified order.

edges(G V) -> Edges
Types:

G =digraph()

V =vertex()

Edges = [edge()]

Returns alist of all edges emanating from or incident on V of the digraph G, in some unspecified order.

get _cycle(G V) -> Vertices | fal se
Types:

G =digraph()

V1=V2=vertex()

Vertices = [vertex()]

If thereisasimple cycle of length two or more through the vertex V, thenthecycleisreturned asalist[V, ..., V]
of vertices, otherwiseif thereisaloop through V, then the loop isreturned asalist [V] . If there are no cyclesthrough
V, thenf al se isreturned.

get _pat h/ 3 isused for finding a simple cycle through V.

Ericsson AB. All Rights Reserved.: STDLIB | 83

digraph

get _path(G Vi, V2) -> Vertices | false
Types:

G =digraph()
V1=V2=vertex()
Vertices = [vertex()]

Tries to find a simple path from the vertex V1 to the vertex V2 of the digraph G Returns the path as a list
[V1, ..., V2] of vertices, or f al se if no simple path from V1 to V2 of length one or more exists.

The digraph Gistraversed in a depth-first manner, and the first path found is returned.

get _short_cycle(G V) -> Vertices | fal se
Types:

G =digraph()

V1=V2=vertex()

Vertices = [vertex()]

Tries to find an as short as possible simple cycle through the vertex V of the digraph G. Returns the cycle as alist
[V, ..., V] of vertices, or f al se if no simple cycle through V exists. Note that a loop through V is returned
asthelist[V, V].

get _short _pat h/ 3 isused for finding a simple cycle through V.

get _short_path(G V1, V2) -> Vertices | false
Types:

G =digraph()

V1=V2=vertex()

Vertices = [vertex()]

Triesto find an as short as possible simple path from the vertex V1 to the vertex V2 of the digraph G. Returnsthe path
asalist[V1, ..., V2] of vertices, or f al se if no simple path from V1 to V2 of length one or more exists.

The digraph Gistraversed in a breadth-first manner, and the first path found is returned.

in_degree(G V) -> integer()
Types:
G=digraph()
V =vertex()
Returns the in-degree of the vertex V of the digraph G.

i n_edges(G V) -> Edges
Types:

G =digraph()
V =vertex()

Edges = [edge()]
Returns alist of all edgesincident onV of the digraph G, in some unspecified order.

i n_nei ghbours(G V) -> Vertices
Types:

84 | Ericsson AB. All Rights Reserved.: STDLIB

digraph

G =digraph()
V =vertex()
Vertices = [vertex()]

Returns alist of al in-neighbours of V of the digraph G, in some unspecified order.

info(G -> Infoli st
Types:
G =digraph()
InfoList = [{cyclicity, Cyclicity}, {memory, NoWords}, {protection, Protection}]
Cyclicity = cyclic | acyclic
Protection = protected | private
NoWords=integer() >=0
Returnsalist of { Tag, Val ue} pairsdescribing the digraph G The following pairs are returned:
e {cyclicity, Cyclicity},whereCyclicityiscyclicoracycli c,according to the optionsgiven
tonew.
« {nenory, NoWrds}, where NoWr ds isthe number of words allocated to the et s tables.

« {protection, Protection},whereProtectionisprotectedorprivat e,accordingtotheoptions
givento new.

new() -> digraph()
Equivalenttonew([]) .

new(Type) -> digraph()
Types:
Type=[cyclic | acyclic | private | protected]
Returns an empty digraph with properties according to the optionsin Ty pe:
cyclic
Allow cyclesin the digraph (default).
acyclic
The digraph is to be kept acyclic.
protected
Other processes can read the digraph (default).
private
The digraph can be read and modified by the creating process only.

If an unrecognized type option T isgiven or Type is nhot a proper list, there will be abadar g exception.

no_edges(G -> integer() >= 0
Types:

G =digraph()
Returns the number of edges of the digraph G

no_vertices(G ->integer() >=0
Types.
G =digraph()

Ericsson AB. All Rights Reserved.: STDLIB | 85

digraph

Returns the number of vertices of the digraph G

out _degree(G V) -> integer()
Types:
G =digraph()
V =vertex()
Returns the out-degree of the vertex V of the digraph G

out _edges(G V) -> Edges
Types:
G =digraph()
V =vertex()
Edges = [edge()]
Returns alist of all edges emanating from V of the digraph G, in some unspecified order.

out _nei ghbours(G V) -> Vertices
Types:

G =digraph()
V =vertex()
Vertices = [vertex()]

Returnsalist of all out-neighbours of V of the digraph G, in some unspecified order.

vertex(G V) ->{V, Label} | false
Types:

G =digraph()
V =vertex()
Label =label()

Returns{V, Label } where Label isthe label of the vertex V of the digraph G or f al se if there is no vertex
V of the digraph G.

vertices(G -> Vertices
Types:

G =digraph()
Vertices = [vertex()]

Returns alist of al vertices of the digraph G, in some unspecified order.

See Also
digraph_utils(3), ets(3)

86 | Ericsson AB. All Rights Reserved.: STDLIB

digraph_utils

digraph_utils

Erlang module

Thedi graph_ut i | s module implements some algorithms based on depth-first traversal of directed graphs. See
thedi gr aph module for basic functions on directed graphs.

A directed graph (or just "digraph") isapair (V, E) of afinite set V of vertices and afinite set E of directed edges (or
just "edges"). The set of edges E isasubset of V x V (the Cartesian product of V with itself).

Digraphs can be annotated with additional information. Such information may be attached to the vertices and to the
edges of the digraph. A digraph which has been annotated is called alabeled digraph, and the information attached
to avertex or an edgeiscalled alabel.

Anedgee= (v, w) issaid to emanate from vertex v and to beincident on vertex w. If there is an edge emanating from
v and incident on w, then w is said to be an out-neighbour of v, and v is said to be an in-neighbour of w. A path P
from v[1] to v[K] inadigraph (V, E) isanon-empty sequence v[1], v[2], ..., V[K] of verticesin V such that thereisan
edge (v[i],v[i+1]) in Efor 1 <=i < k. Thelength of the path Pisk-1. Pisacycleif the length of Pisnot zero and v[1]
=v[K]. A loop isacycle of length one. An acyclic digraph is a digraph that has no cycles.

A depth-first traversal of adirected digraph can be viewed as a process that visits all vertices of the digraph. Initially,
all vertices are marked as unvisited. The traversal starts with an arbitrarily chosen vertex, which is marked as visited,
and follows an edge to an unmarked vertex, marking that vertex. The search then proceeds from that vertex in the same
fashion, until there is no edge leading to an unvisited vertex. At that point the process backtracks, and the traversal
continues aslong asthere are unexamined edges. If there remain unvisited verticeswhen all edges from thefirst vertex
have been examined, some hitherto unvisited vertex is chosen, and the process is repeated.

A partial ordering of aset Sisatransitive, antisymmetric and reflexive relation between the objects of S. The problem
of topological sorting isto find atotal ordering of Sthat is a superset of the partial ordering. A digraph G = (V, E) is
equivalent to arelation E on V (we neglect the fact that the version of directed graphs implemented in thedi gr aph
modul e allows multiple edges between vertices). If the digraph has no cycles of length two or more, then the reflexive
and transitive closure of E is a partial ordering.

A subgraph G' of G is adigraph whose vertices and edges form subsets of the vertices and edges of G. G' is maximal
with respect to aproperty Pif all other subgraphs that include the vertices of G' do not have the property P. A strongly
connected component is a maximal subgraph such that there is a path between each pair of vertices. A connected
component is a maximal subgraph such that there is a path between each pair of vertices, considering all edges
undirected. An arborescence is an acyclic digraph with a vertex V, the root, such that there is a unique path from V
to every other vertex of G. A treeis an acyclic non-empty digraph such that there is a unique path between every pair
of vertices, considering all edges undirected.

Exports

arborescence_root (D graph) -> no | {yes, Root}
Types:
Digraph = digraph()
Root = vertex()
Returns{yes, Root} if Root istheroot of the arborescence Di gr aph, no otherwise.

conponent s(Di graph) -> [Conponent]
Types:
Digraph = digraph()

Ericsson AB. All Rights Reserved.: STDLIB | 87

digraph_utils

Component = [vertex()]

Returns alist of connected components. Each component is represented by its vertices. The order of the vertices and
the order of the components are arbitrary. Each vertex of the digraph Di gr aph occurs in exactly one component.

condensati on(Di graph) -> CondensedDi graph
Types:
Digraph = CondensedDigraph = digraph()
Creates a digraph where the vertices are the strongly connected components of Di gr aph as returned by
strong_conponents/ 1. If X and Y are strongly connected components, and there exist verticesx and y in X

and Y respectively such that there is an edge emanating from x and incident on y, then an edge emanating from X
and incident on Y is created.

The created digraph has the same type asDi gr aph. All vertices and edges have the default label [] .

Each and every cycle is included in some strongly connected component, which implies that there aways exists a
topological ordering of the created digraph.

cyclic_strong _conponents(Di graph) -> [StrongConponent]
Types:

Digraph = digraph()

StrongComponent = [vertex()]

Returnsalist of strongly connected components. Each strongly component is represented by its vertices. The order of
the vertices and the order of the components are arbitrary. Only vertices that are included in some cyclein Di gr aph
arereturned, otherwise the returned list is equal to that returned by st r ong_conponent s/ 1.

i s_acyclic(D graph) -> bool ()
Types:
Digraph = digraph()
Returnst r ue if and only if the digraph Di gr aph isacyclic.

i s_arborescence(D graph) -> bool ()
Types:
Digraph = digraph()
Returnst r ue if and only if the digraph Di gr aph isan arborescence.

is_tree(Di graph) -> bool ()
Types:
Digraph = digraph()
Returnst r ue if and only if the digraph Di gr aph isatree.

| oop_vertices(Digraph) -> Vertices
Types:

Digraph = digraph()
Vertices = [vertex()]

Returnsalist of all verticesof Di gr aph that are included in some loop.

88 | Ericsson AB. All Rights Reserved.: STDLIB

digraph_utils

post order (Di graph) -> Vertices
Types:
Digraph = digraph()
Vertices = [vertex()]
Returns all vertices of the digraph Di gr aph. The order is given by a depth-first traversal of the digraph, collecting

visited vertices in postorder. More precisely, the vertices visited while searching from an arbitrarily chosen vertex are
collected in postorder, and al those collected vertices are placed before the subsequently visited vertices.

preorder (Di graph) -> Vertices
Types.

Digraph = digraph()

Vertices = [vertex()]

Returns all vertices of the digraph Di gr aph. The order is given by a depth-first traversal of the digraph, collecting
visited vertices in pre-order.

reachabl e(Vertices, Digraph) -> Vertices
Types:
Digraph = digraph()
Vertices = [vertex()]
Returns an unsorted list of digraph vertices such that for each vertex inthelist, thereisapathin Di gr aph from some

vertex of Ver ti ces to the vertex. In particular, since paths may have length zero, the vertices of Verti ces are
included in the returned list.

reachabl e_nei ghbours(Vertices, Digraph) -> Vertices
Types:
Digraph = digraph()
Vertices = [vertex()]
Returns an unsorted list of digraph vertices such that for each vertex in thelist, thereisapath in Di gr aph of length

one or more from some vertex of Ver t i ces to the vertex. As a consequence, only those verticesof Ver t i ces that
are included in some cycle are returned.

reachi ng(Vertices, Digraph) -> Vertices
Types:
Digraph = digraph()
Vertices = [vertex()]
Returns an unsorted list of digraph vertices such that for each vertex in the list, there is a path from the vertex to

some vertex of Ver ti ces. In particular, since paths may have length zero, the vertices of Ver ti ces areincluded
in the returned list.

reachi ng_nei ghbours(Vertices, Digraph) -> Vertices
Types.

Digraph = digraph()

Vertices = [vertex()]

Ericsson AB. All Rights Reserved.: STDLIB | 89

digraph_utils

Returns an unsorted list of digraph vertices such that for each vertex in the list, there is a path of length one or more
from the vertex to some vertex of Ver t i ces. Asaconsequence, only those verticesof Ver t i ces that areincluded
in some cycle are returned.

strong_conponent s(Di graph) -> [StrongConponent]
Types.

Digraph = digraph()

StrongComponent = [vertex()]

Returns alist of strongly connected components. Each strongly component is represented by its vertices. The order
of the vertices and the order of the components are arbitrary. Each vertex of the digraph Di gr aph occursin exactly
one strong component.

subgraph(Di graph, Vertices [, Options]) -> Subgraph
Types:
Digraph = Subgraph = digraph()
Options = [{type, SubgraphType}, {keep_labels, bool()}]
SubgraphType = inherit | type()
Vertices = [vertex()]

Creates a maximal subgraph of Di gr aph having as vertices those vertices of Di gr aph that are mentioned in
Verti ces.

If thevalue of theoptiont ype isi nheri t , whichisthe default, then thetype of Di gr aph is used for the subgraph
aswell. Otherwise the option value of t ype isused asargument to di gr aph: new/ 1.

If the value of the option keep_| abel s ist r ue, which is the default, then the labels of vertices and edges of
Di gr aph areused for the subgraph aswell. If thevaueisf al se, thenthedefaultlabel, [] , isused for the subgraph's
vertices and edges.

subgraph(Di graph, Vertices) isequivadenttosubgraph(Di graph, Vertices, []).
There will be abadar g exception if any of the arguments are invalid.

topsort (Digraph) -> Vertices | fal se
Types:

Digraph = digraph()
Vertices = [vertex()]

Returns atopological ordering of the vertices of the digraph Di gr aph if such an ordering exists, f al se otherwise.
For each vertex in the returned list, there are no out-neighbours that occur earlier in thelist.

See Also
digraph(3)

90 | Ericsson AB. All Rights Reserved.: STDLIB

epp

epp

Erlang module

The Erlang code preprocessor includes functions which are used by conpi | e to preprocess macros and include files
before the actual parsing takes place.

Exports
open(Fil eNane, IncludePath) -> {ok, Epp} | {error, ErrorDescriptor}

open(Fi |l eNarme, IncludePath, PredefMacros) -> {ok, Epp} | {error,
ErrorDescriptor}

Types:
FileName = atom() | string()
IncludePath = [DirectoryName]
DirectoryName = atom() | string()
PredefMacr os = [{atom(),term()}]
Epp = pid() -- handleto the epp server
ErrorDescriptor =term()

Opens afile for preprocessing.

cl ose(Epp) -> ok
Types.

Epp = pid() -- handle to the epp server
Closes the preprocessing of afile.

parse_erl _fornm(Epp) -> {ok, AbsForn} | {eof, Line} | {error, Errorlnfo}
Types.

Epp = pid()

AbsForm =term()

Line=integer()

ErrorInfo = see separate description below.

Returns the next Erlang form from the opened Erlang sourcefile. Thetuple{ eof , Li ne} isreturned at end-of-file.
Thefirst form corresponds to an implicit attribute-fi | e(Fi |l e, 1) . , whereFi | e isthe name of thefile.

parse_fil e(Fil eNane, | ncl udePat h, Predef Macro) -> {ok,[Form} |
{error, OpenError}

Types:
FileName = atom() | string()
IncludePath = [DirectoryName]
DirectoryName = atom() | string()
PredefMacros = [{atom(),term()}]
Form =term() -- sameasreturned by erl_parse:parse form

Ericsson AB. All Rights Reserved.: STDLIB | 91

epp

Preprocesses and parses an Erlang source file. Note that the tuple { eof , Li ne} returned at end-of-fileisincluded
asa"form".

Error Information

The Er r or | nf o mentioned above is the standard Er r or | nf o structure which is returned from all 1O modules. It
has the following format:

{ErrorLine, Mdule, ErrorDescriptor}

A string which describes the error is obtained with the following call:

Modul e: format _error (ErrorDescri ptor)

See Also
erl_parse(3)

92 | Ericsson AB. All Rights Reserved.: STDLIB

erl_eval

erl_eval

Erlang module

This module provides an interpreter for Erlang expressions. The expressions are in the abstract syntax as returned by
erl _par se, theErlang parser, or acal toi o: parse_er| _exprs/ 2.

Exports
exprs(Expressions, Bindings) -> {val ue, Value, NewBi ndings}

expr s(Expressi ons, Bindings, Local FunctionHandl er) -> {value, Val ue,
NewBi ndi ngs}

exprs(Expressi ons, Bindings, Local Functi onHandl er, Nonl ocal Functi onHandl er) -
> {val ue, Val ue, NewBi ndi ngs}
Types.
Expressions = asreturned by erl_parseor io:parse_erl_exprs/2
Bindings = asreturned by bindings/1
L ocalFunctionHandler = {value, Func} | {eval, Func} | none
NonlocalFunctionHandler = {value, Func} | none
Evaluates Expr essi ons with the set of bindings Bi ndi ngs, where Expr essi ons isa sequence of expressions

(in abstract syntax) of atype which may bereturned by i o: par se_er| _expr s/ 2. See below for an explanation
of how and when to use the arguments Local Funct i onHandl er and Nonl ocal Funct i onHandl er .

Returns{val ue, Val ue, NewBi ndi ngs}
expr (Expression, Bindings) -> { value, Value, NewBindings }

expr (Expressi on, Bindings, Local FunctionHandl er) -> { value, Value,
NewBi ndi ngs }

expr (Expressi on, Bindings, Local FunctionHandl er, Nonl ocal Functi onHandl er) ->
{ val ue, Val ue, NewBi ndi ngs }

expr (Expressi on, Bindings, Local FunctionHandl er, Nonl ocal Functi onHandl er,
ReturnFormat) -> { value, Value, NewBindings } | Value

Types:
Expression = asreturned by io:parse_erl_form/2, for example
Bindings = asreturned by bindings/1
L ocalFunctionHandler = {value, Func} | {eval, Func} | none
NonlocalFunctionHandler = {value, Func} | none
ReturnFormat = value | none
Evaluates Expr essi on with the set of bindings Bi ndi ngs. Expr essi on isan expression (in abstract syntax) of

atypewhich may bereturned by i o: parse_er| _f orni 2. See below for an explanation of how and when to use
theargumentsLocal Funct i onHandl er and Nonl ocal Functi onHandl er.

Ericsson AB. All Rights Reserved.: STDLIB | 93

erl_eval

Returns{val ue, Val ue, NewBi ndi ngs} by default. But if the Ret ur nFor mat isval ue only the Val ue
isreturned.

expr _|ist(ExpressionList, Bindings) -> {Val ueList, NewBindi ngs}

expr _|ist(ExpressionList, Bindings, Local FunctionHandl er) -> {Val uelLi st,
NewBi ndi ngs}

expr _|ist(ExpressionList, Bindings, Local FunctionHandl er,
Nonl ocal Functi onHandl er) -> {Val ueLi st, NewBi ndi ngs}

Evaluates a list of expressions in parallel, using the same initial bindings for each expression. Attempts are made to
merge the bindings returned from each evaluation. This function is useful in the Local Funct i onHandl er. See
below.

Returns{ Val uelLi st, NewBi ndi ngs}.

new_bi ndi ngs() -> Bi ndi ngStruct
Returns an empty binding structure.

bi ndi ngs(Bi ndi ngStruct) -> Bi ndi ngs
Returnsthe list of bindings contained in the binding structure.

bi ndi ng(Narme, Bi ndi ngStruct) -> Bi ndi ng
Returns the binding of Nare in Bi ndi ngSt r uct .

add_bi ndi ng(Nane, Val ue, Bindings) -> BindingStruct
Addsthebinding Narme = Val ue to Bi ndi ngs. Returns an updated binding structure.

del _bi ndi ng(Nane, Bi ndi ngs) -> Bi ndi ngStruct
Removes the binding of Nane in Bi ndi ngs. Returns an updated binding structure.

Local Function Handler

During evaluation of a function, no calls can be made to local functions. An undefined function error would be
generated. However, the optional argument Local Funct i onHandl er may be used to define a function which is
called when thereisacall to alocal function. The argument can have the following formats:

{val ue, Func}
This defines alocal function handler which is called with:

Func(Nane, Argunents)

Nane is the name of the local function (an atom) and Ar gunent s is alist of the evaluated arguments. The
function handler returnsthevalue of thelocal function. Inthiscase, itisnot possibleto accessthe current bindings.
To signa an error, the function handler just callsexi t / 1 with asuitable exit value.

94 | Ericsson AB. All Rights Reserved.: STDLIB

erl_eval

{eval , Func}
This defines alocal function handler which is called with:

Func(Nanme, Argunents, Bindings)

Nane is the name of the local function (an atom), Ar gunent s is alist of the unevaluated arguments, and
Bi ndi ngs arethe current variable bindings. The function handler returns:

{val ue, Val ue, NewBi ndi ngs}

Val ue isthe value of thelocal function and NewBi ndi ngs are the updated variable bindings. In this case, the
function handler must itself evaluate all the function arguments and manage the bindings. To signal an error, the
function handler just callsexi t / 1 with a suitable exit value.

none
Thereisno local function handler.

Non-local Function Handler

The optional argument Nonl ocal Functi onHandl er may be used to define a function which is caled in the
following cases. a functional object (fun) is called; a built-in function is called; a function is called using the M:F
syntax, where M and F are atoms or expressions; an operator Op/A iscalled (thisis handled as a call to the function
erl ang: Op/ A). Exceptions are callsto er | ang: appl y/ 2, 3; neither of the function handlers will be called for
such calls. The argument can have the following formats:

{val ue, Func}
This defines an nonlocal function handler which is called with:

Func(FuncSpec, Argunents)

Func Spec isthe name of the function on the form { Modul e, Functi on} or afun, and Argunent s isa
list of the evaluated arguments. The function handler returns the value of the function. To signal an error, the
function handler just callsexi t / 1 with a suitable exit value.

none

There is no nonlocal function handler.

Ericsson AB. All Rights Reserved.: STDLIB | 95

erl_eval

Note:

For cals such as erl ang: appl y(Fun, Args) or erl ang: appl y(Modul e, Functi on,
Args) the cal of the non-local function handler corresponding to the cal to erl ang: appl y/ 2, 3
itself--Func({erl ang, apply}, [Fun, Args]) or Func({erlang, apply}, [Module,
Function, Args])--will never take place. The non-local function handler will however be called with

the evaluated arguments of the call to er | ang: appl y/ 2, 3: Func(Fun, Args) or Func({Modul e,
Function}, Args) (assumingthat { Modul e, Functi on} isnot{erl ang, apply}).

Calls to functions defined by evaluating fun expressions"fun ... end" are aso hidden from non-local
function handlers.

The nonlocal function handler argument is probably not used as frequently as the local function handler argument. A
possible useisto cal exi t / 1 on callsto functions that for some reason are not allowed to be called.

Bugs
The evaluator is not complete. r ecei ve cannot be handled properly.
Any undocumented functionsiner | _eval should not be used.

96 | Ericsson AB. All Rights Reserved.: STDLIB

erl_expand_records

erl_expand_records

Erlang module

Exports

nodul e(AbsFor ns, Conpil eQptions) -> AbsForns
Types:
AbsForms = [term()]
CompileOptions = [term()]
Expands all recordsin amodule. The returned module has no references to records, neither attributes nor code.

See Also
The abstract format documentation in ERTS User's Guide

Ericsson AB. All Rights Reserved.: STDLIB | 97

erl_id_trans

erl_id_trans

Erlang module

This module performs an identity parse transformation of Erlang code. It isincluded as an example for users who may
wish to writetheir own parsetransformers. If theoption { par se_t r ansf or m Modul e} ispassed to the compiler,
auser written function par se_t r ansf or m 2 iscalled by the compiler before the code is checked for errors.

Exports

parse_transform Forns, Options) -> Forns
Types:
Forms=[erlang_form()]
Options = [compiler_options()]
Performs an identity transformation on Erlang forms, as an example.

Parse Transformations

Parse transformations are used if a programmer wants to use Erlang syntax, but with different semantics. The original
Erlang code is then transformed into other Erlang code.

Note:

Programmers are strongly advised not to engage in parse transformations and no support is offered for problems
encountered.

See Also
erl_parse(3), compile(3).

98 | Ericsson AB. All Rights Reserved.: STDLIB

erl_internal

erl_internal

Erlang module

This module defines Erlang BIFs, guard tests and operators. This module is only of interest to programmers who
mani pulate Erlang code.

Exports

bi f (Nane, Arity) -> bool ()
Types:
Name = atom()
Arity = integer()
Returnst r ue if Name/ Ar i t y isan Erlang BIF whichisautomatically recognized by the compiler, otherwisef al se.

guard_bi f (Nane, Arity) -> bool ()
Types:
Name = atom()
Arity = integer ()
Returnst r ue if Nanme/ Ari t y isan Erlang BIF which isallowed in guards, otherwisef al se.

type_test(Name, Arity) -> bool ()
Types:
Name = atom()
Arity = integer()
Returnst r ue if Nane/ Ari t y isavalid Erlang type test, otherwisef al se.

arith_op(OpName, Arity) -> bool ()
Types:
OpName = atom()
Arity = integer()
Returnst r ue if OpNare/ Ari t y isan arithmetic operator, otherwisef al se.

bool _op(OpNane, Arity) -> bool ()
Types:
OpName = atom()
Arity = integer ()
Returnst r ue if OpNane/ Ari t y isaBoolean operator, otherwisef al se.

conp_op(OpNane, Arity) -> bool ()
Types:

OpName = atom()

Arity = integer()

Ericsson AB. All Rights Reserved.: STDLIB | 99

erl_internal

Returnst r ue if OpNane/ Ari t y isacomparison operator, otherwisef al se.

list_op(QoNane, Arity) -> bool ()
Types:
OpName = atom()
Arity = integer()
Returnst r ue if OpNare/ Ari ty isalist operator, otherwisef al se.

send_op(OpName, Arity) -> bool ()
Types:
OpName = atom()
Arity = integer ()
Returnst r ue if OpNane/ Ari t y isasend operator, otherwisef al se.

op_type(OpNane, Arity) -> Type
Types:

OpName = atom()

Arity = integer()

Type=arith | bool | comp | list | send

Returns the Type of operator that OpNane/ Ari t y belongs to, or generates af unct i on_cl ause error if it is
not an operator at all.

100 | Ericsson AB. All Rights Reserved.: STDLIB

erl_lint

erl_lint

Erlang module

This module is used to check Erlang code for illegal syntax and other bugs. It also warns against coding practices
which are not recommended.

The errors detected include:

» redefined and undefined functions

* unbound and unsafe variables

* illega record usage.

Warnings include:

e unused functions and imports

e unused variables

e variablesimported into matches

* variablesexported fromi f /case/r ecei ve

e variables shadowed in lambdas and list comprehensions.

Some of the warnings are optional, and can be turned on by giving the appropriate option, described below.

The functions in this module are invoked automatically by the Erlang compiler and there is no reason to invoke these
functions separately unless you have written your own Erlang compiler.

Exports
nmodul e(AbsForns) -> {ok, Warnings} | {error, Errors, Vr ni ngs}
nmodul e(AbsForns, Fil eNane) -> {ok,Warnings} | {error, Errors, Wr ni ngs}

nmodul e(AbsFornms, Fil eNane, Conpil eOptions) -> {ok, Warni ngs} |
{error, Errors, Var ni ngs}

Types:
AbsForms = [term()]
FileName = FileName2 = atom() | string()
Warnings= Errors=[{Filename2,[ErrorInfo]}]
Errorlnfo = see separate description below.
CompileOptions = [term()]
This function checks al the formsin amodule for errors. It returns:
{ ok, War ni ngs}
There were no errors in the module.
{error, Errors, Wr ni ngs}
There were errors in the module.

Since this module is of interest only to the maintainers of the compiler, and to avoid having the same description in
two places to avoid the usual maintenance nightmare, the elements of Opt i ons that control the warnings are only
described in compile(3).

Ericsson AB. All Rights Reserved.: STDLIB | 101

erl_lint

The AbsFor ns of amodule which comes from afile that is read through epp, the Erlang pre-processor, can come
frommany files. Thismeansthat any referencesto errorsmust includethefile name (seeepp(3), or parser erl_parse(3)).
The warnings and errors returned have the following format:

[{FileNanme2, [Errorlnfo]}]

The errors and warnings are listed in the order in which they are encountered in the forms. This means that the errors
from one file may be split into different entriesin the list of errors.

i s_guard_test(Expr) -> bool ()
Types:
Expr =term()

This function tests if Expr is alegal guard test. Expr is an Erlang term representing the abstract form for the
expression. er | _par se: par se_expr s(Tokens) can be used to generate alist of Expr .

format _error (ErrorDescriptor) -> Chars
Types:

ErrorDescriptor = errordesc()

Chars=[char() | Charg|

Takes an Err or Descri pt or and returns a string which describes the error or warning. This function is usually
called implicitly when processing an Er r or | nf o structure (see below).

Error Information

The Er r or | nf o mentioned above is the standard Er r or | nf o structure which is returned from all 1O modules. It
has the following format:

{ErrorLine, Mdule, ErrorDescriptor}

A string which describes the error is obtained with the following call:

Modul e: format _error (ErrorDescri ptor)

See Also
erl_parse(3), epp(3)

102 | Ericsson AB. All Rights Reserved.: STDLIB

erl_parse

erl_parse

Erlang module

This module is the basic Erlang parser which converts tokens into the abstract form of either forms (i.e., top-level
constructs), expressions, or terms. The Abstract Format is described in the ERTS User's Guide. Note that atoken list
must end with the dot token in order to be acceptable to the parse functions (see erl_scan(3)).

Exports

parse_form Tokens) -> {ok, AbsForn} | {error, Errorlnfo}
Types:

Tokens=[Token]

Token ={Tag,Line} | {Tag,Lineterm()}

Tag = atom()

AbsForm =term()

Errorinfo = see section Error Information below.
Thisfunction parses Tokens asif it wereaform. It returns:
{ok, AbsForn}

The parsing was successful. Abs For mis the abstract form of the parsed form.
{error, Errorlnfo}

An error occurred.

par se_exprs(Tokens) -> {ok, Expr_list} | {error, Errorlnfo}
Types:

Tokens=[Token]

Token ={Tag,Line} | {Tag,Lineterm()}

Tag = atom()

Expr_list = [AbsExpr]

AbsExpr =term()

Errorlnfo = see section Error Information below.
Thisfunction parses Tokens asif it were alist of expressions. It returns:
{ok, Expr_list}

The parsing was successful. Expr _| i st isalist of the abstract forms of the parsed expressions.
{error, Errorlnfo}

An error occurred.

parse_term Tokens) -> {ok, Tern} | {error, Errorlnfo}
Types.

Tokens=[Token]

Token ={Tag,Line} | {Tag,Lineterm()}

Tag = atom()

Ericsson AB. All Rights Reserved.: STDLIB | 103

erl_parse

Term =term()
Errorlnfo = see section Error Information below.

Thisfunction parses Tokens asif it were aterm. It returns:
{ok, Terni

The parsing was successful. Ter mis the Erlang term corresponding to the token list.
{error, Errorlnfo}

An error occurred.

format _error (ErrorDescriptor) -> Chars
Types:

ErrorDescriptor = errordesc()

Chars=[char() | Charg|

Usesan Err or Descr i pt or andreturnsastring which describesthe error. Thisfunctionisusually called implicitly
when an Er r or | nf o structure is processed (see below).

t okens(AbsTerm -> Tokens

t okens(AbsTerm MreTokens) -> Tokens
Types:

Tokens=MoreTokens = [Token]

Token ={Tag,Line} | {Tag,Lineterm()}

Tag = atom()

AbsTerm =term()

Errorinfo = see section Error Information below.

This function generates a list of tokens representing the abstract form AbsTer mof an expression. Optionaly, it
appends Mor et okens.

nornal i se(AbsTern) -> Data
Types:
AbsTerm = Data = term()

Converts the abstract form Abs Ter mof aterm into a conventional Erlang data structure (i.e., the term itself). This
istheinverse of abstract/ 1.

abstract (Data) -> AbsTerm
Types.
Data= AbsTerm =term()

Converts the Erlang data structure Dat a into an abstract form of type AbsTerm This is the inverse of
nor mal i se/ 1.

Error Information

The Er r or | nf o mentioned above is the standard Er r or | nf o structure which is returned from all 1O modules. It
has the format:

104 | Ericsson AB. All Rights Reserved.: STDLIB

erl_parse

{ErrorLine, Mdule, ErrorDescriptor}

A string which describes the error is obtained with the following call:

Mbdul e: format _error (ErrorDescriptor)

See Also
i0(3), erl_scan(3), ERTS User's Guide

Ericsson AB. All Rights Reserved.: STDLIB | 105

erl_pp

erl_pp

Erlang module

The functions in this module are used to generate aesthetically attractive representations of abstract forms, which are
suitable for printing. All functions return (possibly deep) lists of characters and generate an error if the formiswrong.

All functions can have an optiona argument which specifies a hook that is called if an attempt is made to print an
unknown form.

Exports
form Form -> DeepCharlLi st

form Form HookFunction) -> DeepCharlLi st
Types:
Form =term()
Hook Function = see separate description below.
DeepCharList = [char()|DeepCharList]
Pretty prints a For mwhich is an abstract form of atype whichisreturned by er | _par se: parse_form

attribute(Attribute) -> DeepCharLi st

attribute(Attribute, HookFunction) -> DeepCharlLi st
Types.

Attribute =term()

Hook Function = see separ ate description below.

DeepCharList = [char()|DeepCharList]
Thesame asf or m but only for the attribute At t r i but e.

function(Function) -> DeepCharlLi st

function(Function, HookFunction) -> DeepCharLi st
Types:

Function =term()

Hook Function = see separ ate description below.

DeepCharList = [char()|DeepCharList]
The same asf or m but only for the function Funct i on.

guard(Quard) -> DeepCharlLi st
guard(Quard, HookFunction) -> DeepCharlLi st
Types:

Form =term()
Hook Function = see separate description below.

106 | Ericsson AB. All Rights Reserved.: STDLIB

erl_pp

DeepCharList = [char ()|DeepCharList]
Thesame asf or m but only for the guard test Guar d.

expr s(Expressi ons) -> DeepCharlLi st
expr s(Expressi ons, HookFunction) -> DeepCharLi st

exprs(Expressions, Indent, HookFunction) -> DeepCharlLi st
Types.

Expressions = term()

Hook Function = see separ ate description below.

Indent = integer()

DeepCharList = [char()|DeepCharList]
The same asf or m but only for the sequence of expressionsin Expr essi ons.

expr (Expression) -> DeepCharlLi st
expr (Expressi on, HookFunction) -> DeepCharlLi st
expr (Expression, Indent, HookFunction) -> DeepCharLi st

expr (Expression, Indent, Precedence, HookFunction) ->-> DeepCharlLi st
Types.

Expression = term()

Hook Function = see separ ate description below.

Indent = integer()

Precedence =

DeepCharList = [char ()|DeepCharList]
This function prints one expression. It is useful for implementing hooks (see below).

Unknown Expression Hooks

The optional argument Hook Funct i on, shown in the functions described above, defines afunction which is called
when an unknown form occurs where there should be a valid expression. It can have the following formats:

Functi on
The hook function is called by:

Funct i on(Expr,
Currentl ndentati on,
Current Precedence,
HookFunct i on)

none
There is no hook function

The called hook function should return a (possibly deep) list of characters. expr / 4 isuseful in a hook.

Ericsson AB. All Rights Reserved.: STDLIB | 107

erl_pp

If Current | ndent at i on isnegative, there will be no line breaks and only a spaceis used as a separator.

Bugs

It should be possible to have hook functions for unknown forms at places other than expressions.

See Also
i0(3), erl_parse(3), erl_eval(3)

108 | Ericsson AB. All Rights Reserved.: STDLIB

erl_scan

erl_scan

Erlang module

This module contains functions for tokenizing characters into Erlang tokens.

DATA TYPES

category() = atom()

colum() = integer() >0
line() = integer()
location() = 1line() | {line(), colum()}

reserved_word_fun() -> fun(aton()) -> bool ()

set_attribute fun() -> fun(tern()) -> term()

synbol () = atom() | float() | integer() | string()

token() = {category(), attributes()} | {category(), attributes(), synbol ()}
attributes() =1line() | list() | tuple()

Exports
string(String) -> Return
string(String, StartlLocation) -> Return

string(String, StartlLocation, Options) -> Return
Types:
String = string()
Return = {ok, Tokens, EndL ocation} | Error
Tokens = [token()]
Error ={error, Errorinfo, EndL ocation}
StartL ocation = EndL ocation = location()
Options= Option | [Option]
Option ={reserved_word_fun,reserved_word_fun()} | return_comments| return_white spaces|return |
text

Takesthelist of characters St r i ng and tries to scan (tokenize) them. Returns{ ok, Tokens, EndLocati on},
where Tokens are the Erlang tokensfrom St r i ng. EndLocat i on isthefirst location after the last token.

{error, Errorlnfo, EndLocation} isreturnedif anerror occurs. EndLocat i on isthefirst location after
the erroneous token.

string(String) isequivdenttostring(String, 1),andstring(String, StartLocation) is
equivalenttostri ng(String, StartLocation, []).

St art Locat i onindicatestheinitial locationwhen scanning starts. If St art Locat i onisalineattri but es()

aswell asEndLocat i onandErr or Locat i on will belines. If St art Locat i on isapair of alineand acolumn
attri but es() takestheform of an opague compound datatype, and EndLocat i on and Er r or Locat i on will
be pairs of aline and a column. The token attributes contain information about the column and the line where the
token begins, as well as the text of the token (if thet ext option is given), all of which can be accessed by calling
token_info/1,2 or attributes_info/1,2.

Ericsson AB. All Rights Reserved.: STDLIB | 109

erl_scan

A token isatuple containing information about syntactic category, the token attributes, and the actual terminal symbol.
For punctuation characters (e.g. ; , |) and reserved words, the category and the symbol coincide, and the token is
represented by a two-tuple. Three-tuples have one of the following forms: {at om I nfo, atonm()},{char,

Info, integer()},{coment, Info, string()},{float, Info, float()}, {integer,

Info, integer()},{var, Info, atom)},and{white_space, Info, string()}.

Thevalid options are;
{reserved_word _fun, reserved word fun()}

A callback function that is called when the scanner has found an unquoted atom. If the function returnst r ue, the
unquoted atom itself will be the category of the token; if the function returnsf al se, at omwill be the category
of the unquoted atom.

return_conments
Return comment tokens.
return_white_spaces

Return white space tokens. By convention, if there is a newline character, it is always the first character of the
text (there cannot be more than one newline in a white space token).

return
Shortfor[return_comrents, return_white_spaces].
t ext
Include the token's text in the token attributes. The text is the part of the input corresponding to the token.

t okens(Conti nuati on, CharSpec, StartlLocation) -> Return

t okens(Conti nuati on, CharSpec, StartlLocation, Options) -> Return
Types:

Continuation =[] | Continuationl

Return = {done, Result, L eftOver Chars} | {more, Continuation1}

L eftOver Chars = Char Spec

Char Spec = string() | eof

Continuationl = tuple()

Result = {ok, Tokens, EndL ocation} | {eof, EndL ocation} | Error

Tokens = [token()]

Error ={error, Errorinfo, EndL ocation}

StartL ocation = EndL ocation = location()

Options= Option | [Option]

Option = {reserved_word_fun,reserved_word_fun()} | return_comments| return_white spaces|return |

text

Thisisthere-entrant scanner which scans charactersuntil adot ('.' followed by awhite space) or eof hasbeen reached.
It returns:

{done, Result, LeftOverChars}
This return indicates that there is sufficient input datato get aresult. Resul t is:
{ok, Tokens, EndLocati on}

The scanning was successful. Tokens isthelist of tokensincluding dot.

110 | Ericsson AB. All Rights Reserved.: STDLIB

erl_scan

{eof , EndLocati on}
End of file was encountered before any more tokens.
{error, Errorinfo, EndLocation}

An error occurred. Left Over Chars is the remaining characters of the input data, starting from
EndLocat i on.

{nmore, Continuationl}

More data is required for building aterm. Cont i nuat i onl must be passed in a new call tot okens/ 3, 4
when more datais available.

The Char Spec eof signalsend of file. Lef t Over Char s will then take the value eof aswell.

t okens(Conti nuati on, CharSpec, StartlLocation) isequivalent totokens(Conti nuation,
Char Spec, StartlLocation, []).

See string/3 for a description of the various options.

reserved_word(Atom) -> bool ()
Types:
Atom = atom()

Returnst r ue if At omisan Erlang reserved word, otherwisef al se.

t oken_i nf o(Token) -> Tokenl nfo
Types.
Token = token()
Tokenlnfo=[TokenlnfoTuple]
TokenlnfoTuple ={Tokenltem, Info}
Tokenltem = atom()
Info=term()
Returnsalist containing information about thetoken Token. Theorder of the Tokenl nf oTupl esisnot defined. The

following Tokenl t ensarereturned: cat egor y, col umm, | engt h,l i ne,synbol ,andt ext . Seetoken_info/2
for information about specific Tokenl nf oTupl es.

Notethat if t oken_i nf o(Token, Tokenltemnm returnsundefi ned for some Tokenl t emin thelist above,
theitem isnot included in Tokenl nf o.

t oken_i nf o(Token, TokenltenSpec) -> Tokenl nfo
Types:
Token =token()
TokenltemSpec = Tokenltem | [Tokenltem]
Tokenlnfo = TokenlnfoTuple | undefined | [TokenlnfoT uple]
TokenlnfoTuple={Tokenltem, Info}
Tokenltem = atom()
Info=term()
Returns a list containing information about the token Token. If Tokenl t enSpec is asingle Tokenl t em the

returned value is the corresponding Tokenl nf oTupl e, or undefi ned if the Tokenl t em has no vaue. If
Tokenl t enSpec isalist of Tokenl t em the result is a list of Tokenl nf oTupl e. The Tokenl nf oTupl es

Ericsson AB. All Rights Reserved.: STDLIB | 111

erl_scan

will appear with the corresponding Tokenl t ens in the same order as the Tokenl t ens appeared in the list of
Tokenl t ens. Tokenl t emrswith no value are not included in thelist of Tokenl nf oTupl e.

Thefollowing Tokenl nf oTupl eswith corresponding Tokenl t ensare vaid:
{category, category()}
The category of the token.
{col um, colum()}
The column where the token begins.
{length, integer() > 0}
The length of the token's text.
{l'ine, line()}
The line where the token begins.
{location, location()}
The line and column where the token begins, or just the line if the column unknown.
{synbol, synbol ()}
The token's symbol.
{text, string()}
The token's text.

attributes_info(Attributes) -> Attributeslinfo
Types:
Attributes = attributes()
Attributesl nfo = [Attributel nfoTuple]
Attributel nfoTuple = {Attributeltem, I nfo}
Attributeltem = atom()
Info=term()
Returns a list containing information about the token attributes Attri butes. The order of the

At tribut el nfoTupl esis not defined. The following At t ri but el t ens are returned: col um, | engt h,
i ne,andt ext . Seeattributes_info/2 for information about specific At t ri but el nf oTupl es.

Notethatifattri but es_i nf o(Token, Attri buteltem returnsundefi nedforsomeAttri buteltem
inthelist above, theitemisnot includedin At t ri but esl nf o.

attributes info(Attributes, AttributeltenSpec) -> Attributeslinfo
Types:

Attributes = attributes()

AttributeltemSpec = Attributeltem | [Attributel tem]

Attributesinfo = Attributel nfoTuple | undefined | [Attributel nfoTuple]

AttributelnfoTuple = {Attributeltem, I nfo}

Attributeltem = atom()

Info=term()

Returns a list containing information about the token attributes At t ri but es. If Attri butelt enSpec isa
single At t ri but el t em the returned value isthe corresponding At t r i but el nf oTupl e, or undef i ned if the

112 | Ericsson AB. All Rights Reserved.: STDLIB

erl_scan

Attributeltemhasnovaue If AttributeltenBpec isalist of Attributeltem theresultisalist of
Attributel nfoTupl e.TheAttri butel nfoTupl eswill appear with the corresponding At t ri but el t ens
inthesameorder asthe At t ri but el t ensappearedinthelistof Att ri but el t ens. Attri but el t enswithno
value are not included inthelist of At t ri but el nf oTupl e.

Thefollowing At t ri but el nf oTupl eswith corresponding At t ri but el t ensarevalid:
{col um, colum()}

The column where the token begins.
{length, integer() > 0}

The length of the token's text.
{line, line()}

The line where the token begins.
{location, location()}

The line and column where the token begins, or just the line if the column unknown.
{text, string()}

The token's text.

set_attribute(Attributeltem Attributes, SetAttributeFun) -> Attributeslnfo
Types.

Attributeltem =line

Attributes = attributes()

SetAttributeFun = set_attribute_fun()

Setsthe value of the |l i ne attribute of the token attributes At t r i but es.

The Set At t ri but eFun iscalled with the value of thel i ne attribute, and is to return the new value of thel i ne
attribute.

format _error (ErrorDescriptor) -> string()
Types:
ErrorDescriptor = errordesc()

Takes an Err or Descri pt or and returns a string which describes the error or warning. This function is usually
called implicitly when processing an Er r or | nf o structure (see below).

Error Information

The Er r or | nf o mentioned above is the standard Er r or | nf o structure which is returned from all 1O modules. It
has the following format:

{ErrorLocati on, Mdule, ErrorDescriptor}

A string which describes the error is obtained with the following call:

Modul e: format _error (ErrorDescriptor)

Ericsson AB. All Rights Reserved.: STDLIB | 113

erl_scan

Notes

The continuation of the first call to the re-entrant input functions must be [] . Refer to Armstrong, Virding and
Williams, ‘Concurrent Programming in Erlang’, Chapter 13, for a complete description of how the re-entrant input
scheme works.

See Also
i0(3), erl_parse(3)

114 | Ericsson AB. All Rights Reserved.: STDLIB

erl_tar

erl_tar

Erlang module

Theer| _tar modulearchives and extract filesto and from atar file. The tar file format is the POSIX extended tar
file format specified in IEEE Std 1003.1 and ISO/IEC 9945-1. That is the same format as used by t ar program on
Solaris, but is not the same as used by the GNU tar program.

By convention, the name of atar file should end in". t ar ". To abide to the convention, you'll needtoadd ". t ar
yourself to the name.

Tar files can be created in one operation using the create/2 or create/3 function.
Alternatively, for more control, the open, add/3,4, and close/1 functions can be used.

To extract al files from atar file, use the extract/1 function. To extract only some files or to be able to specify some
more options, use the extract/2 function.

To return alist of thefilesin atar file, use either the table/1 or table/2 function. To print alist of files to the Erlang
shell, use either the t/1 or tt/1 function.

To convert an error term returned from one of the functions above to a readable message, use the format_error/1
function.

LIMITATIONS

For maximum compatibility, it is safe to archive files with names up to 100 characters in length. Such tar files can
generally be extracted by any t ar program.

If filenames exceed 100 characters in length, the resulting tar file can only be correctly extracted by a POSIX-
compatiblet ar program (such as Solarist ar), not by GNU tar.

File have longer names than 256 bytes cannot be stored at al.

The filename of the file a symbolic link pointsis always limited to 100 characters.

Exports

add(Tar Descri ptor, Filenane, Options) -> RetVal ue
Types.
TarDescriptor =term()
Filename = filename()
Options = [Option]
Option = dereferencelver bose
RetValue = ok|{error {Filename,Reason}}
Reason = term()
Theadd/ 3 function adds afileto atar file that has been opened for writing by open/1.
der ef erence

By default, symbolic links will be stored as symbolic links in the tar file. Use the der ef er ence option to
override the default and store the file that the symbalic link pointsto into the tar file.

ver bose
Print an informational message about the file being added.

Ericsson AB. All Rights Reserved.: STDLIB | 115

erl_tar

add(Tar Descri ptor, FilenaneOrBin, Namel nArchive, Options) -> RetVal ue
Types:

TarDescriptor =term()

FilenameOrBin = Filename()|binary()

Filename = filename()()

Namel nAr chive = filename()

Options = [Option]

Option = dereferencelver bose

RetValue = ok|{error {Filename,Reason}}

Reason =term()

The add/ 4 function adds afile to atar file that has been opened for writing by open/1. It accepts the same options
as add/3.

Nanel nAr chi ve is the name under which the file will be stored in the tar file. That is the name that the file will
get when it will be extracted from the tar file.

cl ose(Tar Descri ptor)
Types:
TarDescriptor = term()
Thecl ose/ 1 function closes atar file opened by open/1.

create(Nanme, FilelList) ->RetVal ue
Types:
Name = filename()
FileList = [Filenamel{Namel nAr chive, binary()},{Namel nAr chive, Filename}]
Filename = filename()
Namel nAr chive = filename()
RetValue = ok|{error ,{NameReason}} <V>Reason = term()

The cr eat e/ 2 function creates a tar file and archives the files whose names are given in Fi | eLi st intoit. The
files may either be read from disk or given as binaries.

create(Nane, FileList, OptionList)
Types:
Name = filename()
FileList = [Filenamel{Namel nAr chive, binary()},{Namel nAr chive, Filename}]
Filename = filename()
Namel nAr chive = filename()
OptionList = [Option]
Option = compr essed|cook ed|der efer encelver bose
RetValue = ok|{error {Name,Reason}} <V>Reason = term()

The cr eat e/ 3 function creates a tar file and archives the files whose names are given in Fi | eLi st into it. The
files may either be read from disk or given as binaries.

The optionsin Opt i onLi st modify the defaults as follows.

116 | Ericsson AB. All Rights Reserved.: STDLIB

erl_tar

conpr essed

Theentiretar filewill be compressed, asif it hasbeen runthroughthegzi p program. To abideto the convention
that a compressed tar file should end in". tar. gz" or ". t gz", you'll need to add the appropriate extension
yourself.

cooked

By default, the open/ 2 function will open thetar filein r awmode, which is faster but does not allow aremote
(erlang) file server to be used. Adding cooked to the mode list will override the default and open the tar file
without the r aw option.

der ef erence

By default, symbolic links will be stored as symbolic links in the tar file. Use the der ef er ence option to
override the default and store the file that the symbolic link pointsto into thetar file.

ver bose

Print an informational message about each file being added.

extract (Nane) -> RetVal ue
Types.
Name = filename()
RetValue = ok|{error ,{NameReason}}
Reason =term()

Theext ract/ 1 function extracts al files from atar archive.
If the Nanme argument isgiven as"{ bi nary, Bi nar y}", the contents of the binary is assumed to be atar archive.

If the Name argument is given as "{fil e, Fd}", Fd is assumed to be a file descriptor returned from the
fil e: open/ 2 function.

Otherwise, Nanme should be afilename.

extract (Name, OptionList)
Types:
Name = filename() | {binary,Binary} | {file,Fd}
Binary = binary()
Fd = file_descriptor ()
OptionList = [Option]
Option = {cwd,Cwd}{files,FileList}|keep_old_filesjverboselmemory
Cwd = [dirname()]
FileList = [filename()]
RetValue = ok|M emoryRetValuel{error {Name Reason}}
MemoryRetValue = {ok, [{Namel nArchivebinary()}]}
Namel nAr chive = filename()
Reason = term()

Theext ract/ 2 function extractsfiles from atar archive.
If the Name argument isgiven as"{ bi nary, Bi nary}", the contents of the binary is assumed to be atar archive.

If the Name argument is given as "{fil e, Fd}", Fd is assumed to be a file descriptor returned from the
fil e:open/ 2 function.

Ericsson AB. All Rights Reserved.: STDLIB | 117

erl_tar

Otherwise, Nane should be afilename.
The following options modify the defaults for the extraction as follows.
{cwd, Ond}

Fileswith relative filenameswill by default be extracted to the current working directory. Giventhe{ cwd, Cwd}
option, theext r act / 2 function will extract into the directory Owd instead of to the current working directory.

{files, FileList}

By default, all files will be extracted from the tar file. Giventhe {fi | es, Fi | es} option, the ext ract/ 2
function will only extract the files whose names areincluded in Fi | eLi st .

conpr essed

Given the conpr essed option, the ext r act / 2 function will uncompress the file while extracting If the tar
fileis not actually compressed, the conpr essed will effectively be ignored.

cooked

By default, the open/ 2 function will open thetar filein r awmode, which is faster but does not allow aremote
(erlang) file server to be used. Adding cooked to the mode list will override the default and open the tar file
without the r aw option.

menory

Instead of extracting to a directory, the memory option will give the result as alist of tuples{ Filename, Binary},
where Binary is abinary containing the extracted data of the file named Filename in the tar file.

keep_old files

By default, al existing files with the same name as file in the tar file will be overwritten Given the
keep_ol d fil es option, theext ract/ 2 function will not overwrite any existing files.

ver bose

Print an informational message as each file is being extracted.

format _error(Reason) -> string()
Types:
Reason =term()

Thef or mat _error/ 1 converts an error reason term to a human-readable error message string.

open(Nanme, OpenModelist) -> RetVal ue
Types:
Name = filename()
OpenModeL ist = [OpenM od€]
M ode = writelcompr essed|cooked
RetValue = {ok,TarDescriptor}|{error {Name,Reason}}
TarDescriptor =term()
Reason =term()

Theopen/ 2 function creates atar file for writing. (Any existing file with the same name will be truncated.)

By convention, the name of atar file should endin". t ar ". To abide to the convention, you'll needtoadd ". t ar "
yourself to the name.

Except for thewr i t e atom the following atoms may be added to OpenModelLi st :

118 | Ericsson AB. All Rights Reserved.: STDLIB

erl_tar

conpr essed

Theentiretar filewill be compressed, asif it hasbeen runthroughthegzi p program. To abideto the convention
that a compressed tar file should end in". tar. gz" or ". t gz", you'll need to add the appropriate extension
yourself.

cooked

By default, the open/ 2 function will open thetar filein r awmode, which is faster but does not allow aremote
(erlang) file server to be used. Adding cooked to the mode list will override the default and open the tar file
without the r aw option.

Use the add/3,4 functions to add one file at the time into an opened tar file. When you are finished adding files, use
the close function to close the tar file.

Warning:

The Tar Descri pt or term is not a file descriptor. You should not rely on the specific contents of the
Tar Descri pt or term, asit may changein future versions as morefeaturesareaddedtotheer | _t ar module.

tabl e(Nanme) -> Ret Val ue

Types.
Name = filename()
RetValue = {ok,[string()]}{error {Name Reason}}
Reason =term()

Thet abl e/ 1 function retrieves the names of al filesin the tar file Nane.

t abl e(Nanme, Options)
Types.
Name = filename()

Thet abl e/ 2 function retrieves the names of al filesin the tar file Nane.

t (Nane)
Types:
Name = filename()
Thet / 1 function prints the names of all filesin the tar file Nane to the Erlang shell. (Similarto"t ar t".)

tt (Nanme)
Types:
Name = filename()

Thett/ 1 function prints names and information about al files in the tar file Nane to the Erlang shell. (Similar to
"tar tv")

Ericsson AB. All Rights Reserved.: STDLIB | 119

ets

ets

Erlang module

This module is an interface to the Erlang built-in term storage BIFs. These provide the ability to store very large
guantities of data in an Erlang runtime system, and to have constant access time to the data. (In the case of
ordered_set, seebelow, accesstimeis proportional to the logarithm of the number of objects stored).

Data is organized as a set of dynamic tables, which can store tuples. Each table is created by a process. When the
process terminates, the table is automatically destroyed. Every table has access rights set at creation.

Tables are divided into four different types, set, ordered_set, bag and duplicate bag. A set or
ordered_set table can only have one object associated with each key. A bag or dupl i cat e_bag can have
many objects associated with each key.

The number of tables stored at one Erlang node is limited. The current default limit is approximately 1400 tables.
The upper limit can be increased by setting the environment variable ERL_ MAX_ETS_TABLES before starting the
Erlang runtime system (i.e. with the- env optionto er | /wer |). The actua limit may be dlightly higher than the one
specified, but never lower.

Notethat thereisno automatic garbage collection for tables. Even if there are no referencesto atable from any process,
it will not automatically be destroyed unless the owner process terminates. It can be destroyed explicitly by using
del et e/ 1. The default owner is the process that created the table. Table ownership can be transferred at process
termination by using the heir option or explicitly by calling give_away/3.

Some implementation details:

« Inthe current implementation, every object insert and look-up operation resultsin a copy of the object.

 '"$end_of _tabl e' should not be used as a key since this atom is used to mark the end of the table when
usingfirst/next.

Also worth noting is the subtle difference between matching and comparing equal, which is demonstrated by the
different table types set and or der ed_set . Two Erlang terms nat ch if they are of the same type and have the
same value, so that 1 matches 1, butnot 1. 0 (as1. Oisafl oat () and not ani nt eger ()). Two Erlang terms
compare equal if they either are of the same type and value, or if both are numeric types and extend to the same value,
so that 1 compares equal to both 1 and 1. 0. The or der ed_set works on the Erlang term order and there is no
defined order between ani nt eger () andaf | oat () that extends to the same value, hence the key 1 and the key
1. 0 areregarded asequal in an or der ed_set table.

Failure

In general, the functions below will exit with reason badar g if any argument is of the wrong format, if the table
identifier isinvalid or if the operation is denied due to table access rights (protected or private).

Concurrency

This module provides some limited support for concurrent access. All updates to single objects are guaranteed to
be both atomic and isolated. This means that an updating operation towards a single object will either succeed or
fail completely without any effect at al (atomicy). Nor can any intermediate results of the update be seen by other
processes (isolation). Some functions that update several objects state that they even guarantee atomicy and isolation
for the entire operation. In database terms the isolation level can be seen as "seriadizable”, asif all isolated operations
were carried out serialy, one after the other in a strict order.

No other support is available within ETS that would guarantee consistency between objects. However, the
saf e_fi xt abl e/ 2 function can be used to guarantee that asequenceof f i r st/ 1 andnext / 2 calswill traverse
the table without errors and that each existing object in the table is visited exactly once, even if another process (or

120 | Ericsson AB. All Rights Reserved.: STDLIB

ets

the same process) simultaneously deletes or inserts objects into the table. Nothing more is guaranteed; in particular
objects that are inserted or deleted during such atraversal may be visited once or not at all. Functions that internally
traverse over atable, likesel ect and mat ch, will givethe same guaranteeassaf e_fi xt abl e.

Match Specifications

Some of the functions uses a match specification, match_spec. A brief explanation is given in select/2. For a detailed
description, see the chapter "Match specificationsin Erlang” in ERTS User's Guide.

DATA TYPES

mat ch_spec()
a match specification, see above

tid()
a table identifier, as returned by new 2

Exports

all () -> [Tab]
Types:
Tab =tid() | atom()

Returns a list of al tables at the node. Named tables are given by their names, unnamed tables are given by their
table identifiers.

del ete(Tab) -> true

Types:
Tab =tid() | atom()
Deletes the entire table Tab.

del et e(Tab, Key) -> true
Types:
Tab =tid() | atom()
Key =term()
Deletes al objects with the key Key from the table Tab.

delete_all _objects(Tab) -> true
Types:
Tab =tid() | atom()
Delete all objectsin the ETS table Tab. The operation is guaranteed to be atomic and isolated.

del et e_obj ect (Tab, Object) -> true

Types.
Tab =tid() | atom()
Object = tuple()

Ericsson AB. All Rights Reserved.: STDLIB | 121

ets

Delete the exact object Cbj ect from the ETS table, leaving objects with the same key but other differences (useful
for typebag). Inadupl i cat e_bag, al instances of the object will be deleted.

file2tab(Fil enane) -> {ok, Tab} | {error, Reason}
Types.
Filename = string() | atom()
Tab =tid() | atom()
Reason =term()
Reads afile produced by tab2file/2 or tab2file/3 and creates the corresponding table Tab.

Equivalenttofi |l e2t ab(Fi | enane, []).

file2tab(Fil enane, Options) -> {ok, Tab} | {error, Reason}
Types.

Filename = string() | atom()

Tab =tid() | atom()

Options=[Option]

Option = {verify, bool()}

Reason =term()
Reads afile produced by tab2file/2 or tab2file/3 and creates the corresponding table Tab.

The currently only supported option is{veri fy, bool ()} . If verification is turned on (by means of specifying
{verify, true}), thefunction utilizes whatever information is present in the file to assert that the information is
not damaged. How this is done depends on which ext ended_i nf o was written using tab2file/3.

If no ext ended_i nf o ispresent inthefileand { veri fy, true} is specified, the number of objects written is
compared to the size of the original table when the dump was started. This might make verification fail if thetablewas
publ i ¢ and objectswere added or removed while the table was dumped to file. To avoid thistype of problems, either
do not verify files dumped while updated simultaneously or use the { ext ended_i nfo, [object_count]}
option to tab2file/3, which extends the information in the file with the number of objects actually written.

If verification is turned on and the file was written with the option { ext ended_i nf o, [md5suni }, reading the
fileis slower and consumes radically more CPU time than otherwise.

{verify, fal se} isthedefault.

first(Tab) -> Key | '$end_of _table'
Types:
Tab =tid() | atom()
Key =term()
Returnsthefirst key Key inthetable Tab. If thetableisof theor der ed_set type, thefirst key in Erlang term order

will be returned. If the table is of any other type, the first key according to the table's internal order will be returned.
If thetableisempty, ' $end_of _t abl e' will bereturned.

Usenext / 2 to find subsequent keysin the table.

fol dl (Function, AccO, Tab) -> Accl
Types:

Function = fun(A, Accln) -> AccOut

Tab =tid() | atom()

122 | Ericsson AB. All Rights Reserved.: STDLIB

ets

AccO = Accl = Accln = AccOut =term()

AccO isreturned if thetableisempty. Thisfunctionissimilartol i st s: f ol dl / 3. The order in which the elements
of the table are traversed is unspecified, except for tables of type or der ed_set , for which they are traversed first
to last.

If Functi on inserts objects into the table, or another process inserts objects into the table, those objects may
(depending on key ordering) be included in the traversal.

fol dr (Function, AccO, Tab) -> Accl
Types:
Function = fun(A, Accln) -> AccOut
Tab =tid() | atom()
AccO = Accl = Accln = AccOut =term()
AccO isreturned if thetableisempty. Thisfunctionissimilartol i st's: f ol dr/ 3. Theorder in which the elements

of the table are traversed is unspecified, except for tables of type or der ed_set , for which they are traversed last
tofirst.

If Functi on inserts objects into the table, or another process inserts objects into the table, those objects may
(depending on key ordering) be included in the traversal.

fromdets(Tab, DetsTab) -> true
Types:

Tab =tid() | atom()

DetsTab = atom()

Fills an already created ETS table with the objects in the already opened Dets table named Det sTab. The existing
objects of the ETS table are kept unless overwritten.

Throws abadarg error if any of the tables does not exist or the dets table is not open.

fun2nms(Literal Fun) -> MatchSpec
Types:
LiteralFun -- see below
MatchSpec = match_spec()
Pseudo function that by meansof apar se_t r ansf or mtransdlatesLi t er al Fun typed as parameter in the function

call to amatch_spec. With "literal" is meant that the fun needs to textually be written as the parameter of the function,
it cannot be held in avariable which in turn is passed to the function).

The parse transform is implemented in the module ns_t r ansf or m and the source must include the file
nms_transform hrl instdlib for this pseudo function to work. Failing to include the hrl file in the source
will result in a runtime error, not a compile time ditto. The include file is easiest included by adding the line -
include_lib("stdlib/include/ns_transformhrl"). tothesourcefile.

Thefunisvery restricted, it can take only a single parameter (the object to match): a sole variable or atuple. It needs
tousethei s_ XXX guard tests. Language constructs that have no representation in a match_spec (likei f , case,
recei ve etc) are not alowed.

Thereturn value is the resulting match_spec.
Example:

Ericsson AB. All Rights Reserved.: STDLIB | 123

ets

1> ets:fun2ns(fun({M N}) when N> 3 -> M end).
[{{ 1, 82}, [{">,"$2",3}], [$1']1}]

Variables from the environment can be imported, so that this works:

2> X=3.

3

3> ets: fun2ms(fun({MN}) when N > X -> Mend).
[{{ $1","$2"},[{"'>","$2" ,{const,3}}],['$1']1}]

Theimported variableswill be replaced by match_specconst expressions, which is consistent with the static scoping
for Erlang funs. Local or global function calls can not be in the guard or body of the fun however. Calls to builtin
match_spec functions of courseis allowed:

4> ets: fun2ms(fun({M N}) when N > X, is_atomm(M -> Mend).
Error: fun containing |ocal Erlang function calls

("is_atomm called in guard) cannot be translated into match_spec
{error,transformerror}

5> ets:fun2ms(fun({M N) when N> X, is_atom(M -> Mend).

[{{ $1',"%$2"},[{'>,"'$2',{const,3}},{is atom'$1'}],['$1'1}]

As can be seen by the example, the function can be called from the shell too. The fun needs to be literally in the call
when used from the shell as well. Other means than the parse_transform are used in the shell case, but more or less
the same restrictions apply (the exception being records, as they are not handled by the shell).

Warning:

If the parse_transform is not applied to a module which calls this pseudo function, the call will fail in runtime
(withabadar g). Themoduleet s actually exports afunction with this name, but it should never really becalled
except for when using the function in the shell. If the par se_t r ansf or mis properly applied by including the
nms_t ransform hrl header file, compiled code will never call the function, but the function call is replaced
by aliteral match_spec.

For more information, see ms_transform(3).

gi ve_away(Tab, Pid, GftData) -> true

Types:
Tab =tid() | atom()
Pid = pid()

GiftData = term()

Make process Pid the new owner of table Tab. |If successful, the message {'ETS-
TRANSFER , Tab, FronPi d, G f t Dat a} will be sent to the new owner.

The process Pi d must be alive, local and not already the owner of the table. The calling process must be the table
owWner.

Notethat gi ve_away doesnot at all affect the heir option of the table. A table owner can for example set the hei r
to itself, give the table away and then get it back in case the receiver terminates.

124 | Ericsson AB. All Rights Reserved.: STDLIB

ets

i)

-> ok

Displaysinformation about al ETS tables on tty.

i (Tab) -> ok
Types.

Tab = tid() | atom()

Browses the table Tab on tty.

info(Tab) -> [{Item Value}] | undefined
Types.

Tab =tid() | atom()
Item = atom(), see below
Value = term(), see below

Returns information about the table Tab asalistof { | t em Val ue} tuples. If Tab hasthe correct type for atable
identifier, but does not refer to an existing ETS table, undef i ned isreturned. If Tab is not of the correct type, this
function fails with reason badar g.

I tem=nenory, Val ue=int()

The number of words allocated to the table.

It em=owner, Val ue=pid()

The pid of the owner of the table.

I tem=heir, Val ue=pid()]| none

The pid of the heir of the table, or none if no heir is set.

It emenanme, Val ue=atom()

The name of the table.

Item=si ze, Val ue=int ()

The number of objectsinserted in the table.

I t emenode, Val ue=atom()

The node where the tableis stored. Thisfield is no longer meaningful as tables cannot be accessed from other
nodes.

It emenanmed_t abl e, Val ue=true|fal se

Indicatesif the table is named or not.

Itemrtype, Val ue=set|ordered_set| bag| duplicate_bag
The table type.

It emrkeypos, Val ue=int()

The key position.

I tem=protection, Value=public|protected|private
The table accessrights.

It em=conpressed, Val ue=true|false

Indicates if the table is compressed or not.

info(Tab, Item) -> Value | undefined
Types:

Tab =tid() | atom()
Item, Value - see below

Ericsson AB. All Rights Reserved.: STDLIB | 125

ets

Returns the information associated with | t emfor the table Tab, or returns undef i ned if Tab does not refer an
existing ETS table. If Tab is not of the correct type, or if | t emis not one of the allowed values, this function fails
with reason badar g.

Warning:

In R11B and earlier, this function would not fail but return undef i ned for invalid valuesfor | t em

Inadditiontothe{ |t em Val ue} pairsdefined fori nf o/ 1, the following items are allowed:
e Itenrfixed, Value=true|false

Indicatesif the tableis fixed by any process or not.
« Itenrsafe fixed, Value={FirstFixed,Info}|false

If the table has been fixed using saf e_f i xt abl e/ 2, the call returnsatuple where Fi r st Fi xed isthetime
when the table wasfirst fixed by a process, which may or may not be one of the processesit isfixed by right now.

I nf o isapossibly empty lists of tuples { Pi d, Ref Count }, one tuple for every process the table is fixed by
right now. Ref Count isthe value of the reference counter, keeping track of how many times the table has been
fixed by the process.

If the table never has been fixed, the call returnsf al se.

init_table(Nane, InitFun) -> true
Types.
Name = atom()
InitFun = fun(Arg) -> Res
Arg=read | close
Res=end_of input |{[object()], InitFun} | term()
Replaces the existing objects of the table Tab with objects created by calling the input function | ni t Fun, see below.

Thisfunction is provided for compatibility with thedet s module, it is not more efficient than filling atable by using
ets:insert/2.

When called with the argument r ead thefunction | ni t Fun isassumed to returnend_of _i nput whenthereisno
moreinput, or { Gbj ect s, Fun},where Obj ect s isalist of objects and Fun isanew input function. Any other
valueValueisreturned asanerror {error, {init_fun, Val ue}}.Eachinputfunctionwill be called exactly
once, and should an error occur, the last function is called with the argument cl ose, the reply of which isignored.

If the type of the tableis set and there is more than one object with a given key, one of the abjects is chosen. This
is not necessarily the last object with the given key in the sequence of objects returned by the input functions. This
holds also for duplicated objects stored in tables of type bag.

i nsert(Tab, ObjectOrObjects) -> true
Types:
Tab =tid() | atom()
ObjectOrObjects = tuple() | [tuple()]
Insertsthe object or al of the objectsinthelist Obj ect Or Obj ect s intothetable Tab. If thetableisaset andthe

key of the inserted objects matches the key of any object in the table, the old object will be replaced. If thetableisan
or der ed_set andthekey of theinserted object compares equal to the key of any object in thetable, theold objectis

126 | Ericsson AB. All Rights Reserved.: STDLIB

ets

also replaced. If the list contains more than one object with matching keys and the tableisaset , one will beinserted,
which oneis not defined. The same thing holds for or der ed_set , but will also happen if the keys compare equal.

The entire operation is guaranteed to be atomic and isolated, even when alist of objectsisinserted.

i nsert_new(Tab, bjectO hjects) -> bool ()
Types:

Tab =tid() | atom()

ObjectOrObjects = tuple() | [tuple()]
Thisfunction works exactly likei nsert / 2, with the exception that instead of overwriting objects with the same key
(inthe case of set or or der ed_set) or adding more objects with keys already existing in the table (in the case of
bag and dupl i cat e_bag), it simply returnsf al se. If Obj ect Or Obj ect s isaligt, the function checks every

key prior to inserting anything. Nothing will be inserted if not all keys present in the list are absent from the table.
Likei nsert/ 2, theentire operation is guaranteed to be atomic and isolated.

is_conpiled_ms(Term -> bool ()
Types:
Term =term()

Thisfunctionisusedto check if atermisavalid compiled match_spec. The compiled match_specisan opaque datatype
which can not be sent between Erlang nodes nor be stored on disk. Any attempt to create an external representation of
a compiled match_spec will result in an empty binary (<<>>). As an example, the following expression:

ets:is_conpiled _ns(ets: match_spec_conpile([{"_",[],[truel}])).

will yieldt r ue, while the following expressions:

M5 = ets: match_spec_compile([{"_',[].[truel}]),
Broken = binary to termtermto_binary(Ms)),
ets:is_conpil ed_ns(Broken).

will yield false, as the variable Br oken will contain a compiled match_spec that has passed through external
representation.

Note:

The fact that compiled match_specs has no external representation is for performance reasons. It may be subject
to change in future releases, while this interface will still remain for backward compatibility reasons.

| ast (Tab) -> Key | '$end_of _table'
Types.

Tab =tid() | atom()

Key =term()

Returns the last key Key according to Erlang term order in the table Tab of the or der ed_set type. If thetableis
of any other type, the function is synonymoustofi r st/ 2. If thetableisempty, ' $end_of _t abl e' isreturned.

Ericsson AB. All Rights Reserved.: STDLIB | 127

ets

Use pr ev/ 2 to find preceding keysin the table.

| ookup(Tab, Key) -> [bject]
Types:

Tab =tid() | atom()

Key =term()

Object = tuple()
Returns alist of all objects with the key Key in thetable Tab.
Inthecaseof set, bag and dupl i cat e_bag, an object isreturned only if the given key matches the key of the
object in the table. If thetableisan or der ed_set however, an object is returned if the key given compares equal
to the key of an object in the table. The difference being the same as between =: = and ==. As an example, one might

insert an object withthei nt eger () 1 asakeyinanor der ed_set and get the object returned as aresult of doing
al ookup/ 2 withthef | oat () 1. 0 asthe key to search for.

If thetableisof typeset or or der ed_set , the function returns either the empty list or alist with one element, as
there cannot be more than one object with the sasme key. If thetableisof typebag or dupl i cat e_bag, thefunction
returns alist of arbitrary length.

Note that the time order of object insertions is preserved; The first object inserted with the given key will be first in
the resulting list, and so on.

Insert and look-up timesin tables of typeset , bag and dupl i cat e_bag are constant, regardless of the size of the
table. For the or der ed_set data-type, timeis proportional to the (binary) logarithm of the number of objects.

| ookup_el enent (Tab, Key, Pos) -> Elem
Types:
Tab =tid() | atom()
Key =term()
Pos=int()
Elem =term() | [term()]
If the table Tab is of type set or or der ed_set , the function returns the Pos:th element of the object with the
key Key.
If thetableis of type bag or dupl i cat e_bag, the functions returns a list with the Pos :th element of every object
with the key Key.
If no object with the key Key exists, the function will exit with reason badar g.

The difference between set , bag and dupl i cat e_bag on one hand, and or der ed_set on the other, regarding
thefact that or der ed_set 'sview keys as equal when they compare egqual whereas the other table types only regard
them equal when they match, naturally holdsfor | ookup_el ement aswell asfor | ookup.

mat ch(Tab, Pattern) -> [Match]
Types:

Tab =tid() | atom()

Pattern = tuple()

Match = [term()]

Matches the objectsin the table Tab against the pattern Pat t er n.
A pattern is aterm that may contain:

128 | Ericsson AB. All Rights Reserved.: STDLIB

ets

e bound parts (Erlang terms),

e ' ' which matches any Erlang term, and

e patternvariables: ' $N where N=0,1,...

The function returns alist with one element for each matching object, where each element is an ordered list of pattern
variable bindings. An example:

6> ets:match(T, '$1'). % Matches every object in the table
[[{rufsen,dog, 7}],[{brunte, horse, 5}],[{] udde, dog, 5}]1]
7> ets:match(T, {'_',dog,'$1'}).

[[71.05]1
8> ets:match(T, {'_',cow, '$1'}).

[]

If the key is specified in the pattern, the match is very efficient. If the key is not specified, i.e. if itisavariable or an
underscore, the entire table must be searched. The search time can be substantial if the tableisvery large.

Ontables of theor der ed_set type, theresult isinthe sameorder asinaf i r st/ next traversal.

mat ch(Tab, Pattern, Limt) -> {[Match], Continuation} | '$end of table'
Types.

Tab =tid() | atom()

Pattern = tuple()

Match = [term()]

Continuation = term()

Works like et s: mat ch/ 2 but only returns alimited (Li ni t) number of matching objects. The Cont i nuat i on
term can then be used in subsequent calls to et s: mat ch/ 1 to get the next chunk of matching objects. Thisis a
space efficient way to work on objects in atable which is still faster than traversing the table object by object using
ets:first/landets: next/1.

' $end_of _tabl e' isreturned if thetableis empty.

mat ch(Conti nuation) -> {[Match], Continuation} | '$end_of _table'
Types.

Match = [term()]

Continuation =term()

Continues a match started with et s: mat ch/ 3. The next chunk of the size given in theinitial et s: mat ch/ 3 call
is returned together with anew Cont i nuat i on that can be used in subsequent callsto this function.

' $end_of tabl e' isreturned when there are no more objects in the table.

mat ch_del et e(Tab, Pattern) -> true
Types:
Tab =tid() | atom()
Pattern = tuple()
Deletesall objectswhich match the pattern Pat t er n fromthetable Tab. Seemat ch/ 2 for adescription of patterns.

mat ch_obj ect (Tab, Pattern) -> [Qbject]
Types:

Ericsson AB. All Rights Reserved.: STDLIB | 129

ets

Tab =tid() | atom()

Pattern = Object = tuple()
Matches the objects in the table Tab against the pattern Pat t er n. See mat ch/ 2 for a description of patterns. The
function returns alist of all objects which match the pattern.

If the key is specified in the pattern, the match is very efficient. If the key is not specified, i.e. if itisavariable or an
underscore, the entire table must be searched. The search time can be substantial if the tableisvery large.

Ontables of theor der ed_set type, theresult isinthe sameorder asinaf i r st/ next traversal.

mat ch_obj ect (Tab, Pattern, Limt) -> {[Mtch], Continuation} | '$end_of table
Types.

Tab =tid() | atom()

Pattern = tuple()

Match = [term()]

Continuation = term()
Works like et s: mat ch_obj ect/ 2 but only returns a limited (Li mi t) number of matching objects. The
Cont i nuat i on term can then be used in subsequent callsto et s: mat ch_obj ect / 1 to get the next chunk of

matching objects. This is a space efficient way to work on objects in a table which is till faster than traversing the
table object by object usinget s: first/1andets: next/ 1.

" $end_of _tabl e' isreturned if thetableis empty.

mat ch_obj ect (Conti nuati on) -> {[Match], Continuation} | '$end_of _table'
Types:
Match = [term()]
Continuation = term()
Continues a match started with et s: nat ch_obj ect/ 3. The next chunk of the size given in the initial

et s: mat ch_obj ect / 3 call isreturned together with anew Cont i nuat i on that can be used in subsequent calls
to this function.

' $end_of tabl e' isreturned when there are no more objects in the table.

mat ch_spec_conpi | e(Mat chSpec) -> Conpi | edMvat chSpec
Types:

MatchSpec = match_spec()

CompiledMatchSpec = comp_match_spec()
This function transforms a match_spec into an internal representation that can be used in subsequent calls to
et s: mat ch_spec_run/ 2. Theinternal representation is opague and can not be converted to external term format
and then back again without losing its properties (meaning it can not be sent to a process on another node and still

remain a valid compiled match_spec, nor can it be stored on disk). The validity of a compiled match_spec can be
checked usinget s: i s_conpil ed_ns/ 1.

If the term Mat chSpec can not be compiled (does not represent a valid match_spec), abadar g fault is thrown.

Note:

This function has limited usein normal code, it is used by Detsto performthedet s: sel ect operations.

130 | Ericsson AB. All Rights Reserved.: STDLIB

ets

mat ch_spec_run(Li st, Conpi | edvat chSpec) -> list()
Types:
List =[tuple()]
CompiledM atchSpec = comp_match_spec()
This function executes the matching specified in a compiled match spec on a list of tuples. The

Conpi | edvat chSpec term should be the result of acall to et s: nat ch_spec_conpi | e/ 1 and is hence the
interna representation of the match_spec one wants to use.

The matching will be executed on each element in Li st and the function returns a list containing all results. If an
element in Li st does not match, nothing is returned for that element. The length of the result list is therefore equal

or less than the the length of the parameter Li st . The two calls in the following example will give the same result
(but certainly not the same execution time...):

Tabl e = ets:new. ..

Mat chSpec =

% The follow ng call...

ets: match_spec_run(ets:tab2list(Table),

ets: mat ch_spec_conpi | e(Mat chSpec)),

% ...will give the sane result as the nore common (and nore efficient)
ets: sel ect (Tabl e, Mat chSpec),

Note:

This function has limited use in normal code, it is used by Dets to perform the det s: sel ect operations and
by Mnesia during transactions.

menber (Tab, Key) -> true | false
Types:

Tab =tid() | atom()

Key =term()

Works like | ookup/ 2, but does not return the objects. The function returnst r ue if one or more elements in the
table has the key Key, f al se otherwise.

new(Nane, Options) -> tid() | atom)
Types:
Name = atom()
Options=[Option]
Option = Type | Access | named_table | {keypos,Pos} | {heir,pid(),HeirData} | {heir,none} | Tweaks
Type=set | ordered_set | bag | duplicate_bag
Access = public | protected | private

Tweaks = {write_concurrency,bool()} | {read_concurrency,bool()} | compressed
Pos=int()
HeirData = term()

Creates anew table and returns atable identifier which can be used in subsequent operations. The table identifier can
be sent to other processes so that a table can be shared between different processes within a node.

Ericsson AB. All Rights Reserved.: STDLIB | 131

ets

The parameter Opti ons is a list of atoms which specifies table type, access rights, key position and if the
table is named or not. If one or more options are left out, the default values are used. This means that not
specifying any options ([]) is the same as specifying [set, prot ect ed, { keypos, 1}, { hei r, none},
{write_concurrency, fal se}, {read _concurrency, fal se}].

 set Thetableisaset table- onekey, one abject, no order among objects. Thisis the default table type.

« ordered_set Thetableisaor der ed_set table- onekey, one object, ordered in Erlang term order, which
is the order implied by the < and > operators. Tables of this type have a somewhat different behavior in some
situations than tables of the other types. Most notably the or der ed_set tablesregard keys as equal when they
compare equal, not only when they match. This means that to an or der ed_set , thei nt eger () 1 and the
float () 1.0 areregarded as egual. This also means that the key used to lookup an element not necessarily
matches the key in the elements returned, if f | oat () 'sandi nt eger () 'sare mixed in keys of atable.

» bag Thetableisabag table which can have many objects, but only one instance of each object, per key.

e duplicate_bag Thetableisadupli cate_bag table which can have many objects, including multiple
copies of the same object, per key.

e publ i c Any process may read or write to the table.

e protected The owner process can read and write to the table. Other processes can only read the table. This
is the default setting for the access rights.

e privat e Only the owner process can read or write to the table.

* named_t abl e If this option is present, the name Nane is associated with the table identifier. The name can
then be used instead of the table identifier in subsequent operations.

« {keypos, Pos} Specfies which element in the stored tuples should be used as key. By default, it is the first
element, i.e. Pos=1. However, thisis not always appropriate. In particular, we do not want the first element to
be the key if we want to store Erlang records in atable.

Note that any tuple stored in the table must have at least Pos number of elements.

e {heir,Pid,HeirData} | {heir, none}
Set a process as heir. The heir will inherit the table if the owner terminates. The message {' ETS-
TRANSFER , ti d(), FronPi d, Hei r Dat a} will be sent to the heir when that happens. The heir must be a
local process. Default heir isnone, which will destroy the table when the owner terminates.

« {wite_concurrency, bool ()} Performance tuning. Default is f al se, in which case an operation that
mutates (writes to) the table will obtain exclusive access, blocking any concurrent access of the same table
until finished. If set to t r ue, the table is optimized towards concurrent write access. Different objects of the
same table can be mutated (and read) by concurrent processes. This is achieved to some degree at the expense
of sequential access and concurrent reader performance. Thewr i t e_concurr ency option can be combined
with the read_concurrency option. You typically want to combine these when large concurrent read bursts and
large concurrent write bursts are common (see the documentation of the read_concurrency option for more
information). Note that this option does not change any guarantees about atomicy and isolation. Functions that
makes such promises over several objects (likei nsert/ 2) will gain less (or nothing) from this option.

Tabletypeor der ed_set isnot affected by this option in current implementation.

« {read_concurrency, bool ()} Peformance tuning. Default is f al se. When set to t r ue, the table is
optimized for concurrent read operations. When this option is enabled on aruntime system with SMP support, read
operations become much cheaper; especially on systems with multiple physical processors. However, switching
between read and write operations becomes more expensive. You typicaly want to enable this option when
concurrent read operations are much more frequent than write operations, or when concurrent reads and writes
comesin large read and write bursts (i.e., lots of reads not interrupted by writes, and lots of writes not interrupted
by reads). You typically do not want to enable this option when the common access pattern is a few read
operations interleaved with afew write operations repeatedly. In this case you will get a performance degradation
by enabling thisoption. Ther ead_concur r ency option can be combined with thewrite_concurrency option.

132 | Ericsson AB. All Rights Reserved.: STDLIB

ets

You typically want to combine these when large concurrent read bursts and large concurrent write bursts are
common.

e conpressed If thisoption is present, the table data will be stored in a more compact format to consume less
memory. The downside is that it will make table operations slower. Especially operations that need to inspect
entire objects, such asmat ch and sel ect , will get much slower. The key element is not compressed in current
implementation.

next (Tab, Keyl) -> Key2 | '$end_of _table'
Types:
Tab =tid() | atom()
Keyl=Key2=term()
Returns the next key Key 2, following the key Key 1 in thetable Tab. If thetableis of the or der ed_set type, the

next key in Erlang term order isreturned. If thetableis of any other type, the next key according to the table's internal
order isreturned. If thereis no next key, ' $end_of _t abl e' isreturned.

Usefirst/1tofindthefirst key inthetable.

Unlessatableof typeset ,bag ordupl i cat e_bag isprotectedusingsaf e_fi xt abl e/ 2, seebelow, atraversal
may fail if concurrent updates are made to the table. If the table is of type or der ed_set , the function returns the
next key in order, even if the object does no longer exist.

prev(Tab, Keyl) -> Key2 | '$end_of _table'
Types:
Tab =tid() | atom()
Keyl=Key2=term()
Returns the previous key Key2, preceding the key Key1 according the Erlang term order in the table Tab of the

or der ed_set type. If thetableis of any other type, the function is synonymousto next / 2. If thereisno previous
key,' $end_of _t abl e' isreturned.

Usel ast/ 1 tofind the last key in the table.

renane(Tab, Nane) -> Nane
Types:
Tab = Name = atom()

Renames the named table Tab to the new name Nane. Afterwards, the old name can not be used to access the table.
Renaming an unnamed table has no effect.

repair_continuation(Continuation, MatchSpec) -> Continuation
Types:

Continuation = term()

MatchSpec = match_spec()

Thisfunction can be used to restore an opaque continuation returned by et s: sel ect/ 3 oret s: sel ect/ 1 if the
continuation has passed through external term format (been sent between nodes or stored on disk).

Thereason for this function isthat continuation terms contain compiled match_specs and therefore will be invalidated
if converted to external term format. Given that the original match_spec is kept intact, the continuation can berestored,
meaning it can once again be used in subsequent et s: sel ect/ 1 calls even though it has been stored on disk or
on another node.

As an example, the following sequence of calls will fail:

Ericsson AB. All Rights Reserved.: STDLIB | 133

ets

T=ets:new(x,[]),

{_,C = ets:select(T,ets: fun2ms(fun({N, _}=A)
when (N rem10) == 0 ->

A

end), 10),

Broken = binary_to_term(termto_binary(C)),
ets: sel ect (Broken).

...while the following sequence will work:

T=ets:new(x,[]),

M5 = ets:fun2ns(fun({N, _}=A)

when (N rem10) == 0 ->

A

end),

{_,C = ets:select(T, Ms, 10),

Broken = binary_to_term(termto_binary(C)),
ets:sel ect(ets:repair_continuation(Broken, M5)).

..as the call to ets:repair_continuation/2 will reestablish the (deliberately) invalidated continuation
Br oken.

Note:

Thisfunctionisvery rarely needed in application code. It isused by Mnesiato implement distributed sel ect / 3
and sel ect / 1 sequences. A normal application would either use Mnesia or keep the continuation from being
converted to external format.

The reason for not having an external representation of acompiled match_spec is performance. It may be subject
to change in future releases, while this interface will remain for backward compatibility.

safe_fixtabl e(Tab, true|false) -> true
Types:
Tab =tid() | atom()
Fixesatable of theset , bag or dupl i cat e_bag table type for safe traversal.

A processfixesatableby calingsaf e_f i xt abl e(Tab, t r ue) . Thetableremainsfixed until the processrel eases
itby callingsaf e_fi xtabl e(Tab, fal se), or until the process terminates.

If several processes fix a table, the table will remain fixed until al processes have released it (or terminated). A
reference counter iskept on aper processbasis, and N consecutive fixesrequiresN releasesto actually releasethetable.

When atableisfixed, asequence of first/ 1 and next/ 2 calls are guaranteed to succeed and each object in the
tablewill only be returned once, even if objects are removed or inserted during the traversal. The keysfor new objects
inserted during the traversal may be returned by next/2 (it depends on the internal ordering of the keys). An example:

clean_all _w th_val ue(Tab, X) ->
saf e_fi xtabl e(Tab, true),
clean_all _w th_val ue(Tab, X, ets: first(Tab)),
safe_fixtabl e(Tab, fal se).

134 | Ericsson AB. All Rights Reserved.: STDLIB

ets

clean_all _w th_val ue(Tab, X, ' $end_of _table') ->
true;
clean_al | _wi th_val ue(Tab, X, Key) ->
case ets:|ookup(Tab, Key) of
[{Key,X}] ->
ets: del et e(Tab, Key)
_->
true
end,
clean_al | _wi th_val ue(Tab, X, et s: next (Tab, Key))

Note that no deleted objects are actually removed from afixed table until it has been released. If a processfixesatable
but never releases it, the memory used by the deleted objects will never be freed. The performance of operations on
the table will also degrade significantly.

Usei nf o/ 2 to retrieve information about which processes have fixed which tables. A system with alot of processes
fixing tables may need a monitor which sends alarms when tables have been fixed for too long.

Note that for tables of the or der ed_set type, saf e_fi xt abl e/ 2 is not necessary ascallstofirst/1 and
next / 2 will always succeed.

sel ect (Tab, MatchSpec) -> [Match]
Types:
Tab =tid() | atom()
Match = term()
MatchSpec = match_spec()
Matches the objects in the table Tab using a match_spec. Thisis a more general call than the et s: mat ch/ 2 and
et s: mat ch_obj ect/ 2 calls. In itssimplest forms the match_specs|ook like this:
* MatchSpec = [MatchFunction]
* MatchFunction = { MatchHead, [Guard], [Result]}
e MatchHead = "Pattern asin ets:match"
e Guard = {"Guardtest name", ...}
* Result ="Term construct"
This means that the match_spec is always alist of one or more tuples (of arity 3). The tuples first element should be
a pattern as described in the documentation of et s: mat ch/ 2. The second element of the tuple should be a list of
0 or more guard tests (described below). The third element of the tuple should be a list containing a description of

the value to actually return. In almost all normal cases the list contains exactly one term which fully describes the
value to return for each object.

The return value is constructed using the "match variables’ bound in the MatchHead or using the special match
variables ' $_' (the whole matching object) and ' $$' (all match variables in a list), so that the following
ets: mat ch/ 2 expression:

ets: match(Tab, {" $1','$2',"' $3'})

is exactly equivalent to:

ets:select(Tab, [{{'$1',"$2',"$3"},[1.["$$'1}])

Ericsson AB. All Rights Reserved.: STDLIB | 135

ets

- and thefollowing et s: mat ch_obj ect/ 2 cal:

ets: match_obj ect(Tab, {' $1',"' $2',"' $1'})

is exactly equivalent to

ets:select(Tab, [{{"$1","$2","$1"},[].["$_"1}1)

Composite terms can be constructed in the Resul t part either by simply writing alist, so that this code:

ets:select(Tab, [{{'$1',"'$2","$3"},[]1.['$$'1}])

gives the same output as:

ets:select(Tab, [{{"$1',"'$2","$3"},[],[['$1","'$2","$3"]11}1)

i.e. al the bound variablesin the match head as alist. If tuples are to be constructed, one has to write atuple of arity
1 with the single element in the tuple being the tuple one wants to construct (as an ordinary tuple could be mistaken
for a@uar d). Therefore the following call:

ets:select(Tab, [{{"$1","$2","$1"},[].["$_"1}1)

gives the same output as:

ets:select(Tab, [{{"'$1","$2","$1"},[],[{{"$1","$2","$3" }}1}1])

- this syntax is equivalent to the syntax used in the trace patterns (see dbg(3)).

The Guar ds are constructed as tuples where the first element is the name of the test and the rest of the elements are
the parameters of the test. To check for a specific type (say alist) of the element bound to the match variable' $1',
onewould writethetestas{i s_I i st, '$1'}.If thetestfails, the object in the table will not match and the next
Mat chFunct i on (if any) will be tried. Most guard tests present in Erlang can be used, but only the new versions
prefixedi s arealowed (likei s_fl oat,i s_at ometc).

The Guar d section can also contain logic and arithmetic operations, which are written with the same syntax as the
guard tests (prefix notation), so that a guard test written in Erlang looking like this:

is_integer(X), is_integer(Y), X + Y < 4711

is expressed like this (X replaced with '$1' and Y with '$2"):

[{is_integer, '$1'}, {is_integer, '$2'}, {'<', {'+, '$1', '$2'}, 4711}]

136 | Ericsson AB. All Rights Reserved.: STDLIB

ets

On tables of the or der ed_set type, objects are visited in the same order asin afi rst/ next traversal. This
means that the match specification will be executed against objects with keysin the fir st/ next order and the
corresponding result list will bein the order of that execution.

sel ect (Tab, MatchSpec, Limt) -> {[Match], Continuation} | '$end of table'
Types.
Tab =tid() | atom()
Match =term()
MatchSpec = match_spec()
Continuation = term()
Workslikeet s: sel ect/ 2 but only returnsalimited (Li mi t) number of matching objects. The Cont i nuat i on
term can then be used in subsequent callsto et s: sel ect/ 1 to get the next chunk of matching objects. Thisis a

space efficient way to work on objects in atable which is till faster than traversing the table object by object using
ets:first/landets: next/1.

" $end_of _t abl e' isreturned if the table is empty.

sel ect (Continuation) -> {[Mtch], Continuation} | '$end_of table
Types:

Match =term()

Continuation =term()

Continues a match started with et s: sel ect / 3. The next chunk of the size given in the initial et s: sel ect/ 3
call isreturned together with anew Cont i nuat i on that can be used in subsequent calls to this function.

" $end_of _t abl e' isreturned when there are no more objectsin the table.

sel ect _count (Tab, MatchSpec) -> Numvat ched

Types.
Tab =tid() | atom()
Object = tuple()

MatchSpec = match_spec()
NumM atched = integer ()

Matches the objects in the table Tab using a match_spec. If the match_spec returnst r ue for an object, that object
considered a match and is counted. For any other result from the match_spec the object is not considered a match
and is therefore not counted.

The function could be described asamat ch_del et e/ 2 that does not actually delete any elements, but only counts
them.

The function returns the number of objects matched.

sel ect _del et e(Tab, MatchSpec) -> NunDel et ed

Types.
Tab =tid() | atom()
Object = tuple()

MatchSpec = match_spec()
NumDeleted = integer ()

Ericsson AB. All Rights Reserved.: STDLIB | 137

ets

Matches the objects in the table Tab using a match_spec. If the match_spec returnst r ue for an object, that object
isremoved from the table. For any other result from the match_spec the object isretained. Thisis amore general call
thantheet s: mat ch_del et e/ 2 cadll.

The function returns the number of objects actually deleted from the table.

Note:

Themat ch_spec hasto return theatomt r ue if the object is to be deleted. No other return value will get the
object deleted, why one can not use the same match specification for looking up elements as for del eting them.

sel ect _reverse(Tab, MatchSpec) -> [Match]
Types:

Tab =tid() | atom()

Match = term()

MatchSpec = match_spec()

Works like sel ect / 2, but returns the list in reverse order for the or der ed_set table type. For al other table
types, thereturn valueisidentical to that of sel ect / 2.

sel ect _reverse(Tab, MatchSpec, Linit) -> {[Mtch], Continuation} |
' $end_of table'

Types:
Tab =tid() | atom()
Match = term()
MatchSpec = match_spec()
Continuation =term()

Workslikesel ect/ 3, but for theor der ed_set tabletype, traversing is done starting at the last object in Erlang
term order and moves towards the first. For all other table types, the return value is identical to that of sel ect / 3.

Note that thisis not equivalent to reversing the result list of asel ect/ 3 call, astheresult list is not only reversed,
but also containsthe last Li m t matching objectsin the table, not the first.

sel ect _reverse(Continuation) -> {[Mtch], Continuation} | '$end_of table
Types.

Match = term()

Continuation =term()

Continues a match started with et s: sel ect _reverse/ 3. If thetableisan or der ed_set , the traversal of the
tablewill continue towards objectswith keysearlier in the Erlang term order. Thereturned list will also contain objects
with keysin reverse order.

For all other table types, the behaviour is exatly that of sel ect/ 1.
Example:

1> T = ets:new(x, [ordered_set]).
2> [ets:insert(T,{N}) || N <- lists:seq(1,10)].

138 | Ericsson AB. All Rights Reserved.: STDLIB

ets

3> {RO, C0} = ets:select_reverse(T,[{"_".[].["$_"]1}1,4).

4> RO
({10}, {9}, {8}.{7}]
5> {R1, C1} = ets:select_reverse(C0).

6> RL.
({6}, {5}, {4}, {3}]
7> {R2, C2} = ets:select_reverse(Cl).

8> R,
[{2}. {1}]

9> '$end_of _table' = ets:select_reverse(C2).

setopts(Tab, Opts) -> true
Types:
Tab =tid() | atom()
Opts= Opt | [Opt]
Opt ={heir,pid(),HeirData} | {heir,none}
HeirData = term()

Set table options. The only option that currently isallowed to be set after the table has been created isheir. The calling

process must be the table owner.

slot(Tab, I) -> [Ooject] | '$end_of _table'
Types.

Tab =tid() | atom()

I =int()

Object = tuple()

This function is mostly for debugging purposes, Normally one should usef i r st/ next or | ast/ pr ev instead.

Returnsall objectsinthel :th dot of thetable Tab. A table can be traversed by repeatedly calling the function, starting
withthefirst slot | =0 and endingwhen' $end_of _t abl e' isreturned. Thefunction will fail with reason badar g

if thel argument is out of range.

Unlessatableof typeset ,bag ordupl i cat e_bag isprotectedusingsaf e_fi xt abl e/ 2, seeabove, atraversa
may fail if concurrent updates are made to the table. If thetable is of type or der ed_set , the function returns a list

containing the | :th object in Erlang term order.

tab2fil e(Tab, Filenanme) -> ok | {error, Reason}

Types:
Tab =tid() | atom()
Filename = string() | atom()
Reason =term()

Dumpsthetable Tab to thefileFi | enane.
Equivalenttot ab2fil e(Tab, Filenane,[])

tab2fil e(Tab, Filenanme, Options) -> ok |

Types:

{error, Reason}

Ericsson AB. All Rights Reserved.: STDLIB | 139

ets

Tab =tid() | atom()

Filename = string() | atom()
Options=[Option]

Option = {extended_info, [ExtInfo]}
ExtInfo = object_count | md5sum
Reason =term()

Dumpsthetable Tab to thefile Fi | enane.

When dumping the table, certain information about the table is dumped to a header at the beginning of the dump. This
information contains data about the table type, name, protection, size, version and if it'sanamed table. It also contains
notes about what extended information is added to the file, which can be a count of the objects in the file or a MD5
sum of the header and recordsin thefile.

The size field in the header might not correspond to the actual number of records in the file if the table is public
and records are added or removed from the table during dumping. Public tables updated during dump, and that one
wants to verify when reading, needs at least one field of extended information for the read verification process to be
reliable later.

Theext ended_i nf o option specifies what extrainformation iswritten to the table dump:
obj ect _count

The number of objects actually written to the file is noted in the file footer, why verification of file truncation is
possible even if the file was updated during dump.

nd5sum

The header and objectsin the file are checksummed using the built in MD5 functions. The MD5 sum of all objects
iswritten in the file footer, so that verification while reading will detect the slightest bitflip in the file data. Using
this costs afair anount of CPU time.

Whenever the ext ended_i nf o option is used, it results in a file not readable by versions of ets prior to that in
stdlib-1.15.1

tab2list(Tab) -> [Object]

Types:
Tab =tid() | atom()
Object = tuple()

Returnsalist of all objectsin the table Tab.

tabfile_info(Filenane) -> {ok, Tablelnfo} | {error, Reason}
Types:
Filename = string() | atom()
Tablelnfo = [Infoltem]
Infoltem = {InfoTag, term()}
InfoTag = name | type | protection | named_table | keypos| size | extended_info | version
Reason = term()
Returns information about the table dumped to file by tab2file/2 or tab2file/3

The following items are returned:

140 | Ericsson AB. All Rights Reserved.: STDLIB

ets

name

The name of the dumped table. If the table was a named table, a table with the same name cannot exist when the
table is loaded from file with file2tab/2. If the table is not saved as a named table, this field has no significance
at al when loading the table from file.

type
The ets type of the dumped table (i.e. set , bag, dupl i cat e_bag or or der ed_set). Thistypewill be
used when loading the table again.

protection
The protection of the dumped table (i.e. pri vat e, pr ot ect ed or publ i c). A tableloaded from the file
will get the same protection.

named_table
t r ue if the table was a named table when dumped to file, otherwise f al se. Note that when anamed tableis
loaded from afile, there cannot exist atable in the system with the same name.

keypos
Thekeypos of the table dumped to file, which will be used when loading the table again.

size
The number of objects in the table when the table dump to file started, which in case of apubl i ¢ table need
not correspond to the number of objects actually saved to the file, as objects might have been added or deleted
by another process during table dump.

extended_info
The extended information written in the file footer to allow stronger verification during table loading from file,
as specified to tab2file/3. Note that this function only tells which information is present, not the valuesin the
filefooter. The valueisalist containing one or more of the atoms obj ect _count and nd5sum

version
A tuple{ Maj or, M nor} containing the major and minor version of the file format for ets table dumps. This
version field was added beginning with stdlib-1.5.1, files dumped with older versions will return { 0, 0} inthis
field.

Anerror isreturned if the file isinaccessible, badly damaged or not an file produced with tab2file/2 or tab2file/3.

table(Tab [, Options]) -> QueryHandl e
Types:
Tab =tid() | atom()
QueryHandle = - aquery handle, see qlc(3) -
Options = [Option] | Option
Option = {n_aobjects, NObjects} | {traverse, TraverseMethod}
NObjects = default | integer() >0
TraverseMethod = first_next | last_prev | select | {select, M atchSpec}
MatchSpec = match_spec()
Returns a QLC (Query List Comprehension) query handle. The module gl ¢ implements a query language aimed

mainly at Mnesia but ETS tables, Dets tables, and lists are also recognized by QLC as sources of data. Calling
et s:tabl e/ 1, 2 isthe means to make the ETS table Tab usable to QLC.

When there are only simple restrictions on the key position QLC useset s: | ookup/ 2 tolook up the keys, but when
that is not possible the whole table istraversed. The optiont r aver se determines how thisis done:

« first_next.Thetableistraversed onekey at atimeby calingets: first/landets: next/ 2.

« last_prev.Thetableistraversed onekey at atimeby callinget s: ast/ 1 andet s: prev/ 2.

* select. Thetableistraversed by calling et s: sel ect/ 3 and et s: sel ect/ 1. The option n_obj ect s
determines the number of objects returned (the third argument of sel ect / 3); the default is to return 100

Ericsson AB. All Rights Reserved.: STDLIB | 141

ets

objects at atime. The match_spec (the second argument of sel ect / 3) isassembled by QLC: simplefiltersare
translated into equivalent match_specs while more complicated filters have to be applied to all objects returned
by sel ect / 3 given amatch_spec that matches all objects.

« {select, Mat chSpec}. As for sel ect the table is traversed by calling ets: sel ect/3 and
et s: sel ect/ 1. Thedifferenceisthat the match_specisexplicitly given. Thisis how to state match_specsthat
cannot easily be expressed within the syntax provided by QLC.

The following example uses an explicit match_spec to traverse the table:

9> true = ets:insert(Tab = ets:nemt, []), [{1,a},{2, b}, {3,c},{4,d}])
M5 = ets: fun2ns(fun({X Y}) when (X > 1) or (X < 5) -> {Y} end),
QH1 = ets:table(Tab, [{traverse, {select, MS}}]).

An example with implicit match_spec:

10> QH2 = qglc:a([{Y} || {X Y} <- ets:table(Tab), (X > 1) or (X< 5)]).

The latter exampleisin fact equivalent to the former which can be verified using the function gl ¢: i nf o/ 1:

11> glc:info(@Hl) =:= glc:info(QH2).
true

gl c: i nf o/ 1 returnsinformation about a query handle, and in this case identical information is returned for the two
guery handles.

test_ns(Tuple, MatchSpec) -> {ok, Result} | {error, Errors}
Types:

Tuple=tuple&)

MatchSpec = match_spec()

Result =term()

Errors=[{warninglerror, string()}]
Thisfunction isautility to test amatch _spec usedincallstoet s: sel ect/ 2. The function both tests Mat chSpec
for "syntactic" correctness and runs the match_spec against the object Tupl e. If the match_spec contains errors, the
tuple{error, Errors} isreturned where Error s isalist of natural language descriptions of what was wrong
with the match_spec. If the match_spec is syntactically OK, the function returns { ok, Ter n} where Ter mis what

would have been the result in areal et s: sel ect/ 2 call or f al se if the match_spec does not match the object
Tupl e.

Thisisauseful debugging and test tool, especially when writing complicated et s: sel ect/ 2 calls.

to_dets(Tab, DetsTab) -> DetsTab
Types:

Tab =tid() | atom()

DetsTab = atom()

Fills an already created/opened Dets table with the objects in the already opened ETS table named Tab. The Dets
table is emptied before the objects are inserted.

142 | Ericsson AB. All Rights Reserved.: STDLIB

ets

updat e_count er (Tab, Key, UpdateOp) -> Result
updat e_counter (Tab, Key, [UpdateQp]) -> [Result]

updat e_count er (Tab, Key, Incr) -> Result
Types:
Tab =tid() | atom()
Key =term()
UpdateOp = {Pos,Incr} | {Pos,Incr,Threshold,SetValue}
Pos=Incr = Threshold = SetValue = Result = int()
This function provides an efficient way to update one or more counters, without the hassle of having to look up an

object, update the object by incrementing an element and insert the resulting object into the table again. (The update
is done atomically; i.e. no process can access the ets table in the middle of the operation.)

It will destructively update the object with key Key in the table Tab by adding | ncr to the element at the Pos:th
position. The new counter value is returned. If no position is specified, the element directly following the key
(<keypos>+1) is updated.

If aThr eshol d is specified, the counter will be reset to the value Set Val ue if the following conditions occur:

e Thel ncr isnot negative (>= 0) and the result would be grester than (>) Thr eshol d

e Thel ncr isnegative (< 0) and the result would be lessthan (<) Thr eshol d

A list of Updat eQp can be supplied to do several update operations within the object. The operations are carried out
in the order specified in the list. If the same counter position occurs more than one time in the list, the corresponding
counter will thus be updated several times, each time based on the previous result. The return value is a list of the
new counter values from each update operation in the same order asin the operation list. If an empty list is specified,
nothing is updated and an empty list is returned. If the function should fail, no updates will be done at all.

The given Key isused to identify the object by either matching the key of an objectinaset table, or compare equal
tothe key of an objectinan or der ed_set table (seelookup/2 and new/2 for details on the difference).

The function will fail with reason badar g if:

» thetableisnot of typeset orordered_set,

* no object with theright key exists,

e theobject hasthe wrong arity,

» theelement to update is not an integer,

e theelement to update is also the key, or,

« anyof Pos, | ncr, Thr eshol d or Set Val ue isnot an integer

updat e_el enent (Tab, Key, {Pos,Value}) -> true | false

updat e_el enent (Tab, Key, [{Pos, Value}]) -> true | false
Types.

Tab =tid() | atom()

Key = Value=term()

Pos=int()

This function provides an efficient way to update one or more elements within an object, without the hassle of having
to look up, update and write back the entire object.

Ericsson AB. All Rights Reserved.: STDLIB | 143

ets

It will destructively update the object with key Key inthetable Tab. The element at the Pos :th position will be given
thevalue Val ue.

Alistof { Pos, Val ue} canbesuppliedto update several el ementswithin the same object. If the same position occurs
more than one in the list, the last value in the list will be written. If the list is empty or the function fails, no updates
will bedone at all. The function is also atomic in the sense that other processes can never see any intermediate resullts.

The function returnst r ue if an object with the key Key was found, f al se otherwise.

The given Key is used to identify the object by either matching the key of an objectinaset table, or compare equal
to the key of an objectinan or der ed_set table (seelookup/2 and new/2 for details on the difference).

The function will fail with reason badar g if:

e thetableisnot of typeset oror dered_set,
* Pos islessthan 1 or greater than the object arity, or,
e theelement to update is also the key

144 | Ericsson AB. All Rights Reserved.: STDLIB

file_sorter

file_sorter

Erlang module

The functions of this module sort terms on files, merge already sorted files, and check files for sortedness. Chunks
containing binary terms are read from a sequence of files, sorted internally in memory and written on temporary files,
which are merged producing one sorted file as output. Merging is provided as an optimization; it is faster when the
files are already sorted, but it always works to sort instead of merge.

On afile, aterm is represented by a header and a binary. Two options define the format of terms on files:

{header, Header Lengt h} . HeaderLength determines the number of bytes preceding each

binary and containing the length of the binary in bytes. Default is 4. The order of the header bytesis
defined asfollows: if B isabinary containing a header only, the size Si ze of the binary is calculated as
<<Sj ze: Header Lengt h/ unit: 8>> = B.

{format, Fornat}. Theformat determinesthe function that is applied to binariesin order to

create the terms that will be sorted. The default valueisbi nary_t er m whichisequivaent to

fun binary_to_term 1. Thevauebi nary isequivaenttof un(X) -> X end, which meansthat
the binaries will be sorted asthey are. Thisisthe fastest format. If For mat istermi o: read/ 2 iscalled
to read terms. In that case only the default value of the header optionisalowed. Thef or mat option also
determines what is written to the sorted output file: if For mat ist er mtheni o: f or mat / 3 iscalled to write
each term, otherwise the binary prefixed by a header is written. Note that the binary written is the same binary
that was read; the results of applying the For nat function are thrown away as soon as the terms have been
sorted. Reading and writing terms using thei 0 module is very much slower than reading and writing binaries.

Other options are:

{order, Order}.Thedefaultisto sorttermsin ascending order, but that can be changed by the value
descendi ng or by giving an ordering function Fun. An ordering function is antisymmetric, transitive and
total. Fun(A, B) shouldreturnt r ue if A comesbefore B in the ordering, f al se otherwise. An example of
atypical ordering function islessthan or equal to, =</ 2. Using an ordering function will slow down the sort
considerably. Thekeysort , keymer ge and keycheck functions do not accept ordering functions.

{uni que, bool ()}.When sorting or merging files, only the first of a sequence of terms that compare
equal (==) isoutput if thisoptionissettot r ue. The default valueisf al se which impliesthat all terms
that compare equal are output. When checking files for sortedness, a check that no pair of consecutive terms
compares equal isdoneif thisoptionissettot r ue.

{tnpdir, TenpDirectory}. Thedirectory wheretemporary filesare put can be chosen explicitly.

The default, implied by the value" ", isto put temporary files on the same directory as the sorted output

file. If output is afunction (see below), the directory returned by fi | e: get _cwd() isusedinstead. The
names of temporary files are derived from the Erlang nodename (node()), the process identifier of the

current Erlang emulator (os: get pi d()), and atimestamp (er | ang: now()); atypical name would be
fs_nynode@ryhost 1763 1043 337000_266005. 17, where 17 is a sequence number. Existing files
will be overwritten. Temporary files are deleted unless some uncaught EXIT signal occurs.

{conpressed, bool ()}. Temporary files and the output file may be compressed. The default value

f al se impliesthat written files are not compressed. Regardless of the value of the conpr essed option,
compressed files can always be read. Note that reading and writing compressed filesis significantly slower than
reading and writing uncompressed files.

{size, Size}.By default approximately 512* 1024 bytes read from files are sorted internally. This option
should rarely be needed.

{no_files, NoFiles}.By default 16 filesare merged at atime. This option should rarely be needed.

To summarize, here isthe syntax of the options:

Ericsson AB. All Rights Reserved.: STDLIB | 145

file_sorter

e Options = [Option] | Option

e Option ={header, HeaderLength} | {format, Format} | {order, Order} | {unique,
bool ()} | {tmpdir, TenpDirectory} | {compressed, bool ()} | {size, Size} |
{no_files, NoFiles}

e HeaderLength =int() >0

e Format = binary_term| term| binary | FormatFun

e FormatFun = fun(Binary) -> Term

e Oder = ascending | descending | O derFun

e OderFun = fun(Term Term -> bool ()

e TenmpDirectory = "" | file_nane()

e Size =int() >=0

* NoFiles =int() > 1

As an alternative to sorting files, a function of one argument can be given as input. When called with the argument
r ead the functionisassumed toreturnend_of _i nput or{end_of i nput, Val ue}} whenthereisno more
input (Val ue isexplained below), or { Obj ect s, Fun}, where Obj ect s isalist of binaries or terms depending
on the format and Fun is a new input function. Any other value isimmediately returned as value of the current call
tosort orkeysort . Eachinput function will be called exactly once, and should an error occur, the last function is
called with the argument cl ose, the reply of which isignored.

A function of one argument can be given as output. The results of sorting or merging the input is collected in a non-
empty sequence of variable length lists of binaries or terms depending on the format. The output function is called
with onelist at atime, and is assumed to return a new output function. Any other return value isimmediately returned
as value of the current call to the sort or merge function. Each output function is called exactly once. When some
output function has been applied to all of the results or an error occurs, the last function is called with the argument
cl ose, and the reply is returned as value of the current call to the sort or merge function. If afunction is given as
input and the last input function returns { end_of _i nput, Val ue}, the function given as output will be called
with the argument { val ue, Val ue}. Thismakesit easy to initiate the sequence of output functions with a value
calculated by the input functions.

Asan example, consider sorting the termson adisk log file. A function that reads chunks from the disk log and returns
alist of binariesis used asinput. The results are collected in alist of terms.

sort(Log) ->
{ok, _} = disk_|og:open([{nane, Log}, {node,read_only}]),
I nput = input(Log, start),
Qut put = output([]),
Reply = file_sorter:sort(lnput, Qutput, {format,tern}),
ok = disk_| og: cl ose(Log),
Reply.

i nput (Log, Cont) ->
fun(cl ose) ->
ok;
(read) ->
case di sk_| og: chunk(Log, Cont) of
{error, Reason} ->
{error, Reason};
{Cont2, Terms} ->
{Terns, input(Log, Cont2)};
{Cont2, Terns, _Badbytes} ->
{Terns, input(Log, Cont2)};
eof ->
end_of _i nput
end

146 | Ericsson AB. All Rights Reserved.: STDLIB

file_sorter

end.

output (L) ->
fun(cl ose) ->
lists:append(lists:reverse(L));
(Terns) ->
output ([Terms | LJ])
end.

Further examples of functions as input and output can be found at the end of thefi | e_sort er module; thet er m
format isimplemented with functions.

The possible values of Reason returned when an error occurs are:

« bad_obj ect,{bad_object, FileNane}. Applying the format function failed for some binary, or the
key(s) could not be extracted from some term.

e {bad_term FileNane}.io:read/?2 faledtoread someterm.
e« {file_error, FileNane, Reason2}.Seefil e(3) foranexplanation of Reason2.
o {premature_eof, FileNanme}.End-of-filewasencountered inside some binary term.

Types

Bi nary = binary()
FileNane = file_nane()
Fi | eNanes = [Fi | eNane]
| Command = read | cl ose
IReply = end_of _input | {end_of _input, Value} | {[OQbject], Infun} | |nputReply
Infun = fun(l Command) -> | Reply
Input = FileNanes | |nfun
I nput Reply = Term
KeyPos = int() >0 | [int() > 0]
OConmand = {val ue, Value} | [Object] | close
OReply = Qutfun | QutputReply
Cbject = Term| Binary
= fun(OCConmand) -> OReply
CQut put Fil eNane | CQutfun
Qut put Reply = Term
Term = term()
Val ue = Term

Exports
sort(FileNane) -> Reply
sort (Il nput, Qutput) -> Reply

sort(l nput, Qutput, Options) -> Reply
Types:
Reply = ok |{error, Reason} | InputReply | OutputReply
Sortsterms on files.
sort (Fi |l eNanme) isequivalenttosort ([Fi | eNane], Fil eNane).

sort (I nput, Qutput) isequivalenttosort (I nput, Qutput, []).

Ericsson AB. All Rights Reserved.: STDLIB | 147

file_sorter

keysort (KeyPos, FileNane) -> Reply
keysort (KeyPos, |nput, Qutput) -> Reply

keysort (KeyPos, |nput, Qutput, Options) -> Reply
Types:
Reply = ok |{error, Reason} | InputReply | OutputReply

Sortstupleson files. The sort is performed on the element(s) mentioned in Key Pos. If two tuples compare equal (==
on one element, next element according to KeyPos is compared. The sort is stable.

keysort (N, FileNane) isequivaenttokeysort(N, [FileNane], FileNane).
keysort (N, |nput, Qutput) isequivaenttokeysort(N, |nput, Qutput, []).

merge(Fil eNanes, Qutput) -> Reply

nmerge(Fi |l eNanes, Qutput, Options) -> Reply
Types:
Reply = ok | {error, Reason} | OutputReply
Merges terms on files. Each input file is assumed to be sorted.
nmer ge(Fi | eNanes, CQutput) isequivaenttormer ge(Fi |l eNames, Qutput, []).

keymer ge(KeyPos, Fil eNanes, Qutput) -> Reply

keymer ge(KeyPos, Fil eNanes, Qutput, Options) -> Reply
Types:

Reply = ok | {error, Reason} | OutputReply
Merges tuples on files. Each input file is assumed to be sorted on key(s).

keymer ge(KeyPos, FileNanes, CQutput) is equivaent to keynerge(KeyPos, Fil eNanes,
Qutput, []).

check(Fil eNane) -> Reply

check(Fil eNanmes, Options) -> Reply
Types:
Reply = {ok, [Result]} | {error, Reason}
Result = {FileName, TermPosition, Term}
TermPosition =int() > 1
Checks files for sortedness. If afileis not sorted, the first out-of-order element is returned. The first term on afile
has position 1.

check(Fil eNane) isequivalenttocheck([Fil eNane], []).

148 | Ericsson AB. All Rights Reserved.: STDLIB

file_sorter

keycheck(KeyPos, FileNane) -> CheckReply

keycheck(KeyPos, FileNanes, Options) -> Reply
Types.
Reply = {ok, [Result]} | {error, Reason}
Result = {FileName, TermPosition, Term}
TermPosition =int() > 1
Checks files for sortedness. If afileis not sorted, the first out-of-order element is returned. The first term on afile
has position 1.

keycheck(KeyPos, Fil eNane) isequivalenttokeycheck(KeyPos, [FileNane], []).

Ericsson AB. All Rights Reserved.: STDLIB | 149

filelib

filelib

Erlang module

This module contains utilities on a higher level than thef i | e module.

The module supports Unicode file names, so that it will match against regular expressions given in Unicode and that
it will find and process raw file names (i.e. files named in away that does not confirm to the expected encoding).

If the VM operates in Unicode file naming mode on a machine with transparent file naming, the f un() provided to
fold fil es/5 needsto be prepared to handle binary file names.

For more information about raw file names, see the file module.

DATA TYPES

filenane() string() | atom() | DeepList | RawFil enane
DeeplLi st [char() | atom() | DeeplList]
RawFi | ename = binary()
If VMis in unicode filenane node, string() and char() are allowed to be > 255.
RawFi | enanme is a fil ename not subject to Unicode translation, meaning that it
can contain characters not conformng to the Unicode encodi ng expected fromthe
filesystem (i.e. non-UTF-8 characters although the VMis started in Uni code
fil ename node).

dirname() = fil ename()

Exports

ensure_dir(Nanme) -> ok | {error, Reason}
Types:
Name = filename() | dirname()
Reason = posix() -- seefile(3)
The ensur e_di r/ 1 function ensures that al parent directories for the given file or directory nhame Nane exist,
trying to create them if necessary.

Returnsok if al parent directories already exist or could be created, or { error, Reason} if some parent directory
does not exist and could not be created for some reason.

file_size(Filenanme) -> integer()
Thefi | e_si ze function returns the size of the given file.

fold files(Dir, RegExp, Recursive, Fun, Accln) -> AccQut
Types.

Dir = dirname()

RegEXxp = regular_expression_string()

Recursive = truelfalse

Fun = fun(F, Accln) -> AccOut

Accln = AccOut = term()

150 | Ericsson AB. All Rights Reserved.: STDLIB

filelib

Thefol d_fil es/5 function folds the function Fun over al (regular) files F in the directory Di r that match the
regular expression RegExp (see the re module for a description of the allowed regular expressions). If Recur si ve
istrue all sub-directoriesto Di r are processed. The regular expression matching is done on just the filename without
the directory part.

If Unicode file name trandation is in effect and the file system is completely transparent, file names that cannot be
interpreted as Unicode may be encountered, in which casethef un() must be prepared to handle raw file names (i.e.
binaries). If the regular expression contains codepoints beyond 255, it will not match file names that do not conform
to the expected character encoding (i.e. are not encoded in valid UTF-8).

For more information about raw file names, see the file module.

is_dir(Nanme) -> true | false
Types:
Name = filename() | dirname()
Thei s_di r/ 1 functionreturnst r ue if Nane refersto adirectory, and f al se otherwise.

is_file(Name) -> true | false
Types:
Name = filename() | dirname()

Theis_fil e/ 1functionreturnst r ue if Name refersto afile or adirectory, and f al se otherwise.

is_regular(Nane) -> true | false
Types:
Name = filename()

Thei s_regul ar/ 1 functionreturnst r ue if Narre refersto afile (regular file), and f al se otherwise.

| ast _nodi fied(Name) -> {{Year, Month, Day}, {Hour,Mn, Sec}} | O
Types:
Name = filename() | dirname()

Thel ast _nodi fi ed/ 1 function returns the date and time the given file or directory was last modified, or O if the
file does not exist.

Wi | dcard(W Il dcard) -> list()
Types:
Wildcard = filename() | dirname()
Thewi | dcar d/ 1 function returns alist of all files that match Unix-style wildcard-string W | dcar d.

The wildcard string looks like an ordinary filename, except that certain "wildcard characters' are interpreted in a
special way. The following characters are special:

?

Matches one character.

Matches any number of characters up to the end of the filename, the next dot, or the next slash.

Ericsson AB. All Rights Reserved.: STDLIB | 151

filelib

[Characterl,Character2,...]

Matches any of the characters listed. Two characters separated by a hyphen will match a range of characters.
Example: [A- Z] will match any uppercase |etter.

{Item,...}
Alternation. Matches one of the alternatives.

Other characters represent themselves. Only filenames that have exactly the same character in the same position will
match. (Matching is case-sensitive; i.e. "a" will not match "A").

Note that multiple "*" characters are allowed (as in Unix wildcards, but opposed to Windows/DOS wildcards).
Examples:

The following examples assume that the current directory is the top of an Erlang/OTP installation.

Tofind al . beamfilesin all applications, the following line can be used:

filelib:wildcard("lib/*/ebin/*. beani).

Tofindeither. er| or. hrl inall applicationssr ¢ directories, the following

filelib:w ldcard("lib/*/src/*.?2rl")

or thefollowing line

filelib:wildcard("lib/*/src/*.{erl,hrl}")

can be used.
Tofindal . hrl filesineither src ori ncl ude directories, use:

filelib:wildcard("lib/*/{src,include}/*.hrl").

Tofindal.erl or. hrl filesineither src ori ncl ude directories, use:

filelib:wildcard("lib/*/{src,include}/*.{erl,hrl}")

Wi | dcard(W I dcard, o) -> list()

Types.
Wildcard = filename() | dirname()
Cwd = dirname()

Thewi | dcar d/ 2 function workslikewi | dcar d/ 1, except that instead of the actual working directory, Cnd will
be used.

152 | Ericsson AB. All Rights Reserved.: STDLIB

filename

filename

Erlang module

The module f i | enane provides a number of useful functions for analyzing and manipulating file names. These
functions are designed so that the Erlang code can work on many different platforms with different formats for file
names. With file name is meant all strings that can be used to denote a file. They can be short relative names like
f 0o. er |, very long absolute name which include a drive designator and directory names like D: \ usr/ | ocal
\bin\erl/Ilib\tool s\foo. erl,oranyvariationsin between.

In Windows, al functions return file names with forward slashes only, even if the arguments contain back slashes.
Usej oi n/ 1 to normalize afile name by removing redundant directory separators.

The module supports raw file names in the way that if a binary is present, or the file name cannot be interpreted
according to the return value of file:native_name_encoding/0, a raw file name will also be returned. For example
filename:join/1 provided with a path component being a binary (and also not being possible to interpret under the
current native file name encoding) will result in a raw file name being returned (the join operation will have been
performed of course). For more information about raw file names, see the file module.

DATA TYPES

name() = string() | aton() | DeepList | RawFil enane
DeepList = [char() | aton() | DeeplList]
RawFi | ename = bi nary()
If VMis in unicode filenane node, string() and char() are allowed to be > 255
RawFi | enane is a fil ename not subject to Unicode translation, meaning that it
can contain characters not conformng to the Unicode encodi ng expected fromthe
filesystem (i.e. non-UTF-8 characters although the VMis started in Uni code
fil enane node)

Exports

absname(Fil enane) -> string()
Types:
Filename = name()

Convertsarelative Fi | ename and returns an absolute name. No attempt is made to create the shortest absol ute name,
because this can give incorrect results on file systems which allow links.

Unix examples:

1> pwd().

"/usr/local"

2> fil ename: absnane("foo").
“/usr/|ocal/foo"

3> fil enane: absnanme("../x").
“lusr/local/../x"

4> fil enane: absname("/").
o

Windows examples:

Ericsson AB. All Rights Reserved.: STDLIB | 153

filename

1> pwd() .

"D:/usr/local"

2> fil enane: absnane("foo")
"D:/usr/local/foo"

3> fil enane: absname("../x")
"D /usr/local/..[x"

4> fil enane: absname("/").
"D /"

absname(Fil enane, Dir) -> string()

Types:
Filename = name()
Dir = string()

This function works like absnane/ 1, except that the directory to which the file name should be made réelative is
given explicitly inthe Di r argument.

absnanme_join(Dir, Filenane) -> string()
Types:
Dir =string()
Filename = name()
Joins an absolute directory with a relative filename. Similar to j oi n/ 2, but on platforms with tight restrictions
on raw filename length and no support for symbolic links (read: VxWorks), leading parent directory components

in Fi | enanme are matched against trailing directory components in Di r so they can be removed from the result -
minimizing its length.

basenanme(Fi | enane) -> string()
Types:
Filename = name()

Returnsthe last component of Fi | enane, or Fi | enane itself if it does not contain any directory separators.

5> fil enane: basename("fo00").
"foo0"

6> fil enane: basenanme("/usr/foo").
"foo0"

7> fil enane: basenanme("/").

(]

basenane(Fil enane, Ext) -> string()
Types:
Filename = Ext = name()
Returns the last component of Fi | enane with the extension Ext stripped. This function should be used to remove

a specific extension which might, or might not, be there. User oot nane(basenane(Fi | enane)) to remove an
extension that exists, but you are not sure which oneit is.

8> fil enane: basenanme("~/src/kalle.erl", ".erl").
"kal | e"

154 | Ericsson AB. All Rights Reserved.: STDLIB

filename

9> fil enane: basename("~/ src/ kal | e. beant, ".erl")

"kal | e. beant

10> fil enane: basenanme("~/src/kalle.old.erl”, ".erl").
"kal | e. ol d"

11> fil enane: root name(fil ename: basenane("~/src/kalle.erl™))
"kal | e"

12> fil enane: r oot name(fil ename: basenane(" ~/ src/ kal | e. beant)) .
"kal | e"

di rname(Fil enane) -> string()
Types:

Filename = name()
Returns the directory part of Fi | enarme.

13> fil enane: di rnane("/usr/src/kalle.erl").
"lusr/src"
14> fil enane: dirnane("kalle.erl").

5> filenane: dirname("\\usr\\src/kalle.erl"). % W ndows
"lusr/src"

extensi on(Fil enanme) -> string()
Types:
Filename = name()

Returnsthe file extension of Fi | enane, including the period. Returns an empty string if there is no extension.

15> fil enane: extension("foo.erl").
“Lerl"
16> fil enane: ext ensi on("beam src/ kal | e").

[1

flatten(Fil enane) -> string()
Types:
Filename = name()

Converts a possibly deep list filename consisting of characters and atoms into the corresponding flat string filename.

j oi n(Conponents) -> string()
Types:
Components = [string()]

Joinsalist of file name Conponent s with directory separators. If one of the elements of Conponent s includes an
absolute path, for example" / xxx" , the preceding elements, if any, are removed from the result.

Theresult is"normalized":

e Redundant directory separators are removed.
e InWindows, all directory separators are forward slashes and the drive letter isin lower case.

Ericsson AB. All Rights Reserved.: STDLIB | 155

filename

17> filenane:join(["/usr", "local", "bin"]).
“/usr/|ocal/bin"

18> filenane:join(["al/b///cl"]).

“al bl c"

6> filenane:join(["B:a\\b///c/"]). % W ndows
"b:alblc"

j oi n(Nanel, Nane2) -> string()
Types:
Namel = Name2 = string()

Joins two file name components with directory separators. Equivalenttoj oi n([Namel, Nane2?]).

nativenane(Path) -> string()
Types:
Path = string()

ConvertsPat h to aform accepted by the command shell and native applications on the current platform. On Windows,
forward dashesis converted to backward slashes. On all platforms, the nameis normalized as done by j oi n/ 1.

19> fil enane: nati venane("/usr/local/bin/"). % Unix
“/usr/local/bin"

7> fil enanme: nati venanme("/usr/local/bin/"). % W ndows
“"\\usr\\ 1l ocal \\bin"

pat htype(Path) -> absolute | relative | volunerelative
Returns the type of path, one of absol ut e,rel ati ve,orvol unerel ati ve.
absol ute
The path name refers to a specific file on a specific volume.
Unix example: / usr/ |1 ocal / bi n
Windows example: D: / usr/ | ocal / bi n
relative
The path name is relative to the current working directory on the current volume.
Example: f oo/ bar, ../src
vol unerel ative

The path name is relative to the current working directory on a specified volume, or it is a specific file on the
current working volume,

Windows example: D: bar . erl, /bar/foo.erl
root name(Fi |l enane) -> string()

root nane(Fil enane, Ext) -> string()
Types:

156 | Ericsson AB. All Rights Reserved.: STDLIB

filename

Filename = Ext = name()

Remove a filename extension. r oot nane/ 2 works asr oot nane/ 1, except that the extension is removed only if
itisExt.

20> fil enane: root name("/beam src/ kal | e").

/ beam src/ kal | e"

21> fil enane: root nane("/beam src/foo.erl").
"/ beam src/foo0"

22> fil enane: root nane("/beam src/foo.erl", ".erl").
"/ beam src/f 00"
23> fil enane: root name("/ beam src/f oo. beant', ".erl").

"/ beam src/ f 0o. beant

split(Filenane) -> Conponents
Types.

Filename = name()

Components = [string()]

Returns alist whose elements are the path components of Fi | enarme.

24> filenane:split("/usr/local/bin").
[“/","usr","local","bin"]

25> filenane:split("foo/bar").

["foo", "bar"]

26> filenane:split("a:\\nsdev\\include").
["a: /", "msdev", "incl ude"]

find_src(Beam) -> {SourceFile, Options} | {error,{ErrorReason, Modul e}}

find src(Beam Rules) -> {SourceFile, Options} | {error,{ErrorReason, Modul e}}
Types.

Beam = Module | Filename

Module = atom()

Filename = string() | atom()

Sour ceFile = string()

Options = [Opt]

Opt ={i, string()} | {outdir, string()} | {d, atom()}

ErrorReason = non_existing | preloaded | inter preted

Finds the source filename and compiler options for a module. The result can be fed to conpi | e: fi |l e/ 2 in order
to compile the file again.

The Beamargument, which can be a string or an atom, specifies either the module name or the path to the source
code, with or without the " . er | " extension. In either case, the module must be known by the code server, i.e.
code: whi ch(Modul e) must succeed.

Rul es describes how the source directory can be found, when the abject code directory is known. It isalist of tuples
{Bi nSuf fi x, SourceSuffix} andisinterpreted asfollows: If the end of the directory nhame where the object
islocated matches Bi nSuf f i x, then the source code directory has the same name, but with Bi nSuf f i x replaced
by Sour ceSuf f i x. Rul es defaultsto:

Ericsson AB. All Rights Reserved.: STDLIB | 157

filename

[{"", """}, {"ebin", "src"}, {"ebin", "esrc"}]

If the source file is found in the resulting directory, then the function returns that location together with Opt i ons.
Otherwise, the next ruleistried, and so on.

The function returns { Sour ceFi | e, Opti ons} if it succeeds. Sour ceFi | e is the absolute path to the source
file without the " . er | " extension. Opt i ons include the options which are necessary to recompile the file with
conpi l e: fil el 2, but excludes options such as r eport or ver bose which do not change the way code is
generated. The pathsinthe{out di r, Path} and{i, Path} optionsare guaranteed to be absolute.

158 | Ericsson AB. All Rights Reserved.: STDLIB

gb_sets

gb_sets

Erlang module

An implementation of ordered sets using Prof. Arne Andersson's General Balanced Trees. This can be much more
efficient than using ordered lists, for larger sets, but depends on the application.

This module considers two elements as different if and only if they do not compare equal (==).

Complexity note

The complexity on set operations is bounded by either O(|S]) or O(|T| * log(]S])), where S is the largest given
set, depending on which is fastest for any particular function call. For operating on sets of aimost equal size, this
implementation is about 3 times slower than using ordered-list sets directly. For sets of very different sizes, however,
this solution can be arbitrarily much faster; in practical cases, often between 10 and 100 times. This implementation
isparticularly suited for accumulating elements afew at atime, building up alarge set (more than 100-200 elements),
and repeatedly testing for membership in the current set.

Aswith normal tree structures, lookup (membership testing), insertion and deletion have logarithmic complexity.

Compatibility

All of the following functions in this module also exist and do the same thing in the set s and or dset s modules.
That is, by only changing the module name for each call, you can try out different set representations.

e add_elenment/2
« del _elenent/2
« filter/2

- fold/3

« fromlist/1

e intersection/1
e intersection/2
 is_elenent/2

e is_ set/1l

e is_subset/2

e newo

e sizell

e subtract/2

e to_ list/1

e union/1

e union/2

DATA TYPES

gb_set() = a GB set

Ericsson AB. All Rights Reserved.: STDLIB | 159

gb_sets

Exports
add(El enent, Setl) -> Set2

add_el enent (El ement, Setl) -> Set2
Types.

Element =term()

Setl=Set2=gb_set()

Returnsanew gb_set formed from Set 1 with El enent inserted. If El enent isaready anelementin Set 1, nothing
is changed.

bal ance(Set1) -> Set?2
Types:
Setl=Set2=gb_set()

Rebalances the tree representation of Set 1. Note that this is rarely necessary, but may be motivated when a large
number of elements have been deleted from the tree without further insertions. Rebalancing could then be forced in
order to minimise lookup times, since deletion only does not rebalance the tree.

del et e(El enent, Setl) -> Set2
Types:
Element =term()
Setl=Set2=gb_set()
Returns anew gb_set formed from Set 1 with El enrent removed. Assumesthat El enent ispresentin Set 1.

del ete_any(El ement, Setl) -> Set2

del el enent (El ement, Setl) -> Set2
Types.

Element =term()

Setl=Set2=gb_set()

Returns anew gb_set formed from Set 1 with El enent removed. If El emrent isnot an element in Set 1, nothing
is changed.

difference(Setl, Set2) -> Set3

subtract (Setl, Set2) -> Set3
Types:
Setl = Set2 = Set3 =gh_set()
Returns only the elements of Set 1 which are not also elements of Set 2.

enpty() -> Set

new() -> Set
Types.

160 | Ericsson AB. All Rights Reserved.: STDLIB

gb_sets

Set = gb_set()
Returns anew empty gb_set.

filter(Pred, Setl) -> Set2

Types:
Pred = fun (E) -> bool()
E =term()

Setl = Set2 = gb_set()
Filters elementsin Set 1 using predicate function Pr ed.

fol d(Function, AccO, Set) -> Accl
Types.
Function = fun (E, Accln) -> AccOut
AccO = Accl = Accln = AccOut =term()
E=term()
Set = gb_set()

Folds Funct i on over every element in Set returning the final value of the accumulator.

fromlist(List) -> Set

Types:
List = [term()]
Set = gb_set()

Returnsagb_set of the elementsinLi st , whereLi st may be unordered and contain duplicates.

fromordset(List) -> Set

Types.
List = [term()]
Set = gb_set()

Turns an ordered-set list Li st into agb_set. Thelist must not contain duplicates.

insert(Element, Setl) -> Set2
Types:

Element =term()

Setl = Set2 = gb_set()

Returns anew gb_set formed from Set 1 with El enrent inserted. Assumesthat El errent isnot present in Set 1.

intersection(Setl, Set2) -> Set3
Types:

Setl = Set2 = Set3=gb_set()
Returnsthe intersection of Set 1 and Set 2.

i ntersection(SetlList) -> Set
Types:

Ericsson AB. All Rights Reserved.: STDLIB | 161

gb_sets

SetList = [gh_set()]
Set = gb_set()
Returns the intersection of the non-empty list of gb_sets.

is disjoint(Setl, Set2) -> bool ()
Types:
Setl = Set2 = gb_set()
Returnst r ue if Set 1 and Set 2 are digoint (have no elementsin common), and f al se otherwise.

is_enmpty(Set) -> bool ()
Types:
Set = gb_set()
Returnst r ue if Set isan empty set, and f al se otherwise.

i s_menber (El enent, Set) -> bool ()

is_elenent(El ement, Set) -> bool ()
Types:
Element =term()
Set = gb_set()
Returnst r ue if El enment isan element of Set , otherwisef al se.

is_set(Tern) -> bool ()
Types:
Term =term()

Returnst r ue if Set appearsto beagb_set, otherwisef al se.

i s_subset(Setl, Set2) -> bool ()
Types:
Setl = Set2 = gb_set()

Returnst r ue when every element of Set 1 isalso amember of Set 2, otherwisef al se.

iterator(Set) -> Iter

Types:
Set =gb_set()
Iter =term()

Returns an iterator that can be used for traversing the entries of Set ; see next / 1. The implementation of thisis
very efficient; traversing the whole set using next / 1 isonly slightly slower than getting the list of al elementsusing
to_li st/ 1 andtraversing that. The main advantage of the iterator approach isthat it does not require the complete
list of all elementsto be built in memory at one time.

| argest(Set) -> term)
Types:

162 | Ericsson AB. All Rights Reserved.: STDLIB

gb_sets

Set = gb_set()
Returnsthe largest element in Set . Assumesthat Set is nonempty.

next(lterl) -> {Elenent, Iter2} | none
Types:
Iterl=Iter2 = Element = term()

Returns { El enent, |ter2} where El enent isthe smallest element referred to by the iterator | t er 1, and
| t er 2 isthe new iterator to be used for traversing the remaining elements, or the atom none if no elements remain.

singl eton(El enent) -> gb_set()
Types:
Element =term()
Returnsagb_set containing only the element El enent .

size(Set) -> int()
Types:
Set =gb_set()
Returns the number of elementsin Set .

smal l est (Set) -> term()
Types:
Set = gb_set()
Returns the smallest element in Set . Assumesthat Set is honempty.

take largest(Setl) -> {El enent, Set2}
Types.

Setl=Set2=gb_set()

Element =term()

Returns{ El enent, Set 2},whereEl enent isthelargest elementin Set 1, and Set 2 isthis set with El enent
deleted. Assumesthat Set 1 is nonempty.

take_smal l est(Setl) -> {El enent, Set?2}
Types:

Setl = Set2 = gb_set()

Element =term()

Returns{ El enent, Set 2},whereEl enment isthesmallest elementin Set 1, and Set 2 isthisset with El enent
deleted. Assumesthat Set 1 is nonempty.

to list(Set) -> List

Types.
Set = gb_set()
List = [term()]

Returns the elements of Set asalist.

Ericsson AB. All Rights Reserved.: STDLIB | 163

gb_sets

union(Setl, Set2) -> Set3
Types:
Setl = Set2 = Set3=gb_set()
Returns the merged (union) gb_set of Set 1 and Set 2.

uni on(Set Li st) -> Set
Types:
SetList = [gb_set()]
Set = gb_set()
Returns the merged (union) gb_set of the list of gb_sets.

SEE ALSO
gb_trees(3), ordsets(3), sets(3)

164 | Ericsson AB. All Rights Reserved.: STDLIB

gb_trees

gb_trees

Erlang module

An efficient implementation of Prof. Arne Andersson's General Balanced Trees. These have no storage overhead
compared to unbalanced binary trees, and their performance isin general better than AVL trees.

This module considers two keys as different if and only if they do not compare equal (==).

Data structure

Data structure:

- {Size, Tree}, where "Tree' is conposed of nodes of the form
- {Key, Value, Smaller, Bigger}, and the "enpty tree" node:
- nil.

There is no attempt to balance trees after deletions. Since deletions do not increase the height of a tree, this should
be OK.

Original balance condition h(T) <= ceil(c * log(|T|)) has been changed to the similar (but not quite equivalent)
condition 2~ h(T) <= |T| ~ c. This should also be OK.

Performance is comparable to the AVL trees in the Erlang book (and faster in general due to less overhead); the
differenceisthat deletion worksfor these trees, but not for the book's trees. Behaviour islogarithmic (asit should be).

DATA TYPES

gb_tree() = a GBtree

Exports

bal ance(Treel) -> Tree2
Types:
Treel=Tree2=gb _tree)
Rebalances Tr ee 1. Notethat thisisrarely necessary, but may be motivated when alarge number of nodes have been

deleted from the tree without further insertions. Rebalancing could then be forced in order to minimise lookup times,
since deletion only does not rebal ance the tree.

del et e(Key, Treel) -> Tree2
Types:

Key =term()

Treel=Tree2 =gb_tree()

Removes the node with key Key from Tr eel; returns new tree. Assumes that the key is present in the tree, crashes
otherwise.

Ericsson AB. All Rights Reserved.: STDLIB | 165

gb_trees

del ete_any(Key, Treel) -> Tree2
Types:
Key =term()
Treel=Tree2 =gb_tree()
Removesthe nodewith key Key from Tr eel if thekey is present in the tree, otherwise does nothing; returns new tree.

empty() -> Tree
Types:

Tree=gb_treg()
Returns a new empty tree

enter (Key, Val, Treel) -> Tree2
Types:

Key =Val =term()

Treel=Tree2 =gb_tree)

Inserts Key with value Val into Tr eel if the key is not present in the tree, otherwise updates Key to value Val
in Tr eel. Returns the new tree.

fromorddict(List) -> Tree
Types.
List = [{Key, Val}]
Key =Val =term()
Tree=gb_treg()
Turnsan ordered list Li st of key-value tuplesinto atree. The list must not contain duplicate keys.

get (Key, Tree) -> Val

Types:
Key =Val =term()
Tree=gb_treg()

Retrieves the value stored with Key in Tr ee. Assumes that the key is present in the tree, crashes otherwise.

| ookup(Key, Tree) -> {value, Val} | none

Types.
Key =Val =term()
Tree=gb_treg()

Looksup Key in Tr ee; returns{ val ue, Val }, or none if Key isnot present.

i nsert (Key, Val, Treel) -> Tree2
Types:

Key =Val =term()

Treel=Tree2 =gb_tree()

Inserts Key with value Val into Tr eel; returns the new tree. Assumes that the key is not present in the tree, crashes
otherwise.

166 | Ericsson AB. All Rights Reserved.: STDLIB

gb_trees

i s_defined(Key, Tree) -> bool ()
Types:
Tree=gb_treg()
Returnst r ue if Key ispresentin Tr ee, otherwisef al se.

is_enmpty(Tree) -> bool ()
Types:
Tree=gb_treg()
Returnst r ue if Tr ee isan empty tree, and f al se otherwise.

iterator(Tree) -> lter

Types.
Tree=gb_tree()
Iter =term()

Returns an iterator that can be used for traversing the entries of Tr ee; see next / 1. The implementation of thisis
very efficient; traversing thewholetree using next / 1 isonly slightly slower than getting thelist of all elementsusing
to_li st/ 1 andtraversing that. The main advantage of the iterator approach isthat it does not require the complete
list of all elementsto be built in memory at one time.

keys(Tree) -> [Key]

Types:
Tree=gb_treg()
Key =term()

Returnsthe keysin Tr ee asan ordered list.

| argest(Tree) -> {Key, Val}
Types:
Tree=gb_treg()
Key =Val =term()
Returns{ Key, Val },whereKey isthelargestkeyinTr ee, andVal isthevalue associated with thiskey. Assumes
that the tree is nonempty.

map(Function, Treel) -> Tree2
Types:
Function = fun(K, V1) -> V2
Treel=Tree2=gb _tree)
maps the function F(K, V1) -> V2 to all key-value pairs of the tree Treel and returns a new tree Tree2 with the same
set of keys as Treel and the new set of values V2.

next(lterl) -> {Key, Val, Iter2} | none

Types:
Iterl=Iter2=Key =Val =term()

Ericsson AB. All Rights Reserved.: STDLIB | 167

gb_trees

Returns{ Key, Val, Iter2} whereKey isthesmallest key referred to by theiterator | t er 1,and | t er 2 isthe
new iterator to be used for traversing the remaining nodes, or the atom none if no nodes remain.

size(Tree) -> int()
Types.
Tree=gb_treg()
Returns the number of nodesin Tr ee.

smal | est (Tree) -> {Key, Val}
Types:

Tree=gb_treg()

Key =Val =term()

Returns { Key, Val }, where Key is the smallest key in Tr ee, and Val is the value associated with this key.
Assumes that the tree is nonempty.

take | argest(Treel) -> {Key, Val, Tree2}
Types.

Treel=Tree2 =gb_tree()

Key =Val =term()

Returns{ Key, Val, Tree2},whereKey isthelargestkeyinTr eel, Val isthevalue associated with this key,
and Tr ee2 isthistree with the corresponding node deleted. Assumes that the tree is nonempty.

take_snall est (Treel) -> {Key, Val, Tree?2}
Types:
Treel=Tree2=gb _tree)
Key =Val =term()
Returns { Key, Val, Tree2}, whereKey isthe smalest key in Tr eel, Val is the value associated with this
key, and Tr ee?2 isthistree with the corresponding node deleted. Assumes that the tree is nonempty.

to list(Tree) -> [{Key, Val}]
Types:
Tree=gb_treg()
Key =Val =term()
Converts atree into an ordered list of key-value tuples.

updat e(Key, Val, Treel) -> Tree2
Types:
Key =Val =term()
Treel=Tree2=gb _tree)
Updates Key to value Val in Tr eel; returns the new tree. Assumes that the key is present in the tree.

val ues(Tree) -> [Val]
Types:

168 | Ericsson AB. All Rights Reserved.: STDLIB

gb_trees

Tree=gb_treeg()
Val =term()
Returnsthe valuesin Tr ee as an ordered list, sorted by their corresponding keys. Duplicates are not removed.

SEE ALSO
gb_sets(3), dict(3)

Ericsson AB. All Rights Reserved.: STDLIB | 169

gen_event

gen_event

Erlang module

A behaviour module for implementing event handling functionality. The OTP event handling model consists of a
generic event manager process with an arbitrary number of event handlers which are added and deleted dynamically.

An event manager implemented using this module will have a standard set of interface functions and include
functionality for tracing and error reporting. It will also fit into an OTP supervision tree. Refer to OTP Design
Principles for more information.

Each event handler is implemented as a callback module exporting a pre-defined set of functions. The relationship
between the behaviour functions and the callback functions can be illustrated as follows:

gen_event nodul e Cal | back nodul e

gen_event:start_link ----- > -

gen_event : add_handl er
gen_event : add_sup_handl er ----- > Mdule:init/1

gen_event:notify
gen_event:sync_notify ----- > Mbdul e: handl e_event/ 2

gen_event:call ----- > Mbdul e: handl e_cal | /2
- ===== > Modul e: handl e_i nfo/ 2
gen_event : del ete_handler ----- > Mbdul e:term nate/ 2

gen_event : swap_handl er
gen_event : swap_sup_handl er ----- > Mbdul el:termi nate/2
Modul e2:init/1

gen_event: whi ch_handlers ----- > -
gen_event:stop ~ ----- > Mbdul e:term nate/ 2

R > Mbdul e: code_change/ 3

Since each event handler is one callback module, an event manager will have several callback modules which are
added and deleted dynamically. Therefore gen_event is more tolerant of callback module errors than the other
behaviours. If a callback function for an installed event handler fails with Reason, or returns abad value Ter m the
event manager will not fail. It will delete the event handler by calling the callback function Modul e: t er mi nat e/ 2
(seebelow), givingasargument{ error, {' EXI T' , Reason}} or{error, Ter n}, respectively. No other event
handler will be affected.

A gen_event process handles system messages as documented in sys(3). The sys module can be used for debugging
an event manager.

Note that an event manager does trap exit signals automatically.

The gen_event process can go into hibernation (see erlang(3)) if a callback function in a handler module specifies
" hi ber nat e' initsreturn value. This might be useful if the server is expected to be idle for along time. However
this feature should be used with care as hibernation implies at least two garbage collections (when hibernating and
shortly after waking up) and is not something you'd want to do between each event handled by a busy event manager.

170 | Ericsson AB. All Rights Reserved.: STDLIB

gen_event

It's also worth noting that when multiple event handlers areinvoked, it's sufficient that one single event handler returns
a' hi ber nat e' request for the whole event manager to go into hibernation.

Unless otherwise stated, all functions in this module fail if the specified event manager does not exist or if bad
arguments are given.

Exports
start _link() -> Result

start _|ink(Event Mgr Nane) -> Result
Types.
EventM gr Name = {local,Name} | {global,Name}
Name = atom()
Result = {ok,Pid} | {error {already_started,Pid}}
Pid = pid()
Creates an event manager process as part of a supervision tree. The function should be called, directly or indirectly,
by the supervisor. It will, among other things, ensure that the event manager is linked to the supervisor.

If Event Mgr Nanme={1 ocal , Nane}, the event manager is registered locally as Nanme using r egi st er/ 2.
If Event Mgr Name={gl obal , Nane}, the event manager is registered globally as Nane using
gl obal : regi st er _nan®e/ 2. If no nameis provided, the event manager is not registered.

If the event manager is successfully created the function returns { ok, Pi d} , where Pi d is the pid of the event
manager. If there already exists a process with the specified Event Myr Nane the function returns { err or,
{al ready_started, Pid}},wherePi disthepid of that process.

start() -> Result

start (Event Mgr Nanme) -> Result
Types.
EventM gr Name = {local,Name} | {global,Name}
Name = atom()
Result = {ok,Pid} | {error {already started,Pid}}
Pid = pid()
Creates a stand-alone event manager process, i.e. an event manager which is not part of a supervision tree and thus
has no supervisor.

Seestart _|ink/O0, 1 foradescription of arguments and return values.

add_handl er (Event Mgr Ref , Handl er, Args) -> Result
Types.

EventM gr = Name | {Name,Node} | {global,Name} | pid()

Name = Node = atom()

Handler = Module | {Module,l d}

Module = atom()

Id =term()

Args=term()

Ericsson AB. All Rights Reserved.: STDLIB | 171

gen_event

Result = ok | {'EXIT',Reason} | term()
Reason = term()

Adds anew event handler to the event manager Event Myr Ref . The event manager will call Modul e: i nit/ 1 to
initiate the event handler and itsinternal state.

Event Mgr Ref can be:

e thepid,

* Nane, if the event manager islocaly registered,

 {Nane, Node}, if the event manager islocally registered at another node, or

« {9l obal, Nane}, if the event manager is globally registered.

Handl er is the name of the callback module Modul e or a tuple { Modul e, | d}, where | d is any term. The

{ Modul e, | d} representation makes it possible to identify a specific event handler when there are several event
handlers using the same callback module.

Ar gs isan arbitrary term which is passed as the argument to Modul e: init/ 1.

If Modul e: i ni t/ 1 returnsacorrect value, the event manager adds the event handler and this function returns ok.
If Modul e: i ni t/ 1 failswith Reason or returns an unexpected value Ter m the event handler isignored and this
functionreturns{' EXI T' , Reason} or Ter m respectively.

add_sup_handl er (Event Mgr Ref, Handl er, Args) -> Result
Types:

EventMgr = Name | {Name,Node} | {global,Name} | pid()

Name = Node = atom()

Handler = Module | {Module,l d}

M odule = atom()

Id =term()

Args=term()

Result = ok | {'"EXIT',Reason} | term()

Reason = term()

Adds a new event handler in the ssme way asadd_handl er/ 3 but will also supervise the connection between the
event handler and the calling process.

» |f the calling process later terminates with Reason, the event manager will delete the event handler by calling
Modul e: t er mi nat e/ 2 with { st op, Reason} asargument.
e |If the event handler later is deleted, the event manager sends a
message{ gen_event EXI T, Handl er, Reason} tothe calling process. Reason isone of the following:
e nornal , if the event handler has been removed dueto acall todel et e_handl er/ 3, or
renove_handl er has been returned by a callback function (see below).
« shut down, if the event handler has been removed because the event manager is terminating.

 {swapped, NewHandl er, Pi d}, if the process Pi d has replaced the event handler with another event
handler NewHand| er using acal toswap_handl er/ 3 or swap_sup_handl er/ 3.

e aterm, if the event handler is removed due to an error. Which term depends on the error.
Seeadd_handl er/ 3 for adescription of the arguments and return values.

172 | Ericsson AB. All Rights Reserved.: STDLIB

gen_event

notify(Event Mgr Ref, Event) -> ok

sync_notify(Event Mgr Ref, Event) -> ok

Types.
EventM gr Ref = Name | {Name,Node} | {global,Name} | pid()
Name = Node = atom()
Event = term()

Sends an event notification to the event manager Event MgrRef. The event manager will call
Modul e: handl e_event / 2 for each installed event handler to handle the event.

not i fy isasynchronous and will return immediately after the event notification has been sent. sync_notify is
synchronousin the sense that it will return ok after the event has been handled by all event handlers.

Seeadd_handl er/ 3 for adescription of Event Myr Ref .
Event isan arbitrary term which is passed as one of the argumentsto Modul e: handl e_event/ 2.

not i fy will not fail even if the specified event manager does not exist, unlessit is specified as Nane.
cal |l (Event Myr Ref, Handl er, Request) -> Result

cal |l (Event Mgr Ref, Handl er, Request, Tineout) -> Result
Types.

EventM gr Ref = Name | {Name,Node} | {global,Name} | pid()

Name = Node = atom()

Handler = Module | {Module,l d}

Module = atom()

Id =term()

Request = term()

Timeout = int()>0 | infinity

Result = Reply | {error,Error}

Reply =term()

Error = bad_module | {'"EXIT',Reason} | term()

Reason = term()
Makes a synchronous call to the event handler Handl er installed in the event manager Event Myr Ref by sending a

reguest and waiting until areply arrivesor atimeout occurs. The event manager will call Modul e: handl e_cal | / 2
to handle the request.

Seeadd_handl er/ 3 for adescription of Event Myr Ref and Handl er .
Request isan arbitrary term which is passed as one of the argumentsto Modul e: handl e_cal | / 2.

Ti meout is an integer greater than zero which specifies how many milliseconds to wait for a reply, or the atom
i nfinity towaitindefinitely. Default value is 5000. If no reply is received within the specified time, the function
cal fails.

ThereturnvalueRepl y isdefinedinthereturnvalue of Modul e: handl e_cal | / 2. If thespecified event handler is
not installed, the function returns{ er r or , bad_nodul e} . If the callback function failswith Reason or returnsan
unexpected value Ter m thisfunction returns{ error, {" EXI T' , Reason}} or{error, Ter ni}, respectively.

Ericsson AB. All Rights Reserved.: STDLIB | 173

gen_event

del et e_handl er (Event Myr Ref , Handl er, Args) -> Result
Types:
EventM gr Ref = Name | {Name,Node} | {global ,Name} | pid()
Name = Node = atom()
Handler = Module | {Module,| d}
Module = atom()
Id =term()
Args=term()
Result = term() | {error,module_not_found} | {'"EXIT',Reason}
Reason = term()

Deletes an event handler from the event manager Event Mgr Ref. The event manager will cal
Modul e: t er mi nat e/ 2 to terminate the event handler.

Seeadd_handl er/ 3 for adescription of Event Myr Ref and Handl er .
Ar gs isan arbitrary term which is passed as one of the argumentsto Modul e: t er mi nat e/ 2.

The return value is the return value of Modul e: t er m nat e/ 2. If the specified event handler is not installed, the
function returns{ er r or , nodul e_not _f ound} . If the callback function fails with Reason, the function returns
{"EXIT , Reason}.

swap_handl er (Event Mgr Ref, {Handl er1, Args1}, {Handler2, Args2}) -> Result
Types.

EventM gr Ref = Name | {Name,Node} | {global,Name} | pid()

Name = Node = atom()

Handler1 = Handler2 = Module | {M odule,l d}

Module = atom()

Id =term()

Argsl = Args2 =term()

Result = ok | {error,Error}

Error = {'EXIT',Reason} | term()

Reason = term()
Replaces an old event handler with anew event handler in the event manager Event Myr Ref .
Seeadd_handl er/ 3 for adescription of the arguments.

First theold event handler Handl er 1 isdeleted. The event manager callsModul el: t er mi nat e(Argsl, ...),
where Modul el isthe callback module of Handl er 1, and collects the return value.

Then the new event handler Handl er 2 is added and initiated by calling Modul e2: i nit ({Args2, Tern}),
where Modul e2 is the callback module of Handl er 2 and Ter mthe return value of Modul el: t er m nat e/ 2.
Thismakesit possible to transfer information from Handl er 1 to Handl er 2.

The new handler will be added even if the the specified old event handler isnot installed in which case Ter meer r or
or if Modul el: t er m nat e/ 2 fails with Reason in which case Ter n={' EXI T' , Reason}. The old handler
will be deleted even if Mbdul e2: i ni t/ 1 fails.

If there was a supervised connection between Handl er 1 and a process Pi d, there will be a supervised connection
between Handl er 2 and Pi d instead.

174 | Ericsson AB. All Rights Reserved.: STDLIB

gen_event

If Modul e2: i ni t/ 1 returnsacorrect value, thisfunction returnsok. If Modul e2: i ni t/ 1 failswith Reason or
returns an unexpected value Ter m thisthisfunctionreturns{error, {' EXI T' , Reason}} or{error, Ternt,
respectively.

swap_sup_handl er (Event Mgr Ref , {Handl er 1, Args1}, {Handler2, Args2}) -> Result
Types.

EventM gr Ref = Name | {Name,Node} | {global,Name} | pid()

Name = Node = atom()

Handlerl = Handler 2= Module | {Module,l d}

Module = atom()

Id =term()

Argsl = Args2 =term()

Result = ok | {error,Error}

Error = {'EXIT',Reason} | term()

Reason = term()

Replaces an event handler in the event manager Event Myr Ref in the same way as swap_handl er / 3 but will
al so supervise the connection between Handl er 2 and the calling process.

Seeswap_handl er/ 3 for adescription of the arguments and return values.

whi ch_handl er s(Event Mgr Ref) -> [Handl er]
Types:
EventM gr Ref = Name | {Name,Node} | {global,Name} | pid()
Name = Node = atom()
Handler = Module | {Module,| d}
Module = atom()
Id =term()
Returnsalist of all event handlersinstalled in the event manager Event Myr Ref .
Seeadd_handl er/ 3 for adescription of Event Myr Ref and Handl er .

stop(Event Mgr Ref) -> ok

Types.
EventM gr Ref = Name | {Name,Node} | {global,Name} | pid()
Name = Node = atom()

Terminates the event manager Event Mgr Ref. Before terminating, the event manager will call
Modul e: term nat e(stop, ...) foreachinstalled event handler.

Seeadd_handl er/ 3 for adescription of the argument.

CALLBACK FUNCTIONS

The following functions should be exported from agen_event callback module.

Ericsson AB. All Rights Reserved.: STDLIB | 175

gen_event

Exports

Modul e:init(lnitArgs) -> {ok,State} | {ok, State, hibernate}
Types:
InitArgs= Args|{Args Term}
Args=Term =term()
State=term()
Whenever anew event handler is added to an event manager, this function is called to initialize the event handler.

If the event handler is added due to a <cal to gen_event:add handler/3 or
gen_event: add_sup_handl er/ 3,1 ni t Ar gs isthe Ar gs argument of these functions.

If the event handler is replacing another event handler due to a call to gen_event : swap_handl er/ 3 or
gen_event : swap_sup_handl er/ 3, or due to a swap return tuple from one of the other callback functions,
I nitArgs isatuple { Args, Ter i} where Ar gs is the argument provided in the function call/return tuple and
Ter misthe result of terminating the old event handler, seegen_event : swap_handl er/ 3.

Thefunction should return { ok, St at e} or{ ok, St at e, hi ber nat e} where St at e istheinitia internal state
of the event handler.

If {ok, State, hi bernate} is returned, the event manager will go into hibernation (by calling
proc_lib:hibernate/3), waiting for the next event to occur.

Modul e: handl e_event (Event, State) -> Result

Types.
Event =term()
State=term()

Result = {ok,NewState} | {ok,NewState hiber nate}
| {swap_handler ,Argsl,NewState,Handler2,Args2} | remove_handler
NewState = term()
Argsl = Args2 = term()
Handler2 = Module2 | {Module2,l d}
Module2 = atom()
Id =term()

Whenever an event manager recelves an event sent using gen_event:notify/2 or
gen_event: sync_noti fy/ 2, thisfunction is called for each installed event handler to handle the event.

Event isthe Event argument of noti f y/sync_notify.
St at e istheinternal state of the event handler.

If the function returns { ok, NewSt at e} or { ok, NewSt at e, hi ber nat e} the event handler will remain in the
event manager with the possible updated internal state NewSt at e.

If {ok, NewSt at e, hi ber nat e} is returned, the event manager will also go into hibernation (by calling
proc_lib:hibernate/3), waiting for the next event to occur. It is sufficient that one of the event handlers return
{ ok, NewSt at e, hi ber nat e} for the whole event manager process to hibernate.

If the function returns {swap_handl er, Argsl, NewSt at e, Handl er 2, Args2} the event handler
will be replaced by Handl er2 by first caling Modul e:term nate(Argsl, NewState) and then
Modul e2:init({Args2, Tern}) where Term is the return value of Mbdul e:term nate/ 2. See
gen_event : swap_handl er/ 3 for moreinformation.

176 | Ericsson AB. All Rights Reserved.: STDLIB

gen_event

If the function returns renove_handler the event handler will be deleted by calling
Modul e: term nat e(renove_handl er, State).

Modul e: handl e_cal | (Request, State) -> Result
Types.
Request = term()
State=term()
Result = {ok,Reply,NewState} | {ok,Reply,NewState hiber nate}
| {swap_handler ,Reply,Argsl,NewState,Handler 2,Args2}
| {remove_handler, Reply}
Reply =term()
NewState = term()
Argsl = Args2 = term()
Handler2 = Module2 | {Module2,I d}
Module2 = atom()
Id =term()

Whenever an event manager receives a request sent using gen_event : cal | / 3, 4, thisfunction is called for the
specified event handler to handle the request.

Request isthe Request argument of cal | .
St at e istheinternal state of the event handler.

The return values are the same asfor handl e_event / 2 except they also contain aterm Repl y which isthe reply
given back to the client asthe return value of cal | .

Modul e: handl e_i nfo(lnfo, State) -> Result

Types:
Info=term()
State=term()

Result = {ok,NewState} | {ok,NewState hiber nate}
| {swap_handler ,Argsl,NewState,Handler 2,Args2} | remove_handler
NewState = term()
Argsl = Args2 = term()
Handler2 = Module2 | {Module2,I d}
Module2 = atom()
Id =term()

This function is called for each installed event handler when an event manager receives any other message than an
event or a synchronous reguest (or a system message).

I nf o isthe received message.
See Mbdul e: handl e_event / 2 for adescription of State and possible return values.

Modul e: term nate(Arg, State) -> term)
Types.
Arg=Args| {stop,Reason} | stop | remove_handler
| {error {'EXIT' ,Reason}} | {error,Term}

Ericsson AB. All Rights Reserved.: STDLIB | 177

gen_event

Args=Reason = Term =term()

Whenever an event handler is deleted from an event manager, this function is called. It should be the opposite of
Modul e: i ni t/ 1 and do any necessary cleaning up.

If theevent handler isdeleted duetoacall togen_event : del et e_handl er,gen_event : swap_handl er/ 3
orgen_event: swap_sup_handl er/ 3, Ar g isthe Ar gs argument of this function call.

Ar g={ st op, Reason} if the event handler has a supervised connection to a process which has terminated with
reason Reason.

Ar g=st op if the event handler is deleted because the event manager is terminating.

The event manager will terminateif itis part of asupervisiontreeand it is ordered by its supervisor to terminate. Even
if itisnot part of asupervision tree, it will terminate if it receivesan' EXI T' message from its parent.

Arg=r enove_handl er if the event handler is deleted because another callback function has returned
renove_handl er or{renove_handl er, Repl y}.

Arg={error, Tern} if theevent handler isdeleted because acallback function returned an unexpected value Ter m
orArg={error,{' EXIT , Reason}} if acalback function failed.

St at e istheinternal state of the event handler.

The function may return any term. If the event handler is deleted due to acall togen_event : del et e_handl er,
the return value of that function will be the return value of this function. If the event handler is to be replaced with
another event handler due to a swap, the return value will be passed to thei ni t function of the new event handler.
Otherwise the return value isignored.

Modul e: code_change(d dVsn, State, Extra) -> {0k, NewStat e}

Types:
OldVsn =Vsn | {down, Vsn}
Vsn =term()

State = NewState = term()
Extra=term()
This function is called for an installed event handler which should update its internal state during a rel ease upgrade/

downgrade, i.e. whentheinstruction{ updat e, Modul e, Change, . . . } whereChange={ advanced, Ext r a}
isgiveninthe. appup file. See OTP Design Principles for moreinformation.

Inthe case of an upgrade, d dVsn isVsn, and inthe case of adowngrade, O dVsn is{ down, Vsn}.Vsn isdefined
by the vsn attribute(s) of the old version of the callback module Modul e. If no such attribute is defined, the version
is the checksum of the BEAM file.

St at e istheinternal state of the event handler.
Ext r a ispassed as-isfromthe{ advanced, Ext r a} part of the update instruction.
The function should return the updated internal state.

Modul e: format _status(Opt, [PDict, State]) -> Status
Types:

Opt = normal | terminate

PDict = [{Key, Value}]

State=term()

Status=term()

178 | Ericsson AB. All Rights Reserved.: STDLIB

gen_event

Note:

This callback is optional, so event handler modules need not export it. If a handler does not export this function,
the gen_event module uses the handler state directly for the purposes described bel ow.

Thisfunction iscalled by agen_event process when:

« Oneof sys.get_status/1,2 isinvoked to get the gen_event status. Opt is set to the atom nor mal for this case.

* Theevent handler terminates abnormally and gen_event logs an error. Opt isset totheatomt er m nat e for
this case.

This function is useful for customising the form and appearance of the event handler state for these cases. An event
handler callback module wishing to customise the sys: get st at us/ 1, 2 return value as well as how its state
appearsintermination error logsexportsaninstanceof f or mat _st at us/ 2 that returnsaterm describing the current
state of the event handler.

PDi ct isthe current value of the gen_event's process dictionary.
St at e istheinternal state of the event handler.

The function should return St at us, aterm that customises the details of the current state of the event handler. Any
termisalowed for St at us. The gen_event module uses St at us asfollows:

e Whensys: get _status/1, 2iscaled, gen_event ensures that its return value contains St at us in place of
the event handler's actual state term.

* When an event handler terminates abnormally, gen_event logs St at us in place of the event handler's actual
State term.

One usefor thisfunction isto return compact alternative state representationsto avoid having large state terms printed
inlogfiles.

SEE ALSO
supervisor (3), sys(3)

Ericsson AB. All Rights Reserved.: STDLIB | 179

gen_fsm

gen_fsm

Erlang module

A behaviour module for implementing a finite state machine. A generic finite state machine process (gen fsm)
implemented using this module will have a standard set of interface functions and include functionality for tracing and
error reporting. It will also fit into an OTP supervision tree. Refer to OTP Design Principles for more information.

A gen_fsm assumes all specific partsto be located in a callback module exporting a pre-defined set of functions. The
relationship between the behaviour functions and the callback functions can be illustrated as follows:

gen_f sm nodul e Cal | back nodul e

gen_fsmstart_I i nk o> Wbdulerinit/1
gen_fsmsend event ~ ----- > Mbdul e: St at eNane/ 2
gen_fsmsend all _state_event = ----- > Mbdul e: handl e_event /3
gen_fsmsync_send_event ~ ----- > Mbdul e: St at eNane/ 3
gen_fsmsync_send_all _state_event ----- > Mbdul e: handl e_sync_event/ 4

- coooo > Modul e: handl e_i nfo/ 3
e > Modul e: term nate/ 3

e > Mbdul e: code_change/ 4

If acallback function fails or returns a bad value, the gen_fsm will terminate.
A gen_fsm handles system messages as documented in sys(3). The sys module can be used for debugging agen fsm.
Note that agen fsm does not trap exit signals automatically, this must be explicitly initiated in the callback module.

Unless otherwise stated, al functions in this module fail if the specified gen_fsm does not exist or if bad arguments
aregiven.

The gen_fsm process can go into hibernation (see erlang(3)) if a callback function specifies' hi ber nat e' instead
of atimeout value. Thismight be useful if the server isexpected to beidlefor along time. However thisfeature should
be used with care as hibernation implies at least two garbage collections (when hibernating and shortly after waking
up) and is not something you'd want to do between each call to a busy state machine.

Exports
start _|ink(Mdule, Args, Options) -> Result

start _|ink(FsmNane, Mdule, Args, Options) -> Result
Types.

FsmName = {local, Name} | {global,GlobalName}

Name = atom()

GlobalName =term()

Module = atom()

Args=term()

180 | Ericsson AB. All Rights Reserved.: STDLIB

gen_fsm

Options=[Option]
Option = {debug,Dbgs} | {timeout,Time} | {spawn_opt,SOpts}
Dbgs=[Dbg]
Dbg =trace| log | statistics
|{log_to fileFileName} | {install {Func,FuncState}}
SOpts=[SOpt]
SOpt - see erlang: spawn_opt/2,3,4,5
Result = {ok,Pid} | ignore|{error,Error}
Pid = pid()
Error = {already_started,Pid} | term()

Creates a gen_fsm process as part of a supervision tree. The function should be called, directly or indirectly, by the
supervisor. It will, among other things, ensure that the gen_fsmiis linked to the supervisor.

The gen fsm process calls Modul e:init/1 to initializee To ensure a synchronized start-up procedure,
start _|ink/ 3, 4 doesnot return until Modul e: i ni t/ 1 hasreturned.

If FsmNane={l ocal , Nane}, the gen fsm is registered locally as Nanme using register/?2.
If FsmNanme={gl obal , d obal Nane}, the gen fsm is registered globaly as d obal Nane using
gl obal : regi st er _name/ 2. If no nameis provided, the gen_fsmis not registered.

Mbdul e isthe name of the callback module.
Ar gs isan arbitrary term which is passed as the argument to Modul e: i ni t/ 1.

If theoption{ti meout , Ti ne} ispresent, thegen fsmisalowedto spend Ti me millisecondsinitializing or it will
be terminated and the start function will return{error, ti neout }.

If the option { debug, Dbgs} is present, the corresponding sys function will be called for each itemin Dbgs. See
sys(3).

If the option { spawn_opt , SOpt s} ispresent, SOpt s will be passed as option list to the spawn_opt BIF which
is used to spawn the gen_fsm process. See erlang(3).

Note:

Using the spawn option noni t or is currently not allowed, but will cause the function to fail with reason
badar g.

If the gen fsm is successfully created and initialized the function returns { ok, Pi d}, where Pi d is the pid
of the gen fsm. If there aready exists a process with the specified FsniNane, the function returns { err or,
{al ready_started, Pi d}} wherePi d isthe pid of that process.

If Modul e: i ni t/ 1 fails with Reason, the function returns { er r or , Reason} . If Modul e: i ni t/ 1 returns
{st op, Reason} ori gnor e, the processis terminated and the function returns{ er r or , Reason} ori gnore,
respectively.

start(Mdul e, Args, Options) -> Result
start (FsmNane, Module, Args, Options) -> Result

Types:
FsmName = {local,Name} | {global ,GlobalName}

Ericsson AB. All Rights Reserved.: STDLIB | 181

gen_fsm

Name = atom()

GlobalName = term()

M odule = atom()

Args=term()

Options = [Option]

Option = {debug,Dbgs} | {timeout, Time} | {spawn_opt,SOpts}
Dbgs=[Dbq]
Dbg =trace|log | statistics

| {log_to_file,FileName} | {install {Func,FuncState}}

SOpts=[term()]

Result = {ok,Pid} | ignore| {error,Error}

Pid = pid()

Error = {already_started,Pid} | term()

Createsastand-alonegen_fsm process, i.e. agen_fsmwhichisnot part of asupervision tree and thushas no supervisor.

See start_link/3,4 for a description of arguments and return values.

send_event (FsnRef, Event) -> ok
Types:
FsmRef = Name | {Name,Node} | {global ,GlobalName} | pid()
Name = Node = atom()
GlobalName =term()
Event =term()

Sends an event asynchronously to the gen fsm FsnRef and returns ok immediately. The gen_fsm will cal
Modul e: St at eNane/ 2 to handle the event, where St at eNane isthe name of the current state of the gen_fsm.

FsnmRef can be:

» thepid,

* Nane, if thegen fsmislocally registered,

 {Nane, Node}, if thegen fsmislocaly registered at another node, or

e« {gl obal, d obal Nang}, if thegen fsmisglobally registered.

Event isan arbitrary term which is passed as one of the argumentsto Modul e: St at eNane/ 2.

send_all _state _event(FsnmRef, Event) -> ok
Types.
FsmRef = Name | {Name,Node} | {global,GlobalName} | pid()
Name = Node = atom()
GlobalName =term()
Event = term()

Sends an event asynchronously to the gen fsm FsnmRef and returns ok immediately. The gen fsm will call
Modul e: handl e_event / 3 to handle the event.

See send_event/2 for a description of the arguments.

182 | Ericsson AB. All Rights Reserved.: STDLIB

gen_fsm

Thedifferencebetweensend_event andsend_al | _st at e_event iswhich calback functionisused to handle
the event. This function is useful when sending events that are handled the same way in every state, as only one
handl e_event clauseis needed to handle the event instead of one clause in each state name function.

sync_send_event (FsnmRef, Event) -> Reply

sync_send_event (FsnmRef, Event, Tinmeout) -> Reply
Types:

FsmRef = Name | {Name,Node} | {global,GlobalName} | pid()

Name = Node = atom()

GlobalName =term()

Event = term()

Timeout = int()>0 | infinity

Reply = term()
Sends an event to the gen fsm FsnRef and waits until areply arrives or a timeout occurs. The gen_fsm will call
Modul e: St at eNane/ 3 to handle the event, where St at eNane isthe name of the current state of the gen_fsm.
See send_event/2 for adescription of FsnmRef and Event .

Ti meout is an integer greater than zero which specifies how many milliseconds to wait for a reply, or the atom
i nfinity towaitindefinitely. Default value is 5000. If no reply is received within the specified time, the function
call fails.

Thereturn value Repl y isdefined in the return value of Modul e: St at eNane/ 3.

The ancient behaviour of sometimes consuming the server exit message if the server died during the call while linked
to the client has been removed in OTP R12B/Erlang 5.6.

sync_send_al |l _state event(FsnRef, Event) -> Reply

sync_send_al |l _state_event (FsnRef, Event, Tineout) -> Reply
Types:

FsmRef = Name | {Name,Node} | {global,GlobalName} | pid()

Name = Node = atom()

GlobalName =term()

Event =term()

Timeout = int()>0 | infinity

Reply = term()
Sends an event to the gen fsm FsnRef and waits until areply arrives or a timeout occurs. The gen_fsm will call
Modul e: handl e_sync_event / 4 to handle the event.
See send_event/2 for a description of FsnmRef and Event . See sync_send event/3 for a description of Ti meout
and Repl y.

See send_all_state event/2 for a discussion about the difference between sync_send_event and
sync_send_al |l _state_event.

reply(Caller, Reply) -> true

Types:
Caller - see below

Ericsson AB. All Rights Reserved.: STDLIB | 183

gen_fsm

Reply = term()
This function can be used by a gen fsm to explicitly send areply to a client process that called sync_send event/2,3

or sync_send all_state event/2,3, when the reply cannot be defined in the return value of Modul e: St at e/ 3 or
Modul e: handl e_sync_event/ 4.

Caller must be the From argument provided to the callback function. Reply is an arbitrary
term, which will be given back to the client as the return value of sync_send _event/2,3 or
sync_send_all _state_event/2, 3.

send_event _after(Tine, Event) -> Ref

Types:
Time = integer ()
Event = term()
Ref = reference()

Sendsadelayed event internally inthe gen_fsmthat callsthisfunction after Ti me ms. Returnsimmediately areference
that can be used to cancel the delayed send using cancel _timer/1.

The gen_fsmwill call Modul e: St at eNane/ 2 to handle the event, where St at eNane is the name of the current
state of the gen_fsm at the time the delayed event is delivered.

Event isan arbitrary term which is passed as one of the argumentsto Modul e: St at eNane/ 2.

start _timer(Tinme, Mg) -> Ref

Types:
Time=integer()
Msg =term()
Ref = reference()

Sendsatimeout event internally inthegen_fsm that callsthisfunction after Ti me ms. Returnsimmediately areference
that can be used to cancel the timer using cancel_timer/1.

The gen fsmwill call Modul e: St at eNane/ 2 to handle the event, where St at eNane is the name of the current
state of the gen_fsm at the time the timeout message is delivered.

Meg isan arbitrary term which is passed in thetimeout message, { t i meout, Ref, Msg}, asoneof thearguments
to Modul e: St at eNane/ 2.

cancel _timer(Ref) -> RemainingTine | fal se
Types:
Ref = reference()
RemainingTime = integer ()
Cancels an internal timer referred by Ref inthe gen_fsm that calls this function.
Ref isareference returned from send_event_after/2 or start_timer/2.

If the timer has aready timed out, but the event not yet been delivered, it is cancelled as if it had not timed out, so
there will be no false timer event after returning from this function.

Returns the remaining time in ms until the timer would have expired if Ref referred to an active timer, f al se
otherwise.

184 | Ericsson AB. All Rights Reserved.: STDLIB

gen_fsm

ent er _| oop(Mdul e, Options, StateNane, StateData)
enter | oop(Modul e, Options, StateNane, StateData, FsnmiNane)
ent er _| oop(Mdul e, Options, StateNane, StateData, Tinmeout)

enter | oop(Modul e, Options, StateNane, StateData, FsnmName, Ti neout)
Types.
Module = atom()
Options=[Option]
Option = {debug,Dbgs}
Dbgs=[Dbg]
Dbg =trace| log | statistics
|{log_to_fileFileName} | {install {Func,FuncState}}
StateName = atom()
StateData = term()
FsmName = {local,Name} | {global ,GlobalName}
Name = atom()
GlobalName = term()
Timeout = int() | infinity
Makes an existing processinto agen fsm. Does not return, instead the calling process will enter the gen_fsm receive

loop and becomeagen fsm process. The process must have been started using one of the start functionsinpr oc_| i b,
see proc_lib(3). The user isresponsible for any initialization of the process, including registering a name for it.

This function is useful when amore complex initialization procedure is needed than the gen_fsm behaviour provides.

Modul e, Opt i ons and FsniNamne have the same meanings as when calling start[_link]/3,4. However, if FsmNane
is specified, the process must have been registered accordingly before this function is called.

St at eNane, St at eDat a and Ti meout have the same meanings as in the return value of Module:init/1. Also, the
callback module Modul e does not need to export ani ni t / 1 function.

Failure: If the calling process was not started by apr oc_| i b start function, or if it is not registered according to
FsmNane.

CALLBACK FUNCTIONS

The following functions should be exported from agen_f smcallback module.

In the description, the expression state nameis used to denote a state of the state machine. state data is used to denote
theinternal state of the Erlang process which implements the state machine.

Exports

Modul e:init(Args) -> Result
Types:
Args=term()
Return = {ok,StateName,StateData} | {ok,StateName,StateData, Timeout}
| {ok,StateName,StateData,hiber nate}

Ericsson AB. All Rights Reserved.: STDLIB | 185

gen_fsm

| {stop,Reason} | ignore
StateName = atom()
StateData = term()
Timeout = int()>0 | infinity
Reason = term()

Whenever agen fsmis started using gen fsm:start/3,4 or gen_fsm:start_link/3,4, this function is called by the new
processto initialize.

Ar gs isthe Ar gs argument provided to the start function.

If initialization is successful, the function should return {ok, St at eNane, St at eDat a},
{ok, St at eNane, St ateDat a, Ti reout} or {ok, StateNane, St ateDat a, hi bernate}, where
St at eNane istheinitial state name and St at eDat a theinitial state data of the gen_fsm.

If aninteger timeout valueis provided, atimeout will occur unless an event or amessage isreceived within Ti meout
milliseconds. A timeout isrepresented by theatomt i meout and should be handled by theMbdul e: St at eNane/ 2
callback functions. Theatom i nf i ni t y can be used to wait indefinitely, thisis the default value.

If hi ber nat e is specified instead of atimeout value, the process will go into hibernation when waiting for the next
message to arrive (by calling proc_lib: hibernate/3).

If something goes wrong during the initialization the function should return { st op, Reason}, where Reason is
any term, or i gnor e.

Modul e: St at eNanme(Event, StateData) -> Result
Types:
Event = timeout | term()
StateData = term()
Result = {next_state,NextStateName,NewStateData}
| {next_state,NextStateName NewStateData, Timeout}
[{next_state,NextStateName,NewStateData,hiber nate}
| {stop,Reason,NewStateData}
NextStateName = atom()
NewStateData = term()
Timeout = int()>0 | infinity
Reason = term()
There should be one instance of this function for each possible state name. Whenever agen_fsm receives an event sent

using gen_fsm:send_event/2, the instance of this function with the same name as the current state name St at eNane
iscalled to handle the event. It isalso called if atimeout occurs.

Event iseithertheatomt i meout , if atimeout has occurred, or theEvent argument providedtosend_event / 2.
St at eDat a isthe state data of the gen_fsm.

If the function returns {next _state, Next St at eNane, NewSt at eDat a},
{next _stat e, Next St at eNane, NewSt at eDat a, Ti neout } or
{next _st at e, Next St at eNane, NewSt at eDat a, hi ber nat e}, the gen_fsm will continue executing with
the current state name set to Next St at eNane and with the possibly updated state data NewSt at eDat a. See
Modul e: i nit/ 1 foradescriptionof Ti neout and hi ber nat e.

If the function retuns { st op, Reason, NewSt at eDat a}, the gen fsm will call
Modul e: t er m nat e(Reason, NewSt at eDat a) and terminate.

186 | Ericsson AB. All Rights Reserved.: STDLIB

gen_fsm

Modul e: handl e_event (Event, StateNane, StateData) -> Result
Types:
Event = term()
StateName = atom()
StateData = term()
Result = {next_state,NextStateName,NewStateData}
| {next_state,NextStateName NewStateData, Timeout}
| {next_state,NextStateName,NewStateData,hiber nate}
| {stop,Reason,NewStateData}
NextStateName = atom()
NewStateData = term()
Timeout = int()>0 | infinity
Reason =term()

Whenever a gen_fsm receives an event sent using gen fsm:send all_state event/2, this function is called to handle
the event.

St at eNan®e isthe current state name of the gen_fsm.

See Mbdul e: St at eNane/ 2 for adescription of the other arguments and possible return values.

Modul e: St at eNanme(Event, From StateData) -> Result
Types:
Event = term()
From ={pid(),Tag}
StateData = term()
Result = {reply,Reply,NextStateName,NewStateData}
| {reply,Reply,NextStateName,NewStateData, Timeout}
| {reply,Reply,NextStateName,NewStateData,hiber nate}
| {next_state,NextStateName,NewStateData}
| {next_state,NextStateName,NewStateData, Timeout}
| {next_state,NextStateName,NewStateData,hiber nate}
| {stop,Reason,Reply,NewStateData} | {stop,Reason,NewStateData}
Reply =term()
NextStateName = atom()
NewStateData = term()
Timeout = int()>0 | infinity
Reason = normal | term()
There should be one instance of this function for each possible state name. Whenever a gen_fsm receives an event

sent using gen_fsm:sync_send_event/2,3, the instance of this function with the same name as the current state name
St at eNane iscaled to handle the event.

Event isthe Event argument providedtosync_send_event .

Fromisatuple{ Pi d, Tag} wherePi d isthe pid of the processwhich called sync_send_event/ 2, 3 and Tag
isaunique tag.

St at eDat a isthe state data of the gen_fsm.

Ericsson AB. All Rights Reserved.: STDLIB | 187

gen_fsm

If the function returns {reply, Repl y, Next St at eNane, NewSt at eDat a},
{reply, Repl y, Next St at eNane, NewSt at eDat a, Ti meout } or
{reply, Repl y, Next St at eNane, NewSt at eDat a, hi ber nat e}, Repl y will be given back to Fr omas
the return value of sync_send_event/ 2, 3. The gen_fsm then continues executing with the current state name
set to Next St at eName and with the possibly updated state data NewSt at eDat a. See Modul e:init/ 1 fora
description of Ti meout and hi ber nat e.

If the function returns {next st at e, Next St at eNane, NewSt at eDat a},
{next st at e, Next St at eNane, NewSt at eDat a, Ti neout } or
{next st at e, Next St at eNane, NewSt at eDat a, hi ber nat e}, the gen fsm will continue executing in
Next St at eNanme with NewSt at eDat a. Any reply to Fr ommust be given explicitly using gen_fsm:reply/2.

If the function returns { st op, Reason, Repl y, NewSt at eDat a}, Repl y will be given back to From If
the function returns { st op, Reason, NewSt at eDat a}, any reply to Fr om must be given explicitly using
gen_fsmreply/2. The gen fsm will then call Modul e: t er nmi nat e(Reason, NewSt at eDat a) and
terminate.

Modul e: handl e_sync_event (Event, From StateNane, StateData) -> Result
Types:
Event =term()
From = {pid(),Tag}
StateName = atom()
StateData = term()
Result = {reply,Reply,NextStateName,NewStateData}
| {reply,Reply,NextStateName,NewStateData, Timeout}
| {reply,Reply,NextStateName,NewStateData,hiber nate}
| {next_state,NextStateName,NewStateData}
| {next_state,NextStateName NewStateData, Timeout}
[{next_state,NextStateName,NewStateData,hiber nate}
| {stop,Reason,Reply,NewStateData} | {stop,Reason,NewStateData}
Reply =term()
NextStateName = atom()
NewStateData = term()
Timeout = int()>0 | infinity
Reason = term()

Whenever a gen_fsm receives an event sent using gen_fsm:sync_send all_state event/2,3, this function is called to
handle the event.

St at eNane isthe current state name of the gen_fsm.
See Modul e: St at eNane/ 3 for adescription of the other arguments and possible return values.

Modul e: handl e_i nfo(l nfo, StateNane, StateData) -> Result
Types.

Info=term()

StateName = atom()

StateData = term()

Result = {next_state,NextStateName,NewStateData}

188 | Ericsson AB. All Rights Reserved.: STDLIB

gen_fsm

> | {next_state,NextStateName,NewStateData, Timeout}

> | {next_state,NextStateName,NewStateData,hiber nate}

> | {stop,Reason,NewStateData}

NextStateName = atom()

NewStateData = term()

Timeout = int()>0 | infinity

Reason = normal | term()
This function is called by agen fsm when it receives any other message than a synchronous or asynchronous event
(or a system message).
I nf o isthe received message.

See Modul e: St at eNane/ 2 for adescription of the other arguments and possible return values.

Modul e: t er m nat e(Reason, StateNanme, StatebData)
Types.
Reason = normal | shutdown | {shutdown,term()} | term()
StateName = atom()
StateData = term()

Thisfunctioniscalled by agen fsmwhenitisabout to terminate. It should be the opposite of Modul e: i nit/ 1 and
do any necessary cleaning up. When it returns, the gen_fsm terminates with Reason. Thereturn valueisignored.

Reason is aterm dencting the stop reason, St at eNane is the current state name, and St at eDat a is the state
data of the gen fsm.

Reason dependsonwhy thegen fsmisterminating. If it isbecause another callback function hasreturned astop tuple
{stop, ..}, Reason will havethe value specified in that tuple. If itisdueto afailure, Reason isthe error reason.

If the gen_fsm is part of a supervision tree and is ordered by its supervisor to terminate, this function will be called
with Reason=shut down if the following conditions apply:

« thegen fsm hasbeen set to trap exit signals, and

« theshutdown strategy as defined in the supervisor's child specification is an integer timeout value, not
brutal kill.

Even if the gen_fsm is not part of a supervision tree, this function will be called if it receivesan' EXI T' message
from its parent. Reason will bethesameasinthe' EXI T' message.

Otherwise, the gen_fsm will be immediately terminated.

Note that for any other reason than nor mal , shut down, or { shut down, Ter n} the gen fsm is assumed to
terminate due to an error and an error report isissued using error_logger:format/2.

Modul e: code_change(d dVsn, StateNane, StateData, Extra) -> {ok,
Next St at eNanme, NewSt at eDat a}

Types:
OldVsn = Vsn | {down, Vsn}
Vsn =term()

StateName = NextStateName = atom()
StateData = NewStateData = term()
Extra=term()

Ericsson AB. All Rights Reserved.: STDLIB | 189

gen_fsm

Thisfunctionis called by agen_fsmwhen it should update itsinternal state data during arelease upgrade/downgrade,
i.e. when theinstruction { updat e, Modul e, Change, . . .} where Change={ advanced, Extr a} isgivenin
the appup file. See OTP Design Principles.

Inthe case of an upgrade, d dVsn isVsn, and inthe case of adowngrade, O dVsn is{ down, Vsn}.Vsn isdefined
by the vsn attribute(s) of the old version of the callback module Modul e. If no such attribute is defined, the version
is the checksum of the BEAM file.

St at eNane isthe current state name and St at eDat a the internal state data of the gen_fsm.
Ext r a ispassed as-isfromthe{ advanced, Ext r a} part of the update instruction.
The function should return the new current state name and updated internal data.

Modul e: format _status(Opt, [PDict, StateData]) -> Status
Types:

Opt = normal | terminate

PDict = [{Key, Value}]

StateData = term()

Status=term()

Note:

This callback is optional, so callback modules need not export it. The gen_fsm module provides a default
implementation of this function that returns the callback module state data.

Thisfunction is called by agen_fsm process when:
* Oneof sys.get_status/1,2 isinvoked to get the gen fsm status. Opt is set to the atom nor mal for this case.
* Thegen_fsm terminates abnormally and logs an error. Opt isset totheatomt er i nat e for this case.

This function is useful for customising the form and appearance of the gen_fsm status for these cases. A callback
module wishing to customise the sys: get _status/ 1, 2 return value as well as how its status appears in
termination error logs exports an instance of f or mat _st at us/ 2 that returns a term describing the current status
of the gen_fsm.

PDi ct isthe current value of the gen_fsm's process dictionary.
St at eDat a istheinternal state data of the gen_fsm.

The function should return St at us, aterm that customises the details of the current state and status of the gen_fsm.
There are no restrictions on the form St at us can take, but for the sys: get st at us/ 1, 2 case (when Opt is
nor mal), the recommended form for the St at us valueis[{data, [{"StateData", Tern}]}] where
Ter mprovides relevant details of the gen_fsm state data. Following this recommendation isn't required, but doing so
will make the callback module status consistent with the rest of thesys: get st at us/ 1, 2 return value.

One use for this function is to return compact alternative state data representations to avoid having large state terms
printed in logfiles.

SEE ALSO
gen_event(3), gen_server(3), supervisor(3), proc_lib(3), sys(3)

190 | Ericsson AB. All Rights Reserved.: STDLIB

gen_server

gen_server

Erlang module

A behaviour module for implementing the server of a client-server relation. A generic server process (gen_server)
implemented using this module will have a standard set of interface functions and include functionality for tracing and
error reporting. It will also fit into an OTP supervision tree. Refer to OTP Design Principles for more information.

A gen_server assumes al specific parts to be located in a callback module exporting a pre-defined set of functions.
The relationship between the behaviour functions and the callback functions can beillustrated as follows:

gen_server nodul e Cal | back nodul e

gen_server:start _link ----- > Mbdule:init/1

gen_server: cal |
gen_server:multi_call ----- > Mbdul e: handl e_cal 1 /3

gen_server: cast
gen_server:abcast = ----- > Mbdul e: handl e_cast/ 2

. > Mbdul e: handl e_i nfo/ 2
e > Modul e: t ermi nat e/ 2

- e > Mbdul e: code_change/ 3

If acallback function fails or returns a bad value, the gen_server will terminate.

A gen_server handles system messages as documented in sys(3). The sys module can be used for debugging a
gen_server.

Notethat agen_server does not trap exit signals automatically, this must be explicitly initiated in the callback module.
Unless otherwise stated, all functionsin this modulefail if the specified gen_server does not exist or if bad arguments
aregiven.

Thegen_server process can gointo hibernation (see erlang(3)) if acallback function specifies' hi ber nat e' instead
of atimeout value. Thismight be useful if the server isexpected to beidlefor along time. However thisfeature should
be used with care as hibernation implies at least two garbage collections (when hibernating and shortly after waking
up) and is not something you'd want to do between each call to abusy server.

Exports
start _|ink(Mdule, Args, Options) -> Result

start _|ink(ServerNane, Mdule, Args, Options) -> Result
Types.

Server Name = {local,Name} | {global,GlobalName}

Name = atom()

GlobalName =term()

Module = atom()

Args=term()

Ericsson AB. All Rights Reserved.: STDLIB | 191

gen_server

Options=[Option]

Option = {debug,Dbgs} | {timeout,Time} | {spawn_opt,SOpts}

Dbgs=[Dbg]
Dbg =trace|log | statistics | {log_to_file,FileName} | {install {Func,FuncState}}
SOpts=[term()]

Result = {ok,Pid} | ignore| {error,Error}

Pid = pid()

Error = {already_started,Pid} | term()

Createsagen_server process as part of asupervision tree. The function should be called, directly or indirectly, by the
supervisor. It will, among other things, ensure that the gen_server islinked to the supervisor.

The gen_server process calls Modul e:init/ 1 to initilize. To ensure a synchronized start-up procedure,
start _|ink/ 3, 4 doesnot return until Modul e: i ni t/ 1 hasreturned.

If Server Name={| ocal , Nane} the gen_server is registered locally as Nane using register/?2.
If Server Name={gl obal , A obal Nane} the gen server is registered globaly as A obal Nane using
gl obal : regi st er _namne/ 2. If no nameis provided, the gen_server is not registered.

Modul e isthe name of the callback module.
Ar gs isan arbitrary term which is passed as the argument to Modul e: i ni t/ 1.

If the option {t i meout , Ti me} ispresent, the gen_server is alowed to spend Ti e milliseconds initializing or it
will be terminated and the start function will return{ err or, ti meout }.

If the option { debug, Dbgs} is present, the corresponding sys function will be called for each itemin Dbgs. See
sys(3).

If the option { spawn_opt , SOpt s} ispresent, SOpt s will be passed as option list to the spawn_opt BIF which
is used to spawn the gen_server. See erlang(3).

Note:

Using the spawn option noni t or is currently not allowed, but will cause the function to fail with reason
badar g.

If the gen_server is successfully created and initialized the function returns { ok, Pi d}, where Pi d is the pid of
the gen_server. If there already exists a process with the specified Ser ver Nane the function returns { er r or ,
{already_started, Pid}},wherePi disthepid of that process.

If Modul e: i nit/ 1 fails with Reason, the function returns { er r or, Reason}. If Modul e: i nit/ 1 returns
{st op, Reason} ori gnor e, the processis terminated and the function returns{ er r or , Reason} ori gnor e,
respectively.

start (Modul e, Args, Options) -> Result

start (ServerNane, Module, Args, Options) -> Result
Types:

Server Name = {local,Name} | {global,GlobalName}

Name = atom()

GlobalName = term()

192 | Ericsson AB. All Rights Reserved.: STDLIB

gen_server

Module = atom()
Args=term()
Options=[Option]
Option = {debug,Dbgs} | {timeout, Time} | {spawn_opt,SOpts}
Dbgs=[Dbg]
Dbg =trace|log | statistics | {log_to_file,FileName} | {install {Func,FuncState}}
SOpts=[term()]
Result = {ok,Pid} | ignore|{error,Error}
Pid = pid()
Error = {already_started,Pid} | term()
Creates a stand-alone gen_server process, i.e. a gen_server which is not part of a supervision tree and thus has no
supervisor.

See start_link/3,4 for a description of arguments and return values.
call (ServerRef, Request) -> Reply

cal | (ServerRef, Request, Tineout) -> Reply
Types:
Server Ref = Name | {Name,Node} | {global,GlobalName} | pid()
Node = atom()
GlobalName =term()
Request =term()
Timeout = int()>0 | infinity
Reply =term()
Makes a synchronous call to the gen_server Ser ver Ref by sending a request and waiting until areply arrives or a
timeout occurs. The gen_server will call Mbdul e: handl e_cal | / 3 to handle the request.
Ser ver Ref can be:
o thepid,
* Nanme, if thegen_server islocally registered,
 {Nane, Node}, if thegen server islocaly registered at another node, or
« {gl obal, d obal Nane}, if thegen_server isglobally registered.
Request isan arbitrary term which is passed as one of the argumentsto Modul e: handl e_cal | / 3.

Ti meout is an integer greater than zero which specifies how many milliseconds to wait for a reply, or the atom
i nfinity towaitindefinitely. Default value is 5000. If no reply is received within the specified time, the function
call fails. If the caller catches the failure and continues running, and the server isjust late with the reply, it may arrive
at any time later into the caller's message queue. The caller must in this case be prepared for this and discard any such
garbage messages that are two element tuples with areference as the first element.

Thereturn value Repl y isdefined in the return value of Modul e: handl e_cal | / 3.
The call may fail for several reasons, including timeout and the called gen_server dying before or during the call.

The ancient behaviour of sometimes consuming the server exit message if the server died during the call while linked
to the client has been removed in OTP R12B/Erlang 5.6.

Ericsson AB. All Rights Reserved.: STDLIB | 193

gen_server

mul ti _call (Name, Request) -> Result
mul ti _cal | (Nodes, Nane, Request) -> Result

mul ti _cal |l (Nodes, Nane, Request, Tinmeout) -> Result
Types:

Nodes = [Node]

Node = atom()

Name = atom()

Request = term()

Timeout = int()>=0 | infinity

Result = {Replies,BadNodes}

Replies = [{Node,Reply}]

Reply =term()

BadNodes = [Node]

Makesasynchronouscall toal gen_serverslocally registered as Nane at the specified nodes by first sending arequest

to every node and then waiting for the replies. The gen_servers will call Modul e: handl e_cal | / 3 to handle the
request.

Thefunctionreturnsatuple{ Repl i es, BadNodes} whereRepl i es isalistof { Node, Repl y} and BadNodes
isalist of node that either did not exist, or where the gen_server Name did not exist or did not reply.

Nodes is alist of node names to which the request should be sent. Default value is the list of al known nodes
[node() | nodes()].

Narre isthe locally registered name of each gen_server.
Request isan arbitrary term which is passed as one of the argumentsto Modul e: handl e_cal | / 3.

Ti meout isan integer greater than zero which specifies how many milliseconds to wait for each reply, or the atom
i nfinity towaitindefinitely. Default valueisi nf i ni ty. If noreply isreceived from anode within the specified
time, the node is added to BadNodes.

When a reply Repl y is received from the gen_server at a node Node, { Node, Repl y} is added to Repl i es.
Repl y isdefined in the return value of Mbdul e: handl e_cal | / 3.

Warning:

If one of the nodes is not capable of process monitors, for example C or Java nodes, and the gen_server is not
started when the requests are sent, but starts within 2 seconds, this function waits the whole Ti meout , which
may be infinity.

This problem does not exist if all nodes are Erlang nodes.

To avoid that late answers (after the timeout) pollutes the caller's message queue, a middieman processis used to do
the actual calls. Late answers will then be discarded when they arrive to aterminated process.

cast (Server Ref, Request) -> ok

Types:
Server Ref = Name | {Name,Node} | {global,GlobalName} | pid()

194 | Ericsson AB. All Rights Reserved.: STDLIB

gen_server

Node = atom()
GlobalName = term()
Request =term()

Sends an asynchronous request to thegen_server Ser ver Ref and returnsok immediately, ignoring if the destination
node or gen_server does not exist. The gen_server will call Modul e: handl e_cast / 2 to handle the request.

See call/2,3 for adescription of Ser ver Ref .
Request isan arbitrary term which is passed as one of the argumentsto Modul e: handl e_cast/ 2.

abcast (Nane, Request) -> abcast

abcast (Nodes, Nane, Request) -> abcast
Types.
Nodes = [Node]
Node = atom()
Name = atom()
Request =term()
Sends an asynchronous request to the gen_servers locally registered as Name at the specified nodes. The function

returnsimmediately and ignores nodesthat do not exist, or wherethegen_server Nane doesnot exist. Thegen_servers
will call Modul e: handl e_cast/ 2 to handle the request.

See multi_call/2,3,4 for a description of the arguments.

reply(dient, Reply) -> Result
Types.

Client - see below

Reply = term()

Result = term()

This function can be used by a gen server to explicitly send a reply to a client that called cal | /2,3 or
mul ti _cal l /2,3, 4, when the reply cannot be defined in the return value of Modul e: handl e_cal I / 3.

d i ent must be the Fr omargument provided to the callback function. Repl y is an arbitrary term, which will be
given back to theclient asthereturnvalueof cal | / 2, 3ornul ti _call/ 2, 3, 4.

Thereturn value Resul t isnot further defined, and should always be ignored.
enter | oop(Modul e, Options, State)
enter _| oop(Mdul e, Options, State, ServerNane)
enter | oop(Mddul e, Options, State, Tinmeout)
enter _| oop(Mddul e, Options, State, ServerNane, Tinmeout)
Types:

Module = atom()

Options=[Option]
Option = {debug,Dbgs}

Ericsson AB. All Rights Reserved.: STDLIB | 195

gen_server

Dbgs=[Dbg]
Dbg =trace|log | statistics
|{log_to fileFileName} | {install {Func,FuncState}}
State =term()
Server Name = {local,Name} | {global,GlobalName}
Name = atom()
GlobalName = term()
Timeout = int() | infinity
Makes an existing process into a gen_server. Does not return, instead the calling process will enter the gen_server
receive loop and become a gen_server process. The process must have been started using one of the start functions
inproc_lib, seeproc_lib(3). The user is responsible for any initialization of the process, including registering a
name for it.

Thisfunctionisuseful when amore complex initialization procedureis needed thanthegen_server behaviour provides.

Modul e, Opti ons and Ser ver Nanme have the same meanings as when calling gen_server:start[_link]/3,4.
However, if Ser ver Name is specified, the process must have been registered accordingly before this function is
called.

St at e and Ti meout have the same meanings as in the return value of Module:init/1. Also, the callback module
Modul e does not need to export ani ni t / 1 function.

Failure: If the calling process was not started by apr oc_| i b start function, or if it is not registered according to
Ser ver Nane.

CALLBACK FUNCTIONS

The following functions should be exported from agen_ser ver callback module.

Exports

Modul e:init(Args) -> Result
Types:
Args=term()
Result = {ok,State} | {ok,State, Timeout} | {ok,Statehiber nate}
| {stop,Reason} | ignore
State =term()
Timeout = int()>=0 | infinity
Reason =term()

Whenever a gen_server is started using gen_server:start/3,4 or gen_server:start_link/3,4, this function is called by
the new processto initialize.

Ar gs isthe Ar gs argument provided to the start function.

If the initialization is successful, the function should return {ok, State}, {ok, State, Ti meout} or
{ ok, St at e, hi ber nat e}, where St at e istheinternal state of the gen_server.

If aninteger timeout valueis provided, atimeout will occur unless arequest or amessageisreceived within Ti meout
milliseconds. A timeout is represented by the atom t i meout which should be handled by the handl e_i nf o/ 2
callback function. Theatom i nf i ni t y can be used to wait indefinitely, thisis the default value.

If hi ber nat e is specified instead of atimeout value, the process will go into hibernation when waiting for the next
message to arrive (by calling proc_lib: hibernate/3).

196 | Ericsson AB. All Rights Reserved.: STDLIB

gen_server

If something goes wrong during the initialization the function should return { st op, Reason} where Reason is
any term, or i gnor e.

Modul e: handl e_cal | (Request, From State) -> Result
Types.
Request = term()
From ={pid(),Tag}
State = term()
Result = {reply,Reply,NewState} | {reply,Reply,NewState, Timeout}
| {reply,Reply,NewState hiber nate}
| {noreply,NewState} | {noreply,NewState, Timeout}
| {noreply,NewState,hiber nate}
| {stop,Reason,Reply,NewState} | {stop,Reason,NewState}
Reply =term()
NewState = term()
Timeout = int()>=0 | infinity
Reason = term()

Whenever agen_server receives arequest sent using gen_server:call/2,3 or gen_server:multi_call/2,3,4, thisfunction
is called to handle the request.

Request isthe Request argument providedtocal | ornul ti _call.
Fromisatuple{ Pi d, Tag} wherePi d isthe pid of the client and Tag is aunique tag.
St at e istheinternal state of the gen_server.

If the function returns {reply, Reply, NewState}, {reply, Reply, NewState, Ti meout} or
{reply, Reply, NewSt at e, hi ber nat e}, Repl y will begiven back to Fr omasthereturnvalueofcal | / 2, 3
orincluded inthereturnvalueof mul ti _cal | / 2, 3, 4. The gen_server then continues executing with the possibly
updated internal state NewSt at e. See Modul e: i ni t/ 1 for adescription of Ti meout and hi ber nat e.

If the functions returns {noreply, NewSt at e}, {noreply, NewSt at e, Ti neout } or
{nor epl y, NewSt at e, hi ber nat e}, the gen_server will continue executing with NewSt at e. Any reply to
Fr ommust be given explicitly using gen_server:reply/2.

If the function returns {st op, Reason, Reply, NewSt at e}, Reply will be given back to From If
the function returns {st op, Reason, NewSt at e}, any reply to From must be given explicitly using
gen_server:reply/ 2. The gen server will then call Modul e: t er mi nat e(Reason, NewSt at e) and
terminate.

Modul e: handl e_cast (Request, State) -> Result
Types.
Request = term()
State=term()
Result = {noreply,NewState} | {noreply,NewState, Timeout}
| {noreply,NewState, hiber nate}
| {stop,Reason,NewsState}
NewState = term()
Timeout = int()>=0 | infinity
Reason =term()

Ericsson AB. All Rights Reserved.: STDLIB | 197

gen_server

Whenever agen_server receivesarequest sent using gen_server:cast/2 or gen_server:abcast/2,3, thisfunctioniscalled
to handle the request.

See Modul e: handl e_cal | / 3 for adescription of the arguments and possible return values.

Modul e: handl e_i nfo(lnfo, State) -> Result

Types:
Info =timeout | term()
State=term()

Result = {noreply,NewState} | {noreply,NewState, Timeout}
| {noreply,NewState, hiber nate}
| {stop,Reason,NewsState}

NewState = term()

Timeout = int()>=0 | infinity

Reason = normal | term()

Thisfunctioniscalled by agen _server when atimeout occursor whenit receivesany other message than asynchronous
or asynchronous request (or a system message).

I nf o iseither theatomt i neout , if atimeout has occurred, or the received message.
See Modul e: handl e_cal | / 3 for adescription of the other arguments and possible return values.

Modul e: t er m nat e(Reason, State)

Types:
Reason = normal | shutdown | {shutdown,term()} | term()
State=term()

Thisfunctioniscalled by agen_server whenitisabout to terminate. It should bethe oppositeof Modul e: i ni t/ 1 and
do any necessary cleaning up. When it returns, the gen_server terminates with Reason. Thereturn value isignored.

Reason isaterm denoting the stop reason and St at e isthe internal state of the gen_server.

Reason depends on why the gen_server isterminating. If it is because another callback function has returned a stop
tuple{ st op, ..}, Reason will have the value specified in that tuple. If it is due to a failure, Reason isthe error
reason.

If the gen_server is part of a supervision tree and is ordered by its supervisor to terminate, this function will be called
with Reason=shut down if the following conditions apply:

* thegen_server has been set to trap exit signals, and

« the shutdown strategy as defined in the supervisor's child specification is an integer timeout value, not
brutal _kill.

Even if the gen_server is not part of a supervision tree, this function will be called if it receivesan' EXI T' message
from its parent. Reason will bethesameasinthe' EXI T' message.

Otherwise, the gen_server will be immediately terminated.

Note that for any other reason than nor mal , shut down, or { shut down, Ter n} the gen server is assumed to
terminate due to an error and an error report isissued using error_logger:format/2.

Modul e: code_change(d dVsn, State, Extra) -> {ok, NewStat e}

Types:
OldVsn = Vsn | {down, Vsn}

198 | Ericsson AB. All Rights Reserved.: STDLIB

gen_server

Vsn =term()
State = NewState = term()
Extra=term()
This function is called by a gen_server when it should update its internal state during a rel ease upgrade/downgrade,

i.e. when theinstruction { updat e, Modul e, Change, . . . } where Change={ advanced, Extra} isgivenin
theappup file. See OTP Design Principles for more information.

Inthe case of an upgrade, d dVsn isVsn, and in the case of adowngrade, A dVsn is{ down, Vsn}.Vsn isdefined
by the vsn attribute(s) of the old version of the callback module Modul e. If no such attribute is defined, the version
is the checksum of the BEAM file.

St at e istheinternal state of the gen_server.
Ext r a ispassed as-isfrom the{ advanced, Ext r a} part of the update instruction.
The function should return the updated internal state.

Modul e: format _status(Opt, [PDict, State]) -> Status
Types.

Opt = normal | terminate

PDict = [{K ey, Value}]

State =term()
Status=term()
Note:

This callback is optional, so callback modules need not export it. The gen_server module provides a default
implementation of this function that returns the callback module state.

Thisfunction iscalled by agen_server process when:;

* Oneof sys.get_status/1,2 isinvoked to get the gen_server status. Opt is set to the atom nor mal for this case.
* Thegen_server terminates abnormally and logs an error. Opt is set to theatom t er mi nat e for this case.

This function is useful for customising the form and appearance of the gen_server status for these cases. A callback
module wishing to customise the sys: get _status/ 1, 2 return value as well as how its status appears in
termination error logs exports an instance of f or mat _st at us/ 2 that returns a term describing the current status
of the gen_server.

PDi ct isthe current value of the gen_server's process dictionary.
St at e istheinternal state of the gen_server.

Thefunction should return St at us, aterm that customisesthe details of the current state and status of the gen_server.
There are no restrictions on the form St at us can take, but for the sys: get _st at us/ 1, 2 case (when Opt is
nor mal), the recommended form for the St at us valueis[{data, [{"State", Tern}]}] where Term
providesrelevant details of the gen_server state. Following this recommendation isn't required, but doing so will make
the callback modul e status consistent with therest of thesys: get _st at us/ 1, 2 return value.

One usefor thisfunction isto return compact alternative state representationsto avoid having large state terms printed
inlogfiles.

Ericsson AB. All Rights Reserved.: STDLIB | 199

gen_server

SEE ALSO
gen_event(3), gen_fsm(3), supervisor(3), proc_lib(3), sys(3)

200 | Ericsson AB. All Rights Reserved.: STDLIB

i0

Erlang module

This module provides an interface to standard Erlang 10 servers. The output functions all return ok if they are
successful, or exit if they are not.

In the following description, al functions have an optional parameter | oDevi ce. If included, it must be the pid of a
process which handles the 10 protocols. Normally, it isthe | oDevi ce returned by file:open/2.

For adescription of the |O protocols refer to the STDLIB Users Guide.

Warning:

As of R13A, data supplied to the put_chars function should be in the char dat a() format described below.
This means that programs supplying binaries to this function need to convert them to UTF-8 before trying to
output thedataonani o_devi ce() .

If anio_device() is set in binary mode, the functions get_chars and get_line may return binaries instead of lists.
The binarieswill, as of R13A, be encoded in UTF-8.

To work with binaries in 1SO-latin-1 encoding, use the file module instead.

For conversion functions between character encodings, see the unicode module.

DATA TYPES

i o_device()
as returned by file:open/2, a process handling | O protocols

uni code_bi nary() = binary() with characters encoded i n UTF-8 codi ng standard
uni code_char() = integer() representing valid uni code codepoi nt

chardata() = charlist() | unicode_binary()

charlist() = [unicode_char() | unicode_binary() | charlist()]
a uni code_binary is allowed as the tail of the list

Exports
columms() -> {ok,int()} | {error, enotsup}

col umms(| oDevice) -> {ok,int()} | {error, enotsup}
Types:
loDevice=io_device()

Retrieves the number of columns of the | oDevi ce (i.e. the width of a terminal). The function only succeeds for
terminal devices, for al other devicesthe function returns{ er r or, enot sup}

Ericsson AB. All Rights Reserved.: STDLIB | 201

put _chars(loData) -> ok

put _chars(1oDevice, loData) -> ok
Types:
loDevice=io_device()
loData = chardata()
Writes the characters of | oDat a totheio_server() (I oDevi ce).

nl () -> ok

nl (1 oDevice) -> ok
Types:
loDevice=io_device()

Writes new line to the standard output (I oDevi ce).
get _chars(Pronmpt, Count) -> Data | eof

get _chars(loDevice, Pronpt, Count) -> Data | eof
Types.
loDevice = io_device()
Prompt = atom() | string()
Count =int()
Data = [unicode_char()] | unicode_binary()
Reads Count characters from standard input (I oDevi ce), prompting it with Pr onpt . It returns:
Dat a

Theinput characters. If the device supports Unicode, the datamay represent codepoints larger than 255 (the latinl
range). If the io_server() is set to deliver binaries, they will be encoded in UTF-8 (regardiess of if the device
actually supports Unicode or not).

eof
End of file was encountered.
{error, Reason}

Other (rare) error condition, for instance{ err or, est al e} if reading from an NFSfile system.
get _line(Pronpt) -> Data | eof | {error, Reason}

get _line(loDevice, Pronpt) -> Data | eof | {error, Reason}
Types.

loDevice = io_device()

Prompt = atom() | string()

Data =[unicode_char()] | unicode_binary()

Reads a line from the standard input (I oDevi ce), prompting it with Pr onpt . It returns;

202 | Ericsson AB. All Rights Reserved.: STDLIB

Dat a

The characters in the line terminated by a LF (or end of file). If the device supports Unicode, the data may
represent codepoints larger than 255 (the latinl range). If theio_server() is set to deliver binaries, they will be
encoded in UTF-8 (regardless of if the device actually supports Unicode or not).

eof
End of file was encountered.
{error, Reason}

Other (rare) error condition, for instance{ er r or , est al e} if reading from an NFSfile system.

getopts() -> Opts

get opts(l oDevice) -> Opts
Types:
loDevice=io_device()
Opts=[Opt]
Opt ={atom(),Value}
Value=term()
This function requests all available options and their current values for a specificio_device(). Example:

1> {ok,F} = file:open("/dev/null", [read])
{ok, <0. 42. 0>}

2> jo:getopts(F).

[{binary, fal se}, {encodi ng, | ati n1}]

Herethefile |/O-server returns all available optionsfor afile, which are the expected ones, encodi ng and bi nary.
The standard shell however has some more options:

3> jo:getopts().

[{expand_f un, #Fun<gr oup. 0. 120017273>},
{echo, true}

{bi nary, fal se}

{'encodi ng, uni code}]

This exampleis, as can be seen, run in an environment where the terminal supports Unicode input and output.
setopts(Opts) -> ok | {error, Reason}

set opts(loDevice, Opts) -> ok | {error, Reason}
Types:
loDevice=io_device()
Opts=[Opt]
Opt = atom() | {atom(),Value}
Value=term()
Reason = term()

Set optionsfor theio_device() (I oDevi ce).

Ericsson AB. All Rights Reserved.: STDLIB | 203

Possible options and values vary depending on the actual io_device(). For alist of supported options and their current
values on a specific device, use the getopts/1 function.

The options and values supported by the current OTPio_devices are:
binary, list or {binary, bool ()}

If set in binary mode (binary or { binary,true}), theio_server() sends binary data (encoded in UTF-8) as answers
tothe get_line, get_chars and, if possible, get_until requests (see the I/O protocol descriptionin STDLIB User's
Guidefor details). Theimmediate effect isthat get _char s/ 2, 3andget _| i ne/ 1, 2 return UTF-8 binaries
instead of lists of chars for the affected device.

By default, al io_devicesin OTP are set in list mode, but the io functions can handle any of these modes and so
should other, user written, modules behaving as clients to I/O-servers.

This option is supported by the standard shell (group.erl), the 'oldshell’ (user.erl) and the file 1/O servers.
{echo, bool ()}

Denotes if the terminal should echo input. Only supported for the standard shell 1/O-server (group.erl)
{expand_fun, fun()}

Provide a function for tab-completion (expansion) like the erlang shell. This function is called when the user
presses the Tab key. The expansion is active when calling line-reading functionssuch asget _|i ne/ 1, 2.

The function is called with the current line, upto the cursor, as a reversed string. It should return a three-tuple:
{yes| no, string(), [string(), ...]}.Thefirstelementgivesabeepif no, otherwisetheexpansion
is silent, the second is a string that will be entered at the cursor position, and the third is a list of possible
expansions. If thislist is non-empty, the list will be printed and the current input line will be written once again.

Trivia example (beep on anything except empty line, which is expanded to "quit"):

fun(un) _> {yes, "quit", []}'
() ->{no, "", ["quit"]} end

This option is supported by the standard shell only (group.erl).
{encoding, latinl | unicode}

Specifies how characters are input or output from or to the actual device, implying that i.e. aterminal is set to
handle Unicode input and output or afileis set to handle UTF-8 data encoding.

The option does not affect how datais returned from the io-functions or how it is sent in the I/O-protocal, it only
affects how theio_device() isto handle Unicode characters towards the "physical” device.

Thestandard shell will be set for either unicode or latinl encoding when the system is started. The actual encoding
is set with the help of the "LANG" or "LC_CTYPE" environment variables on Unix-like system or by other
means on other systems. The bottom lineis that the user can input Unicode characters and the device will bein
{encoding, unicode} mode if the device supports it. The mode can be changed, if the assumption of the runtime
system iswrong, by setting this option.

Theio_device() used when Erlang is started with the "-oldshell" or "-noshell" flags is by default set to latinl
encoding, meaning that any characters beyond codepoint 255 will be escaped and that input is expected to be
plain 8-bit 1SO-latin-1. If the encoding is changed to Unicode, input and output from the standard file descriptors
will bein UTF-8 (regardless of operating system).

Files can also be set in {encoding, unicode}, meaning that data is written and read as UTF-8. More encodings
are possible for files, see below.

204 | Ericsson AB. All Rights Reserved.: STDLIB

{encoding, unicode | latinl} is supported by both the standard shell (group.erl including werl on windows), the
‘oldshell' (user.erl) and the file 1/0O servers.

{encoding, utf8 | utfl6 | utf32 | {utfl6,big} | {utfl6,little} | {utf32, big}
| {utf32,little}}

For disk files, the encoding can be set to various UTF variants. Thiswill have the effect that datais expected to be
read as the specified encoding from the file and the datawill be written in the specified encoding to the disk file.
{encoding, utf8} will have the same effect as { encoding,unicode} on files.

The extended encodings are only supported on disk files (opened by the file:open/2 function)
wite(Term -> ok

wite(loDevice, Term -> ok
Types.

loDevice=io_device()

Term =term()

Writes the term Ter mto the standard output (I oDevi ce).
read(Pronmpt) -> Result

read(loDevice, Pronpt) -> Result
Types.
loDevice=io_device()
Prompt = atom() | string()
Result = {ok, Term} | eof | {error, Errorinfo}
Term =term()
Errorlnfo -- see section Error Information below

Reads aterm Ter mfrom the standard input (1 oDevi ce), prompting it with Pr onpt . It returns:
{ok, Tern}
The parsing was successful.
eof
End of file was encountered.
{error, Errorlnfo}
The parsing failed.

read(l oDevice, Pronpt, StartLine) -> Result
Types.
loDevice = io_device()
Prompt = atom() | string()
StartLine=int()
Result = {ok, Term, EndLine} | {eof, EndLine} | {error, Errorinfo, EndLine}
Term =term()
EndLine=int()

Ericsson AB. All Rights Reserved.: STDLIB | 205

Errorinfo -- see section Error Information below

Reads a term Ter mfrom | oDevi ce, prompting it with Pr onpt . Reading starts at line number St ar t Li ne. It
returns:

{ok, Term EndLi ne}
The parsing was successful.
{eof , EndLi ne}
End of file was encountered.
{error, Errorlnfo, EndLine}
The parsing failed.

fwite(Format) ->

fwite(Format, Data) -> ok
fwite(loDevice, Format, Data) -> ok
format (Format) ->

format (Format, Data) -> ok

format (1 oDevi ce, Format, Data) -> ok
Types:
loDevice=io_device()
Format = atom() | string() | binary()
Data = [term()]
Writestheitemsin Dat a ([]) on the standard output (I oDevi ce) in accordance with For mat . For nat contains

plain characters which are copied to the output device, and control sequences for formatting, see below. If For mat
isan atom or abinary, it isfirst converted to alist withtheaidof atom to_list/lorbinary_to_list/1.

1> jio:fwite("Hello world!~n", []).
Hel I o worl d!
ok

Thegeneral format of acontrol sequenceis~F. P. PadMbdC. The character Cdeterminesthetype of control sequence
to be used, F and P are optional numeric arguments. If F, P, or Pad is*, the next argument in Dat a is used as the
numeric value of F or P.

Fisthefi el d wi dt h of the printed argument. A negative value meansthat the argument will beleft justified within
thefield, otherwise it will be right justified. If no field width is specified, the required print width will be used. If the
field width specified is too small, then the whole field will be filled with * characters.

Pisthepr eci si on of the printed argument. A default valueisused if no precision is specified. Theinterpretation of
precision depends on the control sequences. Unless otherwise specified, the argument wi t hi n is used to determine
print width.

206 | Ericsson AB. All Rights Reserved.: STDLIB

Pad is the padding character. This is the character used to pad the printed representation of the argument so that
it conforms to the specified field width and precision. Only one padding character can be specified and, whenever
applicable, it isused for both the field width and precision. The default padding character is' ' (space).

Mod is the control sequence modifier. It is either a single character (currently only 't', for unicode trangdlation, is
supported) that changes the interpretation of Data.

The following control sequences are available:

The character ~ iswritten.

c
The argument is a number that will be interpreted as an ASCII code. The precision is the number of times the
character isprinted and it defaultsto the field width, whichin turn defaultsto 1. Thefollowing exampleillustrates:

2> jo:fwite("|~10.5c| ~-10. 5c| ~5¢c| ~n", [$a, $b, $c]).

| aaaaa| bbbbb | cccec]

ok

If the Unicode trandlation modifier ('t") isin effect, the integer argument can be any number representing a valid
unicode codepoint, otherwiseit should be an integer less than or equal to 255, otherwiseit is masked with 16#FF:
1> io:fwite("~tc~n",[1024]).

\ x{ 400}

ok

2> jo:fwite("~c~n",[1024]).

"@

ok

f
The argument is afloat which iswritten as[-] ddd. ddd, where the precision is the number of digits after the
decimal point. The default precision is 6 and it cannot be less than 1.

e
The argument is a float which is written as[-] d. ddde+- ddd, where the precision is the number of digits
written. The default precision is 6 and it cannot be less than 2.

g
Theargument isafloat whichiswritten asf , if itis>= 0.1 and < 10000.0. Otherwise, it iswritten in the e format.
The precision is the number of significant digits. It defaults to 6 and should not be less than 2. If the absolute
value of the float does not alow it to be written in the f format with the desired number of significant digits,
itisalso written in the e format.

S

Prints the argument with the st r i ng syntax. The argument is, if no Unicode translation modifier is present,
an /O ligt, abinary, or an atom. If the Unicode trandation modifier ('t") isin effect, the argument is chardata(),
meaning that binaries are in UTF-8. The characters are printed without quotes. The string isfirst truncated by the
given precision and then padded and justified to the given field width. The default precision is the field width.

Thisformat can be used for printing any object and truncating the output so it fits a specified field:

Ericsson AB. All Rights Reserved.: STDLIB | 207

3> jio:fwite("|~10W ~n", [{hey, hey, hey}]).

|**********|

ok

4> jo:fwite("|~10s|~n", [io_lib:wite({hey, hey, hey})]).

| { hey, hey, h|

5> jo:fwite("|~10.8s|~n", [io_lib:wite({hey, hey, hey})]).
| {hey, hey |

ok

A list with integers larger than 255 is considered an error if the Unicode translation modifier is not given:

1> io:fwite("~ts~n",[[1024]]).

\ x{ 400}

ok

2> jo:fwite("~s~n",[[1024]]).

** exception exit: {badarg,[{io,format,[<0.26.0> "~s~n",[[1024]]]},

w
Writes data with the standard syntax. Thisis used to output Erlang terms. Atoms are printed within quotesif they
contain embedded non-printable characters, and floats are printed accurately as the shortest, correctly rounded
string.

p

Writes the data with standard syntax in the same way as ~w, but breaks terms whose printed representation is
longer than onelineinto many linesand indentseach line sensibly. It also triesto detect listsof printable characters
and to output these as strings. For example:

5> T = [{attributes,[[{id, age, 1. 50000}, { node, explicit},
{typenane, "I NTEGER'}], [{id, cho}, {npnde, explicit}, {typenane,' Cho'}]]},
{typenane, ' Person'}, {tag, {' PRIVATE , 3}},{node,inplicit}].

6> io:fwite("~wn", [T]).
[{attributes,[[{id, age, 1.5}, {node, explicit}, {typenane,
[73,78, 84,69, 71,69,82]}],[{id, cho}, {npde, explicit}, {typena
me, ' Cho'}]1}, {typenane, ' Person'},{tag, {' PRI VATE , 3}}, { node
,implicit}]
ok
7> io:fwite("~62p~n", [T]).
[{attributes,[[{id, age, 1.5},

{node, explicit},

{typenane, "| NTEGER'}],

[{id, cho}, {npde, explicit}, {typenane, ' Cho'}]]},
{typenane, ' Person'},
{tag, {' PRI VATE , 3}},
{node, inplicit}]
ok

Thefield width specifiesthe maximum linelength. It defaultsto 80. The precision specifiestheinitial indentation
of the term. It defaults to the number of characters printed on this line in the sanme cal toio: fwite or
i o: fornmat. For example, using T above:

8> io:fwite("Here T = ~62p~n", [T]).
Here T = [{attributes, [[{id, age, 1.5},

208 | Ericsson AB. All Rights Reserved.: STDLIB

{node, explicit},
{typenane, "| NTEGER'}],
[{id, cho},

{node, explicit},
{typenane, " Cho' }]]},

{typenane, ' Person'},

{tag, {' PRI VATE' , 3}},

{node, inplicit}]

ok

Writes datain the same way as ~w, but takes an extra argument which is the maximum depth to which terms are
printed. Anything below this depth isreplaced with For example, using T above:

9> jo:fwite("~Wn", [T,9]).

[{attributes,[[{id, age, 1.5}, {node, explicit}, {typenane,...}],
[{id, cho},{nDde,...},{...}]]1},{typenane,’ Person'},

{tag, {' PRIVATE , 3}}, {node, inplicit}]

ok

If the maximum depth has been reached, then it isimpossible to read in the resultant output. Also, the, . . . form
in atuple denotes that there are more elementsin the tuple but these are below the print depth.

Writes datain the same way as ~p, but takes an extra argument which is the maximum depth to which terms are
printed. Anything below this depth isreplaced with For example:

10> io:fwite("~62P-n", [T,9]).

[{attributes,[[{id, age, 1.5}, {node, explicit}, {typenane,...}],
[{id, cho},{mode, ...}, {...}11},

{typenane, ' Person'},

{tag, {' PRI VATE , 3}},

{node, inplicit}]

ok

Writes an integer in base 2..36, the default base is 10. A leading dash is printed for negative integers.

The precision field selects base. For example:

11> io:fwite("~. 16B~n", [31]).

1F

ok

12> jio:fwite("~ 2B-n", [-19]).
-10011

ok

13> io:fwite("~. 36B~n", [5*36+35]).
572

ok

Like B, but takes an extra argument that is a prefix to insert before the number, but after the leading dash, if any.

Ericsson AB. All Rights Reserved.: STDLIB | 209

The prefix can be a possibly deep list of characters or an atom.

14> jo:fwite("~X-n", [31,"10#"]).

10#31
ok
15> jo: fwrite("~. 16X~n", [-31,"0x"]).
- Ox1F
ok
#
Like B, but prints the number with an Erlang style '#-separated base prefix.
16> io:fwite("~. 10#~n", [31]).
10#31
ok
17> io:fwite("~. 16#~n", [-31]).
- 16#1F
ok
b
Like B, but prints lowercase | etters.
X
Like X, but prints lowercase | etters.
+
Like#, but prints lowercase letters.
n
Writes anew line.
i
Ignores the next term.
Returns:
ok

The formatting succeeded.
If an error occurs, thereis no output. For example:

18> io:fwite("~s ~w ~i ~w ~c ~n",['abc def', 'abc def', {foo, 1},{foo, 1}, 65]).
abc def 'abc def' {foo,1} A
ok

19> io:fwite("~s", [65]).
** exception exit: {badarg,[{io,format,[<0.22. 0> "~s","A"]},
{erl _eval , do_apply, 5},
{shel | , exprs, 6},
{shel | , eval _exprs, 6},
{shel |, eval _| oop, 3}1}
in function io0:0_request/2

210 | Ericsson AB. All Rights Reserved.: STDLIB

In this example, an attempt was made to output the single character '65' with the aid of the string formatting directive
"~g",

fread(Pronpt, Format) -> Result

fread(l oDevice, Pronpt, Format) -> Result
Types:

loDevice=io_device()

Prompt = atom() | string()

Format = string()

Result = {ok, Terms} | eof | {error, What}
Terms=[term()]

What =term()

Reads characters from the standard input (I oDevi ce), prompting it with Pr onpt . Interprets the characters in
accordance with For mat . For mat contains control sequences which directs the interpretation of the input.

For mat may contain:

White space characters (SPACE, TAB and NEWLINE) which cause input to be read to the next non-white space
character.

Ordinary characters which must match the next input character.

Control sequences, which have the general format ~* FMC. The character * is an optiona return suppression
character. It provides amethod to specify afield whichisto be omitted. Fisthef i el d wi dt h of theinput field,
Mis an optional translation modifier (of which 't' is the only currently supported, meaning Unicode trandation)
and C determines the type of control sequence.

Unless otherwise specified, leading white-space is ignored for all control sequences. An input field cannot be
more than one line wide. The following control sequences are available:

A single ~ is expected in the input.
d

A decimal integer is expected.

u

An unsigned integer in base 2..36 is expected. The field width parameter is used to specify base. Leading white-
space characters are not skipped.

An optional sign character is expected. A sign character '-' gives the return value - 1. Sign character '+' or none
gives 1. Thefield width parameter isignored. L eading white-space characters are not skipped.

#

An integer in base 2..36 with Erlang-style base prefix (for example" 16#f f f f ") is expected.
f

A floating point number is expected. It must follow the Erlang floating point number syntax.
s

A string of non-white-space charactersisread. If afield width has been specified, this number of characters are
read and all trailing white-space characters are stripped. An Erlang string (list of characters) is returned.

Ericsson AB. All Rights Reserved.: STDLIB | 211

If Unicodetrandation isin effect (~ts), characterslarger than 255 are accepted, otherwise not. With thetranslation
modifier, the list returned may as a consequence also contain integers larger than 255:

1> io:fread("Pronmpt> ", "~s").

Pronpt > <Characters beyond | atinl range not printable in this nedi un
{error,{fread, string}}

2> jo:fread("Pronpt> ", 6 "~ts").

Pronpt > <Characters beyond | atinl range not printable in this nedi un
{ok,[[1091, 1085, 1080, 1094, 1086, 1076, 1077]] }

a

Similar to s, but the resulting string is converted into an atom.

The Unicode trandlation modifier is not allowed (atoms can not contain characters beyond the latinl range).
c

Thenumber of charactersequal to thefield width areread (default is 1) and returned asan Erlang string. However,
leading and trailing white-space characters are not omitted asthey are with s. All characters are returned.

The Unicode trand ation modifier works aswith s:

1> io:fread("Prompt> ","~c").

Pronpt > <Character beyond latinl range not printable in this mediun>
{error,{fread, string}}

2> jo:fread("Pronpt> ", "~tc").

Pronpt > <Character beyond latinl range not printable in this mediun>
{ok,[[1091]]}

I
Returns the number of characters which have been scanned up to that point, including white-space characters.
It returns:
{ok, Terns}
The read was successful and Ter ns isthe list of successfully matched and read items.
eof
End of file was encountered.
{error, What}
The read operation failed and the parameter What gives a hint about the error.
Examples:

20> io:fread('enter>', "~f~f~f").
enter>1.9 35.5e3 15.0
{ok,[1.9, 3.55e4, 15.0] }

21> jio:fread('enter>', "~10f~d").

ent er > 5. 67899

{ok,[5.678,99]}

22> jo:fread('enter>', ":~10s:~10c:").
ent er>: al an : j oe :

{ok, ["alan", " j oe "1}

212 | Ericsson AB. All Rights Reserved.: STDLIB

rows() -> {ok,int()} | {error, enotsup}

rows(loDevice) -> {ok,int()} | {error, enotsup}
Types:
loDevice = io_device()

Retrievesthe number of rowsof thel oDevi ce (i.e. the height of aterminal). The function only succeedsfor terminal
devices, for al other devicesthe functionreturns{ error, enot sup}

scan_erl _exprs(Pronpt) ->
scan_erl _exprs(Pronpt, StartlLine) -> Result

scan_erl _exprs(loDevice, Pronpt, StartLine) -> Result
Types:
loDevice=io_device()
Prompt = atom() | string()
StartLine=int()
Result = {ok, Tokens, EndLine} | {eof, EndLine€} | {error, Errorinfo, EndLine}
Tokens-- seeerl_scan(3)
EndLine=int()
Errorlnfo -- see section Error Information below
Reads data from the standard input (I oDevi ce), prompting it with Pronpt . Reading starts at line number

St art Li ne (1). The datais tokenized as if it were a sequence of Erlang expressions until afinal ' . ' isreached.
Thistoken isalso returned. It returns:

{ok, Tokens, EndLi ne}
The tokenization succeeded.
{eof, EndLi ne}
End of file was encountered.
{error, Errorlnfo, EndLine}
An error occurred.
Example:

23> io:scan_erl _exprs('enter>").

ent er >abc(), "hey".

{ok,[{atom 1, abc}, {" (', 21}, {")",1},{","', 1}, {string, 1, "hey"}, {dot, 1}], 2}
24> io:scan_erl _exprs('enter>").

ent er >1. Oer.

{error,{1,erl _scan,{illegal,float}}, 2}

Ericsson AB. All Rights Reserved.: STDLIB | 213

scan_erl _form(Prompt) ->
scan_erl _forn(Pronpt, StartLine) -> Result

scan_erl _forn(loDevice, Pronpt, StartlLine) -> Result
Types:
loDevice=io_device()
Prompt = atom() | string()
StartLine=int()
Result = {ok, Tokens, EndLine} | {eof, EndLine} | {error, Errorinfo, EndLine}
Tokens-- seeerl_scan(3)
EndLine=int()
Errorlnfo -- see section Error Information below
Reads data from the standard input (I oDevi ce), prompting it with Pr onpt . Starts reading at line humber
Start Li ne (1). The data is tokenized as if it were an Erlang form - one of the valid Erlang expressions in an

Erlang source file - until afinal ' . ' isreached. This last token is aso returned. The return values are the same as
forscan_er| _exprs/1, 2, 3 above.

parse_erl _exprs(Pronpt) ->
parse_erl _exprs(Pronpt, StartLine) -> Result

parse_erl _exprs(loDevice, Pronpt, StartLine) -> Result
Types:
loDevice=io_device()
Prompt = atom() | string()
StartLine=int()
Result = {ok, Expr_list, EndLine} | {eof, EndLine} | {error, Errorinfo, EndLine}
Expr_list -- seeerl_parse(3)
EndLine=int()
Errorlnfo -- see section Error Information below

Reads data from the standard input (I oDevi ce), prompting it with Pr onpt . Starts reading at line number
St art Li ne (1). The data is tokenized and parsed as if it were a sequence of Erlang expressions until afinal "' is
reached. It returns:

{ok, Expr_list, EndLine}
The parsing was successful.
{eof, EndLi ne}
End of file was encountered.
{error, Errorlnfo, EndLine}
An error occurred.
Example:

25> jo: parse_erl _exprs('enter>").

214 | Ericsson AB. All Rights Reserved.: STDLIB

ent er >abc(), "hey".

{ok, [{call,1,{atom1, abc},[]},{string, 1, "hey"}], 2}

26> io:parse_erl _exprs ('enter>")

ent er >abc(" hey".

{error,{1,erl _parse,["syntax error before: ",["'.""]]1}, 2}

parse_erl _form Pronpt) ->
parse_erl _form(Pronpt, StartLine) -> Result

parse_erl _form(loDevice, Pronpt, StartLine) -> Result
Types:
loDevice=io_device()
Prompt = atom() | string()
StartLine=int()
Result = {ok, AbsForm, EndLine} | {eof, EndLine€} |{error, Errorinfo, EndLine}
AbsForm -- see erl_parse(3)
EndLine=int()
Errorlnfo -- see section Error Information below
Reads data from the standard input (I oDevi ce), prompting it with Pr onpt . Starts reading at line number

St art Li ne (1). The dataistokenized and parsed as if it were an Erlang form - one of the valid Erlang expressions
in an Erlang source file - until afinal '." isreached. It returns:

{ok, AbsForm EndLi ne}

The parsing was successful.
{eof, EndLi ne}

End of file was encountered.
{error, Errorlnfo, EndLine}

An error occurred.

Standard Input/Output

All Erlang processes have a default standard 10 device. Thisdeviceisusedwhenno | oDevi ce argument is specified
in the above function calls. However, it is sometimes desirable to use an explicit | oDevi ce argument which refers
to the default 10 device. Thisisthe case with functions that can access either afile or the default 10 device. The atom
st andar d_i o hasthis specia meaning. The following exampleillustrates this:

27> io:read('enter>').

ent er >f 0o

{ ok, f oo}

28> io:read(standard_io, 'enter>').
ent er >bar .

{ ok, bar}

There is aways a process registered under the name of user . This can be used for sending output to the user.

Ericsson AB. All Rights Reserved.: STDLIB | 215

Standard Error

In certain situations, especially when the standard output is redirected, access to an io_server() specific for error
messages might be convenient. The io_device 'standard_error' can be used to direct output to whatever the current
operating system considers a suitable device for error output. Example on a Unix-like operating system:

$ erl -noshell -noinput -eval 'io:format(standard_error,"Error: ~s~n",["error 11"]),"\
‘init:stop().' > /dev/null
Error: error 11

Error Information

The Er r or | nf o mentioned above is the standard Er r or | nf o structure which is returned from all 1O modules. It
has the format:

{ErrorLine, Mdule, ErrorDescriptor}

A string which describes the error is obtained with the following call:

Modul e: format _error (ErrorDescriptor)

216 | Ericsson AB. All Rights Reserved.: STDLIB

io_lib

io_lib

Erlang module

Thismodule containsfunctions for converting to and from strings (lists of characters). They are used for implementing
the functionsin thei o module. There is no guarantee that the character lists returned from some of the functions are
flat, they canbedeeplists. | i st s: fl att en/ 1 can be used for flattening deep lists.

DATA TYPES
chars() = [char() | chars()]
Exports

nl () -> chars()
Returns a character list which represents anew line character.

wite(Term ->

write(Term Depth) -> chars()

Types:
Term =term()
Depth =int()

Returns a character list which represents Ter m The Dept h (-1) argument controls the depth of the structures written.
When the specified depth is reached, everything below thislevel isreplaced by "...". For example:

1> lists:flatten(io_lib:wite({1,[2],[3],[4,5],6,7,8,9})).
"{1,[2],[3].,[4,5].6,7,8,9}"

2> |ists:flatten(io_|lib:wite({1,[2],[3],[4,5],6,7,8,9}, 5)).
{12, 03.[0...1,...}"

print(Term ->

print(Term Columm, LineLength, Depth) -> chars()
Types:
Term =term()
Column = LineL enght = Depth = int()
Also returns a list of characters which represents Ter m but breaks representations which are longer than one line
into many lines and indents each line sensibly. It also tries to detect and output lists of printable characters as strings.

Col umm is the starting column (1), Li neLengt h the maximum line length (80), and Dept h (-1) the maximum
print depth.

Ericsson AB. All Rights Reserved.: STDLIB | 217

io_lib

fwite(Format, Data) ->

format (Format, Data) -> chars() | Unicodeli st
Types.

Format = atom() | string() | binary()

Data = [term()]

UnicodeL ist = [Unicode]

Unicode = int() representing valid unicode codepoint
Returnsacharacter list which representsDat a formatted in accordancewith For mat . Seeio:fwrite/1,2,3for adetailed
description of the available formatting options. A fault is generated if thereisan error in the format string or argument
list.

If (and only if) the Unicode trandation modifier is used in the format string (i.e. ~ts or ~tc), the resulting list may
contain characters beyond the 1SO-latin-1 character range (in other words, numbers larger than 255). If so, the result
isnot an ordinary Erlang string(), but can well be used in any context where Unicode data is allowed.

fread(Format, String) -> Result
Types:
Format = String = string()
Result = {ok, InputList, LeftOver Chars} | {more, RestFormat, Nchars, InputStack} | {error, What}
InputList = chars()
LeftOverChars=string()
RestFormat = string()
Nchars=int()
InputStack = chars()
What =term()

Triestoread St r i ng in accordance with the control sequencesin For mat . Seeio:fread/3 for a detailed description
of the available formatting options. It is assumed that St r i ng containswhole lines. It returns:

{ok, InputlList, LeftOverChars}

Thestringwasread. | nput Li st isthelist of successfully matched and read items, and Lef t Over Char s are
the input characters not used.

{nore, RestFormat, Nchars, |nputStack}

The string was read, but more input is needed in order to complete the original format string. Rest For mat is
the remaining format string, NChar s the number of characters scanned, and | nput St ack isthe reversed list
of inputs matched up to that point.

{error, What}
The read operation failed and the parameter What gives a hint about the error.
Example:

3> io0 lib:fread("~f~f~f", "15.6 17.3e-6 24.5").
{ok,[15.6,1.73e-5,24.5],[]}

218 | Ericsson AB. All Rights Reserved.: STDLIB

io_lib

fread(Continuation, String, Format) -> Return
Types:
Continuation = see below
String = Format = string()
Return = {done, Result, L eftOver Chars} | {more, Continuation}
Result = {ok, InputList} | eof | {error, What}
InputList = char ()
What =term()()
L eftOverChars= string()

This is the re-entrant formatted reader. The continuation of the first call to the functions must be [] . Refer to
Armstrong, Virding, Williams, ‘Concurrent Programming in Erlang’, Chapter 13 for a complete description of how
the re-entrant input scheme works.

The function returns:

{done, Result, LeftOverChars}
Theinput is complete. The result is one of the following:
{ok, InputList}

Thestringwasread. | nput Li st isthelist of successfully matched and read items, and Lef t Over Char s are
the remaining characters.

eof
End of file has been encountered. Lef t Over Char s are the input characters not used.
{error, Wat}
An error occurred and the parameter What gives a hint about the error.
{nore, Continuation}

More dataisrequired to build aterm. Cont i nuat i on must be passedto f r ead/ 3, when more data becomes
available.

wite atomAtom) -> chars()
Types:
Atom = atom()
Returnsthelist of characters needed to print the atom At om

wite_string(String) -> chars()
Types:
String = string()
Returnsthe list of characters needed to print St r i ng asastring.

write char(lnteger) -> chars()
Types:
Integer =int()
Returns the list of characters needed to print a character constant in the 1SO-latin-1 character set.

Ericsson AB. All Rights Reserved.: STDLIB | 219

io_lib

i ndentation(String, Startlndent) -> int()
Types:
String = string()
Startlndent = int()
Returns the indentation if St r i ng has been printed, starting at St ar t | ndent .

char _list(Term -> bool ()
Types:
Term =term()

Returnst r ue if Ter misaflat list of charactersin the ISO-latin-1 range, otherwiseit returnsf al se.

deep_char_list(Term) -> bool ()
Types:
Term =term()
Returnst r ue if Ter misa, possibly deep, list of charactersin the I1SO-latin-1 range, otherwiseit returnsf al se.

printable list(Tern) -> bool ()
Types:
Term =term()
Returnst r ue if Ter misaflat list of printable | SO-latin-1 characters, otherwise it returnsf al se.

220 | Ericsson AB. All Rights Reserved.: STDLIB

lib

lib

Erlang module

Warning:

This module is retained for compatibility. It may disappear without warning in afuture release.

Exports

flush_receive() -> void()
Flushes the message buffer of the current process.

error_nessage(Format, Args) -> ok
Types:
Format = atom() | string() | binary()
Args=[term()]
Prints error message Ar gs in accordance with For mat . Similar toi o: f or mat / 2, seeio(3).

prognane() -> atom)
Returns the name of the script that started the current Erlang session.

nonl (Stringl) -> String2
Types:
Stringl = String2 = string()
Removes the last newline character, if any, in St ri ngl.

send(To, MsQ)
Types:
To = pid() | Name | {Name,Node}
Name = Node = atom()
Msg =term()
This function to makesit possible to send a message using the appl y/ 3 BIF.

sendw(To, MsQ)
Types:
To = pid() | Name | {Name,Node}
Name = Node = atom()
Msg =term()
Assend/ 2, but waits for an answer. It isimplemented as follows:

Ericsson AB. All Rights Reserved.: STDLIB | 221

lib

sendw To, Msg) ->
To ! {self(), Msg},
recei ve
Reply -> Reply
end.

The message returned is not necessarily areply to the message sent.

222 | Ericsson AB. All Rights Reserved.: STDLIB

lists

lists

Erlang module

This module contains functions for list processing.

Unless otherwise stated, all functions assume that position numbering starts at 1. That is, the first element of alist
isat position 1.

TwotermsT1 and T2 compareequal if T1 == T2 evaluatestot r ue. They matchif T1 =: = T2 evaluatestot r ue.

Whenever an ordering function F is expected as argument, it is assumed that the following properties hold of F for
al x,yandz

« ifxFyandyF xthenx =y (F isantisymmetric);

« ifxFyandyF zthenx F z (F istransitive);

e XxFyoryFx(Fistota).

An example of atypical ordering function islessthan or equal to, =</ 2.

Exports

all (Pred, List) -> bool ()
Types.
Pred = fun(Elem) -> bool()
Elem =term()
List = [term()]
Returnst r ue if Pred(El en) returnst r ue for al elementsEl eminLi st , otherwisef al se.

any(Pred, List) -> bool ()
Types.
Pred = fun(Elem) -> bool()
Elem =term()
List = [term()]
Returnst r ue if Pred(El en) returnst r ue for at least one element El eminLi st .

append(ListOfLists) -> Listl
Types:
ListOfLists=[List]
List =Listl =[term()]
Returnsalist in which all the sub-listsof Li st Of Li st s have been appended. For example:

> |ists:append([[1, 2, 3], [a, b], [4, 5, 6]]).
[1,2,3,4a,b,4,5, 6]

append(Listl, List2) -> List3
Types.

Ericsson AB. All Rights Reserved.: STDLIB | 223

lists

Listl = List2 = List3 = [term()]

Returns a new list Li st 3 which is made from the elements of Li st 1 followed by the elements of Li st 2. For
example:

> | ists:append("abc", "def").
"abcdef"

lists:append(A, B) isequivaenttoA ++ B.

concat (Things) -> string()
Types.
Things = [Thing]
Thing = atom() | integer () | float() | string()

Concatenates the text representation of the elements of Thi ngs. The elements of Thi ngs can be atoms, integers,
floats or strings.

> |ists:concat([doc, '/', file, ".', 3]).
"doc/file.3"

delete(Elem Listl) -> List2
Types:
Elem =term()
Listl = List2 = [term()]
Returnsacopy of Li st 1 where thefirst element matching El emis deleted, if thereis such an element.

dropwhi l e(Pred, Listl) -> List2
Types:
Pred = fun(Elem) -> bool()
Elem =term()
Listl = List2 = [term()]
Drops elements El emfrom Li st 1 whilePr ed(El em) returnst r ue and returns the remaining list.

duplicate(N, Elem -> List
Types:
N =int()
Elem =term()
List = [term()]
Returns alist which contains N copies of the term El em For example:

> |ists:duplicate(5, xx).
[XX, XX, XX, XX, XX]

224 | Ericsson AB. All Rights Reserved.: STDLIB

lists

filter(Pred, Listl) -> List2
Types:
Pred = fun(Elem) -> bool()
Elem =term()
Listl=List2 =[term()]
Li st 2 isalist of all elementsEl emin Li st 1 for which Pr ed(El en) returnst r ue.

flatl ength(DeepList) -> int()
Types:
DeepList = [term() | DeepList]
Equivalenttol engt h(fl att en(DeepLi st)), but more efficient.

flatmap(Fun, Listl) -> List2
Types.

Fun =fun(A) ->[B]

Listl =[A]

List2 =[B]

A=B=term()

Takes a function from Asto lists of Bs, and alist of As(Li st 1) and produces alist of Bs by applying the function
to every element in Li st 1 and appending the resulting lists.

Thatis, f | at map behaves asif it had been defined as follows:

fl at map(Fun, List1) ->
append(map(Fun, Listl)).

Example:

> lists:flatmap(fun(X)->[X, X] end, [a,b,c]).
[a,a,b,b,c,c]

flatten(DeeplList) -> List

Types:
DeepList = [term() | DeepList]
List = [term()]

Returns a flattened version of DeeplLi st .

flatten(DeepList, Tail) -> List
Types:
DeepList = [term() | DeepList]
Tail = List =[term()]
Returns aflattened version of DeepLi st withthetail Tai | appended.

Ericsson AB. All Rights Reserved.: STDLIB | 225

lists

foldl (Fun, AccO, List) -> Accl
Types:
Fun = fun(Elem, Accln) -> AccOut
Elem =term()
AccO = Accl = Accln = AccOut =term()
List = [term()]
CdlsFun(El em Accl n) on successive elements A of Li st, starting with Accln == AccO. Fun/ 2 must

return a new accumulator which is passed to the next call. The function returns the final value of the accumulator.
AccO isreturned if the list is empty. For example:

> lists:foldl (fun(X, Sum) -> X + Sumend, 0, [1,2,3,4,5]).
15

> lists:foldl (fun(X, Prod) -> X * Prod end, 1, [1,2,3,4,5]).
120

foldr(Fun, AccO, List) -> Accl
Types.
Fun = fun(Elem, Accln) -> AccOut
Elem =term()
AccO = Accl = Accln = AccOut =term()
List = [term()]
Likef ol dl / 3, but thelist istraversed from right to left. For example:

> P = fun(A, Accln) ->jio:format("~p ", [Al), Accln end.
#Fun<er| _eval . 12. 2225172>

> |ists:foldl (P, void, [1,2,3]).

12 3 void

> |ists:foldr(P, void, [1,2,3]).

321 void

f ol dl / 3 istail recursive and would usually be preferred to f ol dr/ 3.

foreach(Fun, List) -> void()
Types.

Fun = fun(Elem) -> void()

Elem =term()

List = [term()]

CdlsFun(El em) for each element El eminLi st . Thisfunction isused for its side effects and the evaluation order
is defined to be the same as the order of the elementsin the list.

keydel et e(Key, N, TupleListl) -> TupleList2
Types.

Key =term()

N = 1..tuple size(Tuple)

TupleListl = TupleList2=[Tuple]

226 | Ericsson AB. All Rights Reserved.: STDLIB

lists

Tuple=tuple)
Returns a copy of Tupl eLi st 1 where the first occurrence of atuple whose Nth element compares equal to Key is
deleted, if thereis such atuple.

keyfind(Key, N, TupleList) -> Tuple | false
Types.
Key =term()
N = 1..tuple size(Tuple)
TupleList = [Tuple]
Tuple=tuple)
Searchesthelist of tuples Tupl eLi st for atuple whose Nth element compares equal to Key . Returns Tupl e if such
atupleisfound, otherwisef al se.

keymap(Fun, N, TupleListl) -> TupleList2
Types:
Fun =fun(Terml) -> Term2
Terml=Term2=term()
N = 1..tuple _size(Tuple)
TupleListl = TupleList2 = [tuple()]
Returnsalist of tupleswhere, for each tuplein Tupl eLi st 1, the Nth element Ter miL of the tuple has been replaced
with the result of calling Fun(Ter ni) .

Examples:

> Fun = fun(Atonm) -> atomto_list(Atonm end.

#Fun<er| _eval . 6. 10732646>

2> |ists: keymap(Fun, 2, [{nane,jane, 22}, {nane,lizzie, 20}, {nane, | ydia, 15}]).
[{nane, "j ane", 22}, {nane, "l i zzie", 20}, {nane, "l ydi a", 15}]

keymenber (Key, N, TupleList) -> bool ()
Types:
Key =term()
N = 1..tuple _size(Tuple)
TupleList = [Tuple]
Tuple = tuple()
Returnst r ue if thereisatuplein Tupl eLi st whose Nth element compares equal to Key, otherwisef al se.

keynerge(N, TupleListl, TuplelList2) -> TupleList3
Types.
N = 1..tuple _size(Tuple)
TupleListl = TupleList2 = TupleList3=[Tuple]
Tuple=tuple()

Ericsson AB. All Rights Reserved.: STDLIB | 227

lists

Returns the sorted list formed by merging Tupl eLi st 1 and Tupl eLi st 2. The merge is performed on the Nth
element of each tuple. Both Tupl eLi st 1 and Tupl eLi st 2 must be key-sorted prior to evaluating this function.
When two tuples compare equal, the tuple from Tupl eLi st 1 is picked before the tuple from Tupl eLi st 2.

keyrepl ace(Key, N, TupleListl, NewTuple) -> TupleList2
Types.
Key =term()
N = 1..tuple _size(Tuple)
TupleListl = TupleList2=[Tuple]
NewTuple=Tuple=tuple()
Returns a copy of Tupl eLi st 1 where the first occurrence of a T tuple whose Nth element compares equal to Key
isreplaced with NewTupl e, if thereissuch atuple T.

keysearch(Key, N, TupleList) -> {value, Tuple} | false
Types:
Key =term()
N = 1..tuple_size(Tuple)
TupleList =[Tuple]
Tuple = tuple()
Searches the list of tuples Tupl eLi st for atuple whose Nth element compares equal to Key. Returns { val ue,
Tupl e} if such atupleisfound, otherwisef al se.

Note:

This function is retained for backward compatibility. The function | i st s: keyf i nd/ 3 (introduced in R13A)
isin most cases more convenient.

keysort (N, TuplelListl) -> TupleList2
Types:
N = 1..tuple_size(Tuple)
TupleListl = TupleList2 =[Tuple]
Tuple=tuple)
Returns a list containing the sorted elements of the list Tupl eLi st 1. Sorting is performed on the Nth element of
the tuples. The sort is stable.

keystore(Key, N, TupleListl, NewTuple) -> Tuplelist2
Types:

Key =term()

N = 1..tuple _size(Tuple)

TupleListl = TupleList2=[Tuple]

NewTuple=Tuple=tuple()

228 | Ericsson AB. All Rights Reserved.: STDLIB

lists

Returns a copy of Tupl eLi st 1 where the first occurrence of atuple T whose Nth element compares equal to Key
is replaced with NewTupl e, if there is such atuple T. If there is no such tuple T a copy of Tupl eLi st 1 where
[NewTupl e] has been appended to the end is returned.

keyt ake(Key, N, TuplelListl) -> {value, Tuple, TupleList2} | false
Types.
Key =term()
N = 1..tuple size(Tuple)
TupleListl = TupleList2=[Tuple]
Tuple=tuple)
Searches the list of tuples Tupl eLi st 1 for atuple whose Nth element compares equal to Key. Returns { val ue,

Tupl e, Tupl eLi st 2} if such atuple is found, otherwise f al se. Tupl eLi st 2 isa copy of Tupl eLi st1
where the first occurrence of Tupl e has been removed.

| ast (List) -> Last

Types:
List = [term()], length(List) >0
Last =term()

Returnsthe last element in Li st .

map(Fun, Listl) -> List2
Types.
Fun =fun(A) ->B
List1=[A]
List2=[B]
A=B=term()
Takes afunction from Asto Bs, and alist of Asand produces alist of Bs by applying the function to every element in
thelist. This function is used to obtain the return values. The evaluation order isimplementation dependent.

mapf ol dl (Fun, AccO, Listl) -> {List2, Accl}
Types:
Fun =fun(A, Accln) -> {B, AccOut}
AccO = Accl = Accln = AccOut =term()
Listl=[A]
List2=[B]
A=B=term()
mapf ol dl combinesthe operations of map/ 2 and f ol dl / 3 into one pass. An example, summing the elementsin
alist and double them at the same time:

> lists:mapfoldl (fun(X, Sum -> {2*X, X+Sun} end,
0, [1,2,3,4,5]).
{[2,4,6,8,10], 15}

Ericsson AB. All Rights Reserved.: STDLIB | 229

lists

mapf ol dr (Fun, AccO, Listl) -> {List2, Accl}
Types:

Fun =fun(A, Accln) -> {B, AccOut}

AccO = Accl = Accln = AccOut =term()

Listl =[A]

List2 =[B]

A=B=term()

mapf ol dr combines the operations of map/ 2 and f ol dr / 3 into one pass.

max(List) -> Max

Types:
List = [term()], length(List) >0
Max =term()

Returnsthefirst element of Li st that compares greater than or equal to all other elementsof Li st .

menber (El em List) -> bool ()

Types.
Elem =term()
List = [term()]

Returnst r ue if EIl emmatches some element of Li st , otherwisef al se.

merge(ListOFLists) -> Listl
Types:
ListOfLists=[List]
List = Listl = [term()]
Returns the sorted list formed by merging all the sub-lists of Li st OF Li st s. All sub-lists must be sorted prior to

evaluating this function. When two elements compare equal, the element from the sub-list with the lowest position in
Li st OF Li st s is picked before the other element.

merge(Listl, List2) -> List3
Types:
Listl =List2 =List3 =[term()]
Returns the sorted list formed by merging Li st 1 and Li st 2. Both Li st 1 and Li st 2 must be sorted prior to

evaluating this function. When two elements compare equal, the element from Li st 1 is picked before the element
fromLi st 2.

nmerge(Fun, Listl, List2) -> List3
Types:

Fun =fun(A, B) -> bool()

List1 =[A]

List2 =[B]

List3=[A|B]

A=B=term()

230 | Ericsson AB. All Rights Reserved.: STDLIB

lists

Returns the sorted list formed by merging Li st 1 and Li st 2. Both Li st 1 and Li st 2 must be sorted according
to the ordering function Fun prior to evaluating this function. Fun(A, B) should returnt r ue if A compares less
than or equal to B in the ordering, f al se otherwise. When two elements compare equal, the element from Li st 1
is picked before the element from Li st 2.

merge3(Listl, List2, List3) -> List4
Types:
Listl=List2=List3=List4 = [term()]
Returns the sorted list formed by merging Li st 1, Li st 2 and Li st 3. All of Li st 1, Li st 2 and Li st 3 must be
sorted prior to evaluating this function. When two elements compare equal, the element from Li st 1, if thereissuch

an element, is picked before the other element, otherwise the element from Li st 2 is picked before the element from
Li st 3.

mn(List) -> Mn

Types:
List = [term()], length(List) >0
Min =term()

Returnsthe first element of Li st that compares lessthan or equal to al other elements of Li st .

nth(N, List) -> Elem

Types.
N = 1.length(List)
List = [term()]

Elem =term()
Returns the Nth element of Li st . For example:

> |lists:nth(3, [a, b, ¢, d, €e]).
c

nthtail (N, Listl) -> Tail
Types.

N =0..length(List1)

Listl = Tail = [term()]

Returns the Nth tail of Li st , that is, the sublist of Li st starting at N+1 and continuing up to the end of the list.
For example:

> |lists:nthtail (3, [a, b, ¢, d, €]).

[d, e]

>tl(tl(tl([a, b, c, d, €]))).

[d, e]

> |lists:nthtail (0, [a, b, ¢, d, €]).
[a, b, c,d,e]

> |lists:nthtail (5 [a, b, ¢, d, €]).
[1

Ericsson AB. All Rights Reserved.: STDLIB | 231

lists

partition(Pred, List) -> {Satisfying, NonSatisfying}
Types:

Pred = fun(Elem) -> bool()

Elem =term()

List = Satisfying = NonSatisfying = [term()]

Partitions Li st into two lists, where the first list contains al elements for which Pr ed(El em) returnst r ue, and
the second list contains all elements for which Pr ed(El em) returnsf al se.

Examples:

> |ists:partition(fun(A) -> Arem2 ==1end, [1,2,3,4,5,6,7]).
{[1,3,5,7],[2,4,6]}

> |lists:partition(fun(A) -> is_atom(A) end, [a,b,1,c,d,2,3,4,€e]).
{[a,b,c,d,e],[1,2,3,4]}

Seedsosplitw th/2foradifferent way to partition alist.

prefix(Listl, List2) -> bool ()
Types:
Listl=List2 =[term()]
Returnst r ue if Li st 1 isaprefix of Li st 2, otherwisef al se.

reverse(Listl) -> List2
Types:
Listl=List2 =[term()]
Returns alist with the top level elementsinLi st 1 in reverse order.
reverse(Listl, Tail) -> List2
Types:
Listl=Tail = List2 =[term()]
Returns alist with the top level elementsin Li st 1 in reverse order, with the tail Tai | appended. For example:

> |ists:reverse([1, 2, 3, 4], [a, b, c]).
[4,3,2,1,4a,b,c]

seq(From To) -> Seq

seq(From To, Incr) -> Seq

Types:
From=To=Incr =int()
Seq = [int()]

Returns a sequence of integers which starts with Fr omand contains the successive results of adding | ncr to the
previous element, until To has been reached or passed (in the latter case, To isnot an element of the sequence). | ncr
defaultsto 1.

232 | Ericsson AB. All Rights Reserved.: STDLIB

lists

Failure: If To<From | ncr and | ncr ispositive, or if To>From | ncr and| ncr isnegative, orif | ncr ==0 and
From =To.

The following equalities hold for all sequences:

I ength(lists:seq(From To)) == To- From+l
length(lists:seq(From To, Incr)) == (To-Fromtlncr) div Incr

Examples:

> |ists:seq(1, 10).
[1,2,3,4,5,6,7,8,9,10]
> |ists:seq(1, 20, 3).
[1,4,7, 10,13, 16, 19]

> |ists:seq(1, 0, 1).

[]
> |ists:seq(10, 6, 4).

[]
> |lists:seq(1, 1, 0).

(1

sort(Listl) -> List2
Types:
Listl=List2 =[term()]

Returns alist containing the sorted elements of Li st 1.

sort(Fun, Listl) -> List2
Types:
Fun = fun(Elem1, Elem2) -> bool()
Eleml1 = Elem2 = term()
Listl = List2 = [term()]

Returnsalist containing the sorted elements of Li st 1, according to the ordering function Fun. Fun(A, B) should
returnt r ue if A compares lessthan or equal to Binthe ordering, f al se otherwise.

split(N, Listl) -> {List2, List3}
Types:
N =0..length(Listl)
Listl=List2=List3 =[term()]

SplitsLi st 1 intoLi st 2 and Li st 3. Li st 2 containsthefirst Nelementsand Li st 3 the rest of the elements (the
Nth tail).

splitwith(Pred, List) -> {Listl, List2}
Types.

Pred = fun(Elem) -> bool()

Elem =term()

List=Listl =List2 =[term()]

Ericsson AB. All Rights Reserved.: STDLIB | 233

lists

Partitions Li st intotwo listsaccordingto Pr ed. spl i t wi t h/ 2 behavesasif it is defined as follows:

splitwith(Pred, List) ->
{takewhi |l e(Pred, List), dropwhile(Pred, List)}.

Examples:

> |ists:splitwith(fun(A) -> Arem2 ==1end, [1,2,3,4,5,6,7]).
{[1].[2,3,4,5,6,7]}

> |ists:splitwith(fun(A) -> is_atonm(A) end, [a,b,1,c,d,2,3,4,€e]).
{[a,b],[1,c,d,2,3,4,€e]}

Seedsopartition/ 2 foradifferent way to partition alist.

sublist(Listl, Len) -> List2

Types:
Listl =List2=[term()]
Len =int()

Returnsthe sub-list of Li st 1 starting at position 1 and with (max) Len elements. It isnot an error for Len to exceed
the length of thelist -- in that case the whole list is returned.

sublist(Listl, Start, Len) -> List2
Types:
Listl = List2 = [term()]
Start = 1..(length(List1)+1)
Len =int()
Returns the sub-list of Li st 1 starting at St art and with (max) Len elements. It is not an error for St art +Len
to exceed the length of the list.

> |lists:sublist([1,2,3,4], 2, 2).
[2, 3]

> |ists:sublist([1,2,3,4], 2, 5).
[2,3,4]

> |ists:sublist([1,2,3,4], 5, 2).
[

subtract (List1, List2) -> List3
Types:
Listl =List2 =List3 =[term()]

ReturnsanewlistLi st 3 whichisacopy of Li st 1, subjected to thefollowing procedure: for eachelementinLi st 2,
itsfirst occurrencein Li st 1 isdeleted. For example:

> |ists:subtract("123212", "212").
"312".

234 | Ericsson AB. All Rights Reserved.: STDLIB

lists

lists:subtract (A, B) isequivaenttoA -- B.

Warning:

The complexity of | i st s: subt ract (A, B) isproportional to| engt h(A) *I engt h(B) , meaning that
it will be very slow if both A and B are long lists. (Using ordered lists and ordsets: subtract/2 is a much better
choiceif both lists are long.)

suf fix(Listl, List2) -> bool ()
Returnst r ue if Li st 1 isasuffix of Li st 2, otherwisef al se.

sum(Li st) -> nunber ()
Types.
List = [number ()]
Returns the sum of the elementsinLi st .

t akewhi l e(Pred, Listl) -> List2
Types:

Pred = fun(Elem) -> bool()

Elem =term()

Listl = List2 = [term()]

TakeselementsEl emfrom Li st 1 whilePr ed(El en) returnst r ue, that is, the function returns the longest prefix
of thelist for which all elements satisfy the predicate.

ukeynmerge(N, TupleListl, TupleList2) -> TuplelList3
Types:
N = 1..tuple _size(Tuple)
TupleListl = TupleList2 = TupleList3=[Tuple]
Tuple=tuple()
Returns the sorted list formed by merging Tupl eLi st 1 and Tupl eLi st 2. The merge is performed on the
Nth element of each tuple. Both Tupl eLi st 1 and Tupl eLi st 2 must be key-sorted without duplicates prior to

evaluating this function. When two tuples compare equal, the tuple from Tupl eLi st 1 is picked and the one from
Tupl eLi st 2 deleted.

ukeysort (N, TupleListl) -> Tuplelist2
Types:
N = 1..tuple size(Tuple)
TupleListl = TupleList2=[Tuple]
Tuple=tuple()
Returns a list containing the sorted elements of the list Tupl eLi st 1 where all but the first tuple of the tuples
comparing equal have been deleted. Sorting is performed on the Nth element of the tuples.

Ericsson AB. All Rights Reserved.: STDLIB | 235

lists

unmerge(ListOfLists) -> Listl
Types:
ListOfLists=[Ligt]
List =Listl =[term()]
Returnsthe sorted list formed by merging all the sub-listsof Li st OF Li st s. All sub-lists must be sorted and contain

no duplicates prior to evaluating this function. When two elements compare equal, the element from the sub-list with
the lowest positionin Li st O Li st s ispicked and the other one deleted.

umerge(Listl, List2) -> List3
Types:
List1=List2 = List3=[term()]
Returns the sorted list formed by merging Li st 1 and Li st 2. Both Li st 1 and Li st 2 must be sorted and contain

no duplicates prior to evaluating this function. When two elements compare equal, the element from Li st 1 is picked
and the onefrom Li st 2 deleted.

urmer ge(Fun, Listl, List2) -> List3
Types:
Fun =fun(A, B) -> bool()
List1=[A]
List2 =[B]
List3=[A | B]
A=B=term()
Returns the sorted list formed by merging Li st 1 and Li st 2. Both Li st 1 and Li st 2 must be sorted according
to the ordering function Fun and contain no duplicates prior to evaluating this function. Fun(A, B) should return

t rue if A compares lessthan or equal to B in the ordering, f al se otherwise. When two elements compare equal,
the element from Li st 1 is picked and the one from Li st 2 deleted.

umerge3(Listl, List2, List3) -> List4
Types:
Listl =List2 =List3=List4 =[term()]
Returns the sorted list formed by merging Li st 1, Li st 2 and Li st 3. All of Li st 1, Li st 2 and Li st 3 must be

sorted and contain no duplicates prior to evaluating this function. When two elements compare equal, the element from
Li st 1 ispicked if thereis such an element, otherwise the element from Li st 2 is picked, and the other one del eted.

unzi p(Listl) -> {List2, List3}
Types:
Listl=[{X, Y}]
List2=[X]
List3=[VY]
X=Y =term()
"Unzips' alist of two-tuplesinto two lists, where the first list contains the first element of each tuple, and the second
list contains the second element of each tuple.

236 | Ericsson AB. All Rights Reserved.: STDLIB

lists

unzi p3(Listl) -> {List2, List3, List4}
Types:
List1 =[{X,Y,Z}]
List2=[X]
List3=[Y]
Listd =[Z]
X=Y=2Z=term()
"Unzips' alist of three-tuples into three lists, where the first list contains the first element of each tuple, the second
list contains the second element of each tuple, and the third list contains the third element of each tuple.

usort(Listl) -> List2
Types:
Listl = List2 = [term()]

Returnsalist containing the sorted elementsof Li st 1 whereall but the first element of the elements comparing equal
have been deleted.

usort (Fun, Listl) -> List2
Types:
Fun =fun(Eleml, Elem2) -> bool()
Elem1 =Elem2 =term()
Listl = List2 = [term()]
Returns alist which contains the sorted elements of Li st 1 whereall but the first element of the elements comparing

equal according to the ordering function Fun have been deleted. Fun(A, B) shouldreturnt r ue if Acomparesless
than or equal to B in the ordering, f al se otherwise.

zip(Listl, List2) -> List3
Types:
Listl=[X]
List2=[Y]
List3=[{X, Y}]
X =Y =term()
"Zips' two lists of equal length into one list of two-tuples, where the first element of each tupleistaken from the first
list and the second element is taken from corresponding element in the second list.

zip3(Listl, List2, List3) -> List4
Types:
Listl =[X]
List2=[VY]
List3=1[Z]
List3=[{X,Y, Z}]
X=Y=Z=term()
"Zips' three lists of equal length into one list of three-tuples, where the first element of each tuple is taken from the

first list, the second element is taken from corresponding element in the second list, and the third element is taken
from the corresponding element in the third list.

Ericsson AB. All Rights Reserved.: STDLIB | 237

lists

zi pwi t h(Conbi ne, Listl, List2) -> List3
Types:

Combine=fun(X,Y)->T

Listl =[X]

List2 =[Y]

List3=[T]

X=Y=T=term()
Combine the elements of two lists of equal length into one list. For each pair X, Y of list elements from the two lists,
the element in the result list will be Conbi ne(X, Y).
zipwith(fun(X, Y) -> {X Y} end, Listl, List2) isequivaenttozi p(Listl, List2).
Example:

> lists:zipwith(fun(X, Y) -> X+Y end, [1,2,3], [4,5,6]).
[5,7,9]

zi pwi t h3(Conmbi ne, Listl, List2, List3) -> List4
Types.
Combine=fun(X,Y,Z)->T
Listl =[X]
List2=[Y]
List3=[Z]
List4=[T]
X=Y=Z=T=term()
Combine the elements of three lists of equal length into one list. For each triple X, Y, Z of list elements from the
three lists, the element in the result list will be Corbi ne(X, Y, Z2).

zipwith3(fun(X, Y, 2) ->{X Y,Z} end, Listl, List2, List3)isequivaenttozi p3(List1,
List2, List3).

Examples:

> lists:zipwith3(fun(X, Y, 2Z2) -> X+Y+Z end, [1,2,3], [4,5,6], [7,8,9]).
[12, 15, 18]

> lists:zipwith3(fun(X Y, 2) ->[XY,Z] end, [a,b,c], [Xx,y,2], [1,2,3]).
[[ax 1],[by 2] ,[c, z 3]]

238 | Ericsson AB. All Rights Reserved.: STDLIB

log_mf_h

log_mf_h

Erlang module

Thel og_nf _hisagen_event handler module which can be installed in any gen_event process. It logs onto
disk all events which are sent to an event manager. Each event is written as a binary which makes the logging very
fast. However, atool such asthe Report Browser (rb) must be used in order to read the files. The events are
written to multiplefiles. When all files have been used, thefirst oneisre-used and overwritten. The directory location,
the number of files, and the size of each file are configurable. The directory will include one file called i ndex, and
report files1, 2,

Exports
init(Dir, MaxBytes, MaxFiles)

init(Dir, MaxBytes, MaxFiles, Pred) -> Args
Types:
Dir = string()
MaxBytes = integer ()
MaxFiles= 0 < integer() < 256
Pred = fun(Event) -> boolean()
Event = term()
Args=args()
Initiates the event handler. This function returns Args, which should be used in a cadl to
gen_event : add_handl er (Event Myr, log_nf_h, Args).

Di r specifieswhich directory to usefor thelog files. MaxByt es specifiesthe size of eachindividua file. MaxFi | es
specifies how many files are used. Pr ed is a predicate function used to filter the events. If no predicate function is
specified, al events are logged.

See Also
gen_event(3), rb(3)

Ericsson AB. All Rights Reserved.: STDLIB | 239

math

math

Erlang module

This module provides an interface to a number of mathematical functions.

Note:

Not all functions are implemented on all platforms. In particular, the erf/ 1 and er f ¢/ 1 functions are not
implemented on Windows.

Exports

pi () -> float()
A useful number.

240 | Ericsson AB. All Rights Reserved.: STDLIB

math

si n(X)
cos(X)

t an(X)

asi n(X)
acos(X)

at an(X)
atan2(Y, X)
si nh(X)
cosh(X)

t anh(X)

asi nh(X)
acosh(X)

at anh(X)

exp(X)
I'og(X)

| 0g10(X)
pow(X,)
sart (X)
Types:

X =Y =number()
A collection of math functions which return floats. Arguments are numbers.

erf(X) -> float()
Types:
X =number()
Returns the error function of X, where

Ericsson AB. All Rights Reserved.: STDLIB | 241

math

erf(X) = 2/sqgrt(pi)*integral fromO0 to X of exp(-t*t) dt.

erfc(X) -> float()
Types:
X = number()
erfc(X) returns1l. 0 - erf (X), computed by methods that avoid cancellation for large X.

Bugs

Asthese are the C library, the bugs are the same.

242 | Ericsson AB. All Rights Reserved.: STDLIB

ms_transform

ms_transform

Erlang module

Thismoduleimplementsthe parse_transform that makescallstoet s and dbg:f un2ns/ 1 trandateinto literal match
specifications. It also implements the back end for the same functions when called from the Erlang shell.

The tranglations from fun's to match_specs is accessed through the two "pseudo functions' et s: f un2ns/ 1 and
dbg: f un2ms/ 1.

Actually thisintroduction is more or less an introduction to the whol e concept of match specifications. Since everyone
tryingtouseet s: sel ect or dbg seemsto end up reading this page, it seemsin good place to explain alittle more
than just what this modul e does.

There are some caveats one should be aware of, please read through the whole manual pageif it'sthe first time you're
using the transformations.

Match specifications are used more or less as filters. They resemble usual Erlang matching in alist comprehension
or in afun used in conjunction with I i st s: f ol dl etc. The syntax of pure match specifications is somewhat
awkward though, as they are made up purely by Erlang terms and thereis no syntax in the language to make the match
specifications more readable.

Asthe match specifications execution and structure is quite like that of afun, it would for most programmers be more
straight forward to simply write it using the familiar fun syntax and having that translated into a match specification
automatically. Of course a real fun is more powerful than the match specifications allow, but bearing the match
specifications in mind, and what they can do, it's still more convenient to write it all as a fun. This module contains
the code that simply translates the fun syntax into match_spec terms.

Let's start with an etsexample. Using et s: sel ect and a match specification, one can filter out rows of atable and
construct a list of tuples containing relevant parts of the data in these rows. Of course one could use et s: f ol dl
instead, but the select call is far more efficient. Without the trandlation, one has to struggle with writing match
specifications terms to accommodate this, or one has to resort to the less powerful et s: mat ch(_obj ect) cals,
or simply give up and use the more inefficient method of et s: f ol dl . Using the et s: f un2ns transformation, a
ets: sel ect calisat least as easy to write as any of the alternatives.

Asan example, consider asimple table of employees:

-record(enp, {enpno, %Enpl oyee nunber as a string, the key
sur nane, %Sur namre of the enpl oyee
gi vennanme, %3 ven nanme of enpl oyee
dept, %epart ment one of {dev, sal es, prod, adn}

enpyear}). %ear the enpl oyee was enpl oyed

We create the table using:

ets: new enp_t ab, [{ keypos, #enp. enpno}, naned_t abl e, ordered_set]).

Let'sasofill it with some randomly chosen data for the examples:

[{enp, "011103", "Bl ack", " Al fred", sal es, 2000},
{enp, "041231", "Doe", "John", prod, 2001},
{enp, "052341", " Sni t h", "John", dev, 1997},
{enmp, "076324","Sni th", "El | a", sal es, 1995},

Ericsson AB. All Rights Reserved.: STDLIB | 243

ms_transform

{enp, "122334", "West on", " Anna", prod, 2002},
{enp, "535216", " Chal ker", " Sanuel ", adm 1998},
{emp, "789789", "Harrysson", "Joe", adm 1996},
{emp, "963721", "Scott", “Jul i ana", dev, 2003},
{enp, "989891", "Brown", “Gabriel ", prod, 1999}]

Now, the amount of datain the table is of courseto small to justify complicated ets searches, but on real tables, using
sel ect to get exactly the data you want will increase efficiency remarkably.

Lets say for example that we'd want the employee numbers of everyone in the sales department. One might use
et s: mat ch in such asituation:

1> ets:match(enp_tab, {'_', "$1', '_', '_', sales, '_'}).
[["011103"],["076324"]]

Eventhoughet s: mat ch doesnot requireafull match specification, but asimpler type, it'sstill somewhat unreadable,
and one has little control over the returned result, it's aways a list of lists. OK, one might use et s: f ol dl or
ets: fol dr instead:

ets:foldr(fun(#enp{enmpno = E, dept = sales},Acc) -> [E | Acc];
(_,Acc) -> Acc
end,

[1,
enp_tab).

Running that would resultin[" 011103", "076324"] ,whichat least getsrid of theextralists. Thefunisalso quite
straightforward, so the only problem isthat all the datafrom the table has to be transferred from the table to the calling
process for filtering. That's inefficient compared to the et s: mat ch call where the filtering can be done "inside" the
emulator and only the result is transferred to the process. Remember that ets tables are all about efficiency, if it wasn't
for efficiency all of ets could be implemented in Erlang, as a process receiving requests and sending answers back.
One uses ets because one wants performance, and therefore one wouldn't want all of the table transferred to the process
for filtering. OK, let'slook at apureet s: sel ect cal that doeswhat theet s: f ol dr does:

ets:sel ect (enp_tab, [{#enp{enmpno = '$1', dept = sales, _="_"},[],["'$1']}]).

Even though the record syntax isused, it's still somewhat hard to read and even harder to write. Thefirst element of the
tuple, #emp{ enpno = ' $1', dept = sales, _="_'} tellswhatto match, elements not matching thiswill
not bereturned at al, asintheet s: mat ch example. The second el ement, the empty listisalist of guard expressions,
which we need none, and the third element is the list of expressions constructing the return value (in ets this aimost
always is a list containing one single term). In our case ' $1' is bound to the employee number in the head (first
element of tuple), and hence it is the employee number that is returned. The result is[" 011103", "076324"],
justasintheet s: f ol dr example, but the result is retrieved much more efficiently in terms of execution speed and
memory consumption.

We have one efficient but hardly readable way of doing it and one inefficient but fairly readable (at least to the skilled
Erlang programmer) way of doing it. With the use of et s: f un2ms, one could have something that is as efficient as
possible but till iswritten as afilter using the fun syntax:

-include_lib("stdlib/include/ns_transformhrl").

244 | Ericsson AB. All Rights Reserved.: STDLIB

ms_transform

% ...

ets:sel ect (enp_tab, ets:fun2ns(
fun(#enp{enpno = E, dept = sales}) ->
E

end)) .

This may not be the shortest of the expressions, but it requires no special knowledge of match specifications to read.
The fun's head should simply match what you want to filter out and the body returns what you want returned. Aslong
as the fun can be kept within the limits of the match specifications, there is no need to transfer all data of the table to
the processfor filteringasintheet s: f ol dr example. Infactit'seven easier toread thentheet s: f ol dr example,
asthe select call in itself discards anything that doesn't match, while the fun of the f ol dr call needs to handle both
the elements matching and the ones not matching.

It'sworth noting in the above et s: f un2ns example that one needsto includens_t r ansf or m hr | inthe source
code, as thisis what triggers the parse transformation of the et s: f un2mns call to a valid match specification. This
alsoimpliesthat the transformation is done at compile time (except when called from the shell of course) and therefore
will take no resourcesat all in runtime. So although you use the more intuitive fun syntax, it getsas efficient in runtime
as writing match specifications by hand.

Let'slook at some more et s examples. Let's say one wants to get all the employee numbers of any employee hired
before the year 2000. Using et s: mat ch isn't an alternative here as relational operators cannot be expressed there.
Onceagain, anet s: f ol dr could do it (Slowly, but correct):

ets:foldr(fun(#enp{empno = E, enmpyear = Y}, Acc) when Y < 2000 -> [E | Acc];
(_,Acc) -> Acc
end,

(1,
enp_tab).

The result will be ["052341","076324", "535216", "789789", "989891"], as expected. Now the
equivalent expression using a handwritten match specification would look something like this:

ets:sel ect(enp_tab, [{#enp{enmpno = '$1', enpyear = '$2', _=' '},
[{'<', "$2', 2000}],
['$1']}]).

This givesthe sameresult, the[{' <', ' $2', 2000}] isinthe guard part and therefore discards anything that
does not have a empyear (bound to '$2' in the head) less than 2000, just as the guard in the f ol dl example. Lets
jump ontowriting itusing et s: f un2ns

-include_lib("stdlib/include/ns_transformhrl").
% ...

ets:sel ect (enp_tab, ets:fun2ns(
fun(#enp{enpno = E, enpyear = Y}) when Y < 2000 ->
E
end)).

Obviously readability is gained by using the parse transformation.

Ericsson AB. All Rights Reserved.: STDLIB | 245

ms_transform

I'll show some more examples without the tiresome comparing-to-alternatives stuff. Let's say we'd want the whole
object matching instead of only one element. We could of course assign avariableto every part of the record and build
it up once again in the body of thef un, but it's easier to do like this:

ets:sel ect (enp_tab, ets:fun2ns(
fun(Qoj = #enp{enmpno = E, enpyear = Y})
when Y < 2000 ->
j
end)).

Just asin ordinary Erlang matching, you can bind avariable to the whole matched object using a"match in then match”,
i.e. a=. Unfortunately thisis not general in f un' s trandated to match specifications, only on the "top level", i.e.
matching the whole object arriving to be matched into a separate variable, isit alowed. For the one's used to writing
match specifications by hand, I'll have to mention that the variable A will smply betrandlated into'$. It'snot general,
but it has very common usage, why it is handled as a special, but useful, case. If this bothers you, the pseudo function
obj ect also returns the whole matched object, see the part about caveats and limitations below.

Let'sdo somethinginthef un'sbody too: Let's say that someonerealizesthat there are afew people having anemployee
number beginning with a zero (0), which shouldn't be allowed. All those should have their numbers changed to begin
with aone (1) instead and onewantsthelist[{ <O d enpno>, <New enpno>}] created:

ets:sel ect (enp_tab, ets:fun2ns(
fun(#enp{enmpno = [$0 | Rest] }) ->
{[$0| Rest], [$1| Rest]}
end)).

Asamatter of fact, this query hitsthe feature of partially bound keysin thetabletypeor der ed_set , so that not the
whole table need be searched, only the part of the table containing keys beginning with 0 isin fact looked into.

Thefun of course can have several clauses, sothat if one could do thefollowing: For each employee, if heor sheishired
prior to 1997, return the tuple { i nvent ory, <enpl oyee nunber >}, for each hired 1997 or later, but before
2001, return {r ooki e, <enpl oyee nunber >}, for al othersreturn { newbi e, <enpl oyee nunber >}.
All except for the onesnamed S t h asthey would be affronted by anything other than the tag gur u and that isalso
what's returned for their numbers; { gur u, <enpl oyee nunber >}:

ets:sel ect (enp_tab, ets:fun2ns(
fun(#enp{enmpno = E, surname = "Spith" }) ->
{ouru, E};
(#enp{empno = E, enpyear = Y}) when Y < 1997 ->
{inventory, E};
(#enp{empno = E, enpyear = Y}) when Y > 2001 ->
{newbi e, E};
(#enp{empno = E, enpyear = Y}) -> % 1997 -- 2001
{rooki e, E}
end)) .

The result will be:

[{rookie, "011103"},
{rooki e, "041231"},
{guru, "052341"},
{guru, "076324"},

246 | Ericsson AB. All Rights Reserved.: STDLIB

ms_transform

{newbi e, "122334"},
{rooki e, "535216"},
{inventory, "789789"},
{newbi e, "963721"},
{rooki e, "989891"}]

and so the Smith's will be happy...

So, what more can you do? Well, the simple answer would be; 1ook in the documentation of match specifications in
ERTS usersguide. However let'sbriefly go through the most useful "built in functions" that you can usewhen thef un
isto be trandated into a match specification by et s: f un2ns (it's worth mentioning, although it might be obvious
to some, that calling other functions than the one's allowed in match specifications cannot be done. No "usual" Erlang
code can be executed by the f un being trandlated by f un2ms, the f un isafter al limited exactly to the power of the
match specifications, which is unfortunate, but the price one has to pay for the execution speed of anet s: sel ect
comparedtoet s: fol dl /f ol dr).

The head of the f un is obviously a head matching (or mismatching) one parameter, one object of the table we
sel ect from. The object is always a single variable (can be _) or atuple, as that's what'sin et s, dets and
mesi a tables (the match specification returned by et s: f un2ns can of course be used with det s: sel ect and
mesi a: sel ect aswell aswithet s: sel ect). Theuse of = in the head is allowed (and encouraged) on the top
level.

The guard section can contain any guard expression of Erlang. Even the "old" type test are allowed on the toplevel
of theguard (i nt eger (X) instead of i s_i nt eger (X)). Asthe new typetests (thei s__ tests) arein practice just
guard bif's they can also be called from within the body of the fun, but so they can in ordinary Erlang code. Also
arithmeticsis allowed, aswell as ordinary guard bif's. Here's alist of bif's and expressions:
e Thetypetests: is atom, is_constant, is float, is_integer, is list, is_ number, is pid, is _port, is_reference,
is tuple, is binary, is function, is record
e Theboolean operators: not, and, or, andalso, orelse
e Therelational operators. >, >=, <, =<, ==, ==, =/=, /=
e Arithmetics: +, -, *, div, rem
» Bitwise operators: band, bor, bxor, bnot, bsl, bsr
e Theguard hif's: abs, element, hd, length, node, round, size, tl, trunc, self
* The obsolete type test (only in guards): atom, constant, float, integer, list, number, pid, port, reference, tuple,
binary, function, record
Contrary to thefact with "handwritten" match specifications, thei s_r ecor d guard worksasin ordinary Erlang code.

Semicolons (;) in guards are alowed, the result will be (as expected) one "match_spec-clause” for each semicolon-
separated part of the guard. The semantics being identical to the Erlang semantics.

The body of thef un isused to construct the resulting value. When selecting from tables one usually just construct a
suiting term here, using ordinary Erlang term construction, like tuple parentheses, list brackets and variables matched
out in the head, possibly in conjunction with the occasional constant. Whatever expressions are allowed in guards
are also allowed here, but there are no special functions except obj ect and bi ndi ngs (see further down), which
returns the whole matched object and all known variable bindings respectively.

The dbg variants of match specifications have an imperative approach to the match specification body, the ets dial ect
hasn't. The fun body for et s: f un2ns returns the result without side effects, and as matching (=) in the body of the
match specificationsis not alowed (for performance reasons) the only thing left, more or less, isterm construction...

Let'smove on to the dbg dialect, the dightly different match specifications translated by dbg: f un2ns.

The same reasons for using the parse transformation applies to dbg, maybe even more so as filtering using Erlang
cade is simply not a good idea when tracing (except afterwards, if you trace to file). The concept is similar to that of
ets: fun2ns except that you usually useit directly from the shell (which can also be done with et s: f un2mrs).

Ericsson AB. All Rights Reserved.: STDLIB | 247

ms_transform

L et's manufacture a toy module to trace on

- modul e(t oy) .
-export([start/1l, store/2, retrievel/l]).

start (Args) ->
toy table = ets:new(toy_table, Args).

store(Key, Value) ->
ets:insert(toy_table, {Key, Val ue}).

retrieve(Key) ->

[{Key, Value}] = ets:|ookup(toy_table, Key),
Val ue.

During model testing, the first test bails out with a{ badmat ch, 16} in{t oy, start, 1}, why?

We suspect the ets call, as we match hard on the return value, but want only the particular newcall witht oy _t abl e
asfirst parameter. So we start a default tracer on the node:

1> dbg:tracer().
{ ok, <0. 88. 0>}

And so we turn on call tracing for all processes, we are going to make a pretty restrictive trace pattern, so there's no
need to call trace only afew processes (it usualy isn't):

2> dbg: p(all,call).
{ ok, [{mat ched, nonode@ohost, 25}]}

It'stime to specify thefilter. We want to view callsthat resemble et s: new(t oy_t abl e, <sonet hi ng>) :

3> dbg: tp(ets, new, dbg: fun2nms(fun([toy_table,]) -> true end)).
{ ok, [{mat ched, nonode@ohost, 1}, {saved, 1}]}

As can be seen, the f un'sused with dbg: f un2ns takes asingle list as parameter instead of asingle tuple. The list
matches alist of the parameters to the traced function. A single variable may also be used of course. The body of the
fun expresses in a more imperative way actions to be taken if the fun head (and the guards) matches. | returnt r ue
here, but it's only because the body of afun cannot be empty, the return value will be discarded.

When we run the test of our module now, we get the following trace output:

(<0.86.0>) call ets:new(toy_table,[ordered_set])

Let's play we haven't spotted the problem yet, and want to see what et s: new returns. We do a dlightly different
trace pattern:

4> dbg: tp(ets, new, dbg: fun2ms(fun([toy_table, _]) -> return_trace() end)).

248 | Ericsson AB. All Rights Reserved.: STDLIB

ms_transform

Resulting in the following trace output when we run the test:

(<0.86.0>) call ets:new(toy_table,[ordered_set])
(<0.86.0>) returned fromets:new 2 -> 24

Thecall tor et ur n_t r ace, makes a trace message appear when the function returns. It applies only to the specific
function call triggering the match specification (and matching the head/guards of the match specification). Thisisthe
by far the most common call in the body of adbg match specification.

Asthetest now fails with { badmat ch, 24}, it's obvious that the badmatch is because the atomt oy _t abl e does
not match the number returned for an unnamed table. So we spotted the problem, the table should be named and the
arguments supplied by our test program does not include nanmed_t abl e. We rewrite the start function to:

start (Args) ->
toy _table = ets:new(toy_table, [naned_table | Args]).

And with the same tracing turned on, we get the following trace output:

(<0.86.0>) call ets:new(toy_table,[naned_tabl e, ordered_set])
(<0.86.0>) returned fromets:new 2 -> toy_table

Very well. Let's say the module now passes all testing and goes into the system. After awhile someone realizes that
thetablet oy_t abl e grows while the system is running and that for some reason there are a lot of elements with
atom's as keys. Y ou had expected only integer keys and so does the rest of the system. Well, obviously not al of the
system. You turn on call tracing and try to see calls to your module with an atom as the key:

1> dbg:tracer ().

{ ok, <0. 88. 0>}

2> dbg: p(all,call).

{ ok, [{mat ched, nonode@ohost , 25}] }

3> dbg: tpl (toy, store, dbg: fun2ns(fun([A, _]) when is_aton(A) -> true end)).
{ ok, [{mat ched, nonode@ohost, 1}, {saved, 1}]}

Weusedbg: t pl hereto make sureto catch local calls (let's say the module has grown since the smaller version and
we're not sure thisinserting of atomsis not done locally...). When in doubt always use local call tracing.

Let's say nothing happens when we trace in this way. Our function is never called with these parameters. We make
the conclusion that someone el se (some other module) is doing it and we realize that we must trace on ets.insert and
want to see the calling function. The calling function may be retrieved using the match specification functioncal | er
and to get it into the trace message, one has to use the match spec function message. Thefilter call looks like this
(looking for callstoet s: i nsert):

4> dbg: tpl (ets,insert, dbg: fun2ms(fun([toy_table, {A _}]) when is_aton(A) ->
message(cal ler())
end)).
{ ok, [{mat ched, nonode@uohost, 1}, {saved, 2}]}

The caller will now appear in the "additional message" part of the trace output, and so after a while, the following
output comes:

Ericsson AB. All Rights Reserved.: STDLIB | 249

ms_transform

(<0.86.0>) call ets:insert(toy_table, {garbage,can}) ({evil_nod, evil_fun, 2})

Y ou have found out that the function evi | _f un of the module evi | _nod, with arity 2, is the one causing all this
trouble.

This was just a toy example, but it illustrated the most used calls in match specifications for dbg The other, more
esotheric calls are listed and explained in the Users guide of the ERTS application, they really are beyond the scope
of this document.

To end this chatty introduction with something more precise, here follows some parts about caveats and restrictions
concerning the fun's used in conjunction with et s: f un2nms and dbg: f un2ns:

Warning:
To use the pseudo functions triggering the translation, one has to include the header filens_t r ansf or m hr |

inthe source code. Failureto do sowill possibly result in runtime errorsrather than compiletime, asthe expression
may be valid as a plain Erlang program without translation.

Warning:

Thef un hasto beliterally constructed inside the parameter list to the pseudo functions. Thef un cannot be bound
toavariablefirstandthen passedtoet s: f un2ns ordbg: f un2mns,i.ethiswill work: et s: f un2ns(f un(A)
-> A end) butnotthiss F = fun(A) -> A end, ets:fun2ns(F).Thelater will resultin acompile
time error if the header is included, otherwise a runtime error. Even if the later construction would ever appear
towork, it really doesn't, so don't ever useit.

Several restrictions apply to the fun that isbeing translated into amatch_spec. To put it simple you cannot use anything
in the fun that you cannot use in a match_spec. This means that, among others, the following restrictions apply to
the fun itself:

Functions written in Erlang cannot be called, neither local functions, global functions or real fun's

Everything that is written as a function call will be trandlated into a match_spec call to a builtin function, so that
thecalis_list(X) will betrandatedto{"is_list', '$1'} ("' $1' isjust an example, the numbering
may vary). If onetriesto call afunction that is not amatch_spec builtin, it will cause an error.

Variables occurring in the head of the f un will be replaced by match_spec variablesin the order of occurrence,
so that the fragment f un({ A, B, C}) will bereplacedby {* $1', ' $2', ' $3'} etc. Every occurrence

of such avariable later in the match_spec will be replaced by a match_spec variable in the same way, so

that thefunfun({A, B}) when is_atom(A) -> B end will betrandatedinto[{{' $1',"' $2'},
[{is_atom ' $1'}],["$2']}].

Variablesthat are not appearing in the head areimported from the environment and made into match_spec const
expressions. Example from the shell:

1> X = 25.

25

2> ets: fun2ms(fun({A B}) when A > X -> B end).
[{{ $1","$2"},[{'>","$1" ,{const,25}}],['$2']1}]

250 | Ericsson AB. All Rights Reserved.: STDLIB

ms_transform

e Matching with = cannot be used in the body. It can only be used on the top level in the head of the fun. Example
from the shell again:

1> ets:fun2nms(fun({A [B|/C} = D) when A > B -> D end).

[{{ 81", ["$2"|"$3' 1}, [{">,"$1","$2'}],["$_"1}]

2> ets:fun2ns(fun({A [B|C =D}) when A > B -> D end).

Error: fun with head matching (‘=" in head) cannot be translated into
mat ch_spec

{error,transformerror}

3> ets:fun2ms(fun({A [B/Cl}) when A>B -> D = [B|C], D end).

Error: fun with body matching (‘=" in body) is illegal as match_spec
{error,transformerror}

All variables are bound in the head of amatch_spec, so the translator can not allow multiple bindings. The special
case when matching is done on the top level makesthevariablebindto' $_' intheresulting match_spec, itisto
allow amore natural accessto the whole matched object. The pseudo function obj ect () could be used instead,
see below. The following expressions are translated equally:

ets:fun2ns(fun({a, _} = A -> A end).
ets:fun2ns(fun({a, _}) -> object() end).

* The special match spec variables '$_' and ' $*' can be accessed through the pseudo functions
obj ect () (for '$_') and bi ndi ngs() (for ' $*'). as an example, one could trandate the following
ets: match_object/2cdltoaets: sel ect cal:

ets: mat ch_obj ect(Table, {'$1',test,'$2'}).

...isthe same as...

ets:sel ect(Table, ets:fun2ms(fun({A test,B}) -> object() end)).

(Thiswasjust an example, in thissimple casethe former expression is probably preferablein terms of readability).
Theet s: sel ect/ 2 call will conceptually ook like thisin the resulting code:

ets:select(Table, [{{'$1',test, " $2'},[],["$_"1}])-

Matching on the top level of the fun head might feel like a more natural way to access' $_' , see above.

e Term constructions/literals are translated as much asis heeded to get them into valid match_specs, so that
tuples are made into match_spec tuple constructions (a one element tuple containing the tuple) and constant
expressions are used when importing variables from the environment. Records are also trandlated into plain
tuple constructions, callsto element etc. Theguardtesti s_r ecor d/ 2 istransated into match_spec code
using the three parameter version that's built into match_specs, sothati s_recor d(A, t) istrandated into
{is_record,"' $1',t, 5} giventhat therecord size of record typet is5.

» Language constructionslikecase, i f, cat ch etc that are not present in match_specs are not allowed.

e |ftheheader filens_t ransf orm hrl isnotincluded, the fun won't be translated, which may result in a
runtime error (depending onif the fun isvalid in a pure Erlang context). Be absolutely sure that the header is
included when using et s and dbg: f un2ns/ 1 in compiled code.

Ericsson AB. All Rights Reserved.: STDLIB | 251

ms_transform

e |f the pseudo function triggering the trandationiset s: f un2ns/ 1, the fun's head must contain asingle
variable or asingle tuple. If the pseudo functionisdbg: f un2ns/ 1 the fun's head must contain asingle
variable or asinglelist.

The trandation from fun's to match_specs is done at compile time, so runtime performance is not affected by using
these pseudo functions. The compile time might be somewhat longer though.

For more information about match_specs, please read about them in ERTS users guide.

Exports

parse_transform Forns, _Options) -> Forns
Types:
Forms= Erlang abstract code format, seethe erl_parse module description
_Options= Option list, required but not used
Implements the actual transformation at compile time. This function is called by the compiler to do the source code
transformation if and whenthens_t r ansf or m hr| header fileisincluded in your source code. Seetheet s and

dbg:f un2ns/ 1 function manual pagesfor documentation on how to usethisparse_transform, seethermat ch_spec
chapter in ERTS users guide for a description of match specifications.

transformfromshel | (Di al ect, d auses, BoundEnvi ronnent) -> tern()
Types.
Dialect = ets| dbg
Clauses = Erlang abstract form for asingle fun
BoundEnvironment = [{atom(), term()}, ...], list of variable bindingsin the shell environment
Implements the actual transformation when the f un2ns functions are called from the shell. In this case the abstract

formisfor onesingle fun (parsed by the Erlang shell), and all imported variables should bein the key-valuelist passed
asBoundEnvi r onnment . Theresult isaterm, normalized, i.e. not in abstract format.

format _error (Errcode) -> ErrMessage
Types:

Errcode =term()

ErrMessage = string()

Takes an error code returned by one of the other functions in the module and creates atextual description of the error.
Fairly uninteresting function actualy.

252 | Ericsson AB. All Rights Reserved.: STDLIB

orddict

orddict

Erlang module

O ddi ct implements aKey - Val ue dictionary. An or ddi ct is arepresentation of a dictionary, where a list of
pairsis used to store the keys and values. Thelist is ordered after the keys.

Thismodule provides exactly the sameinterface asthemoduledi ct but with adefined representation. Onedifference
isthat while di ct considers two keys as different if they do not match (=: =), this module considers two keys as
different if and only if they do not compare equa (==).

DATA TYPES

ordered_dictionary()
as returned by new 0

Exports

append(Key, Value, Orddictl) -> Oddict2
Types:

Key = Value=term()

Orddictl = Orddict2 = ordered_dictionary()

This function appends a new Val ue to the current list of values associated with Key. An exception is generated if
theinitial value associated with Key isnot alist of values.

append_list(Key, VallList, Oddictl) -> Oddict2
Types:

ValList = [Valug]

Key =Value=term()

Orddictl = Orddict2 = ordered_dictionary()

This function appends a list of values Val Li st to the current list of values associated with Key. An exception is
generated if the initial value associated with Key isnot alist of values.

erase(Key, Orddictl) -> Orddict2
Types:

Key =term()

Orddict1 = Orddict2 = ordered_dictionary()
Thisfunction erases al items with agiven key from adictionary.

fetch(Key, Orddict) -> Val ue
Types.

Key = Value=term()

Orddict = ordered_dictionary()

Ericsson AB. All Rights Reserved.: STDLIB | 253

orddict

This function returns the value associated with Key in the dictionary Or ddi ct . f et ch assumes that the Key is
present in the dictionary and an exception is generated if Key isnot in the dictionary.

fetch _keys(Orddict) -> Keys
Types:
Orddict = ordered_dictionary()
Keys=[term()]
This function returns alist of al keysin the dictionary.

filter(Pred, Oddictl) -> Orddict2
Types:
Pred = fun(Key, Value) -> bool()
Key =Value=term()
Orddictl = Orddict2 = ordered_dictionary()
O ddi ct 2 isadictionary of all keysand valuesin Or ddi ct 1 for which Pr ed(Key, Val ue) istrue.

find(Key, Orddict) -> {ok, Value} | error
Types:

Key = Value=term()

Orddict = ordered_dictionary()

This function searches for akey in adictionary. Returns { ok, Val ue} where Val ue isthe value associated with
Key, or er r or if thekey isnot present in the dictionary.

fol d(Fun, AccO, Orddict) -> Accl
Types:
Fun =fun(Key, Value, Accln) -> AccOut
Key = Value=term()
AccO = Accl = Accln = AccOut =term()
Orddict = ordered_dictionary()

Calls Fun on successive keys and values of Or ddi ct together with an extraargument Acc (short for accumulator).
Fun must return anew accumulator whichispassedtothenext call. Acc 0 isreturnedif thelistisempty. Theevaluation
order is undefined.

fromlist(List) -> Oddict
Types:
List = [{Key, Value}]
Orddict = ordered_dictionary()
This function convertsthe Key - Val ue list Li st to adictionary.

i s_key(Key, Orddict) -> bool ()
Types:

Key =term()

Orddict = ordered_dictionary()

254 | Ericsson AB. All Rights Reserved.: STDLIB

orddict

Thisfunction testsif Key is contained in the dictionary Or ddi ct .

map(Fun, Orddictl) -> Oddict2
Types.

Fun =fun(Key, Valuel) -> Value2

Key = Valuel = Value2 = term()

Orddictl = Orddict2 = ordered_dictionary()

map calls Func on successive keys and values of Or ddi ct to return anew value for each key. The evaluation order
is undefined.

merge(Fun, Oddictl, Oddict2) -> Oddict3
Types.

Fun =fun(Key, Valuel, Value?) -> Value

Key =Valuel = Value2 = Value3 = term()

Orddictl = Orddict2 = Orddict3 = ordered_dictionary()

mer ge mergestwo dictionaries, O ddi ct 1 and Or ddi ct 2, to create anew dictionary. All the Key - Val ue pairs
from both dictionaries are included in the new dictionary. If akey occursin both dictionaries then Fun is called with
the key and both valuesto return anew value. mer ge could be defined as:

nerge(Fun, D1, D2) ->
fold(fun (K, V1, D ->
update(K, fun (V2) -> Fun(K, V1, V2) end, Vi, D)
end, D2, D1).

but is faster.

new() -> ordered_dictionary()
This function creates a new dictionary.

size(Orddict) ->int()
Types.
Orddict = ordered_dictionary()
Returns the number of elementsinan Or ddi ct .

store(Key, Value, Oddictl) -> Oddict2
Types.

Key = Value=term()

Orddictl = Orddict2 = ordered_dictionary()

Thisfunction storesaKey - Val ue pair inadictionary. If the Key aready existsin Or ddi ct 1, the associated value
isreplaced by Val ue.

to list(Orddict) -> List

Types:
Orddict = ordered_dictionary()

Ericsson AB. All Rights Reserved.: STDLIB | 255

orddict

List =[{Key, Value}]
This function converts the dictionary to alist representation.

updat e(Key, Fun, Orddictl) -> Oddict2
Types.

Key =term()

Fun =fun(Valuel) -> Value2

Valuel = Value2 =term()

Orddictl = Orddict2 = ordered_dictionary()

Update a value in a dictionary by calling Fun on the value to get a new value. An exception is generated if Key is
not present in the dictionary.

updat e(Key, Fun, Initial, Oddictl) -> Oddict2
Types:

Key = Initial = term()

Fun =fun(Valuel) -> Value2

Valuel = Value2 = term()

Orddictl = Orddict2 = ordered_dictionary()

Update avaluein adictionary by calling Fun on the value to get a new value. If Key is not present in the dictionary
thenl ni ti al will be stored asthefirst value. For example append/ 3 could be defined as:

append(Key, Val, D) ->
updat e(Key, fun (Ad) -> Ad ++ [Val] end, [Val], D).

update_counter (Key, Increnent, Oddictl) -> Oddict2
Types.

Key =term()

I ncrement = number ()

Orddictl = Orddict2 = ordered_dictionary()

Add | ncr enent to the value associated with Key and store this value. If Key is not present in the dictionary then
I ncr enent will be stored as thefirst value.

This could be defined as:

updat e_counter (Key, Incr, D) ->
updat e(Key, fun (dd) -> dd + Incr end, Incr, D).

but is faster.

Notes

The functions append and append_| i st are included so we can store keyed values in a list accumulator. For
example:

256 | Ericsson AB. All Rights Reserved.: STDLIB

orddict

> DO = orddict
D1 = orddict:
D2 = orddict:
D3 = orddict
D4 = orddict:

new(),

store(files, [], DO),

append(files, f1, D1),
cappend(files, f2, D2),
append(files, f3, D3),

orddict:fetch(files, D4).

[f1,f2, 3]

This saves the trouble of first fetching a keyed value, appending a new value to the list of stored values, and storing

the result.

Thefunction f et ch should be used if the key is known to bein the dictionary, otherwisef i nd.

See Also

dict(3), gb_trees(3)

Ericsson AB. All Rights Reserved.: STDLIB | 257

ordsets

ordsets

Erlang module

Sets are collections of elementswith no duplicate elements. Anor dset isarepresentation of a set, where an ordered
list is used to store the elements of the set. An ordered list is more efficient than an unordered list.

Thismodule provides exactly the sameinterface asthe modules et s but with adefined representation. Onedifference
isthat whileset s considerstwo elementsasdifferent if they do not match (=: =), thismodul e considerstwo el ements
asdifferent if and only if they do not compare equal (==).

DATA TYPES

ordered_set ()
as returned by new 0

Exports

new() -> Ordset
Types:

Ordset = ordered_set()
Returns a new empty ordered set.

is_set(Ordset) -> bool ()
Types.
Ordset =term()
Returnst r ue if Or dset isan ordered set of elements, otherwisef al se.

size(Ordset) -> int()
Types.
Ordset =term()
Returns the number of elementsin Or dset .

to list(Ordset) -> List

Types:
Ordset = ordered_set()
List = [term()]

Returns the elements of Or dset asalist.

fromlist(List) -> Odset
Types.
List = [term()]
Ordset = ordered_set()
Returns an ordered set of the elementsin Li st .

258 | Ericsson AB. All Rights Reserved.: STDLIB

ordsets

is_element(El ement, Ordset) -> bool ()
Types:

Element =term()

Ordset = ordered_set()

Returnst r ue if El enment isan element of Or dset , otherwisef al se.

add_el enent (El enent, Ordsetl) -> Ordset?2
Types.

Element =term()

Ordsetl = Ordset2 = ordered_set()

Returns a new ordered set formed from Or dset 1 with El enent inserted.

del el enent (El enent, Ordsetl) -> Ordset?2
Types.

Element =term()

Ordsetl = Ordset2 = ordered_set()

Returns Or dset 1, but with El ement removed.

uni on(Ordset1l, Ordset2) -> Ordset3
Types:

Ordsetl = Ordset2 = Ordset3 = ordered_set()
Returns the merged (union) set of Or dset 1 and Or dset 2.

uni on(OrdsetList) -> Ordset
Types:
OrdsetList = [ordered_set()]
Ordset = ordered_set()

Returns the merged (union) set of the list of sets.

intersection(Ordsetl, Ordset2) -> Ordset3
Types:

Ordsetl = Ordset2 = Ordset3 = ordered_set()
Returnsthe intersection of Or dset 1 and Or dset 2.

i ntersection(OdsetlList) -> Odset
Types:

OrdsetList = [ordered_set()]

Ordset = ordered_set()

Returns the intersection of the non-empty list of sets.
is_disjoint(Ordsetl, Odset2) -> bool ()

Types:
Ordsetl = Ordset2 = ordered_set()

Ericsson AB. All Rights Reserved.: STDLIB | 259

ordsets

Returnst r ue if Or dset 1 and Or dset 2 are digoint (have no elementsin common), and f al se otherwise.

subtract (Ordset1l, Ordset2) -> Ordset3
Types:
Ordsetl = Ordset2 = Ordset3 = ordered_set()
Returns only the elements of Or dset 1 which are not also elements of Or dset 2.

i s_subset (Ordsetl, Ordset2) -> bool ()
Types:
Ordsetl = Ordset2 = ordered_set()
Returnst r ue when every element of Or dset 1isalso amember of Or dset 2, otherwisef al se.

fol d(Function, AccO, Ordset) -> Accl
Types:
Function = fun (E, Accln) -> AccOut
AccO = Accl = Accln = AccOut = term()
Ordset = ordered_set()

Fold Funct i on over every element in Or dset returning the fina value of the accumulator.

filter(Pred, Ordsetl) -> Set2
Types:
Pred = fun (E) -> bool()
Setl = Set2 = ordered_set()
Filter elementsin Set 1 with boolean function Fun.

See Also
gb_sets(3), sets(3)

260 | Ericsson AB. All Rights Reserved.: STDLIB

pPg

P9

Erlang module

This (experimental) modul e implements process groups. A process group is agroup of processes that can be accessed
by a common name. For example, a group named f oobar can include a set of processes as members of this group
and they can be located on different nodes.

When messages are sent to the named group, all members of the group receive the message. The messages are
serialized. If the process P1 sends the message ML to the group, and process P2 simultaneously sends message M2,
then all members of the group receive the two messages in the same order. If members of a group terminate, they are
automatically removed from the group.

This module is not complete. The module is inspired by the ISIS system and the causal order protocol of the ISIS
system should also be implemented. At the moment, all messages are serialized by sending them through a group
master process.

Exports

create(PgNanme) -> ok | {error, Reason}
Types:

PgName = term()

Reason = already created | term()
Creates an empty group named PgNane on the current node.

creat e(PgNane, Node) -> ok | {error, Reason}
Types:

PgName = term()

Node = node()

Reason = already _created | term()

Creates an empty group named PgNan®e on the node Node.

j oi n(PgNanme, Pid) -> Menbers

Types:
PgName = term()
Pid = pid()

Members=[pid()]
Joins the pid Pi d to the process group PgNane. Returns alist of all old members of the group.

send(PgNane, Msg) -> void()
Types:
PgName = Msg =term()
Sendsthetuple{ pg_nmessage, From PgNane, Msg} toal members of the process group PgNane.
Failure: { badarg, {PgNane, Msg}} if PgNane isnot aprocess group (aglobally registered name).

Ericsson AB. All Rights Reserved.: STDLIB | 261

pPg

esend(PgName, Msg) -> void()
Types:
PgName = Msg =term()

Sendsthetuple{ pg_nessage, From PgNane, Msg} toall members of the process group PgNane, except
ourselves.

Failure: { badar g, {PgNane, Msg}} if PgNane isnot aprocess group (aglobally registered name).

menber s(PgNane) -> Menbers
Types:
PgName = term()
Members=[pid()]
Returns alist of all members of the process group PgNane.

262 | Ericsson AB. All Rights Reserved.: STDLIB

pool

pool

Erlang module

pool can be used to run a set of Erlang nodes as a pool of computational processors. It is organized as a master and
aset of dave nodes and includes the following features:

e The dave nodes send regular reports to the master about their current load.
¢ Queries can be sent to the master to determine which node will have the least load.

TheBIFstatistics(run_gueue) isused for estimating future loads. It returns the length of the queue of ready
to run processes in the Erlang runtime system.

The dlave nodes are started with the s| ave module. This effects, tty 1O, file 10, and code loading.

If the master node fails, the entire pool will exit.

Exports
start (Nane) ->

start (Nanme, Args) -> Nodes
Types.

Name = atom()

Args=string()

Nodes = [node()]

Starts a new pool. Thefile . host s. er | ang isread to find host names where the pool nodes can be started. See
section Files below. The start-up procedure failsif the fileis not found.

The slave nodes are started with sl ave: start/ 2, 3, passing along Nane and, if provided, Ar gs. Nane is used
asthefirst part of the node names, Ar gs is used to specify command line arguments. See dave(3).

Access rights must be set so that al nodes in the pool have the authority to access each other.

The function is synchronous and all the nodes, aswell as all the system servers, are running when it returns avalue.

attach(Node) -> already_attached | attached
Types.
Node = node()
This function ensures that a pool master is running and includes Node in the pool master's pool of nodes.

stop() -> stopped
Stops the pool and kills al the slave nodes.

get _nodes() -> Nodes
Types:
Nodes = [node()]
Returns alist of the current member nodes of the pool.

Ericsson AB. All Rights Reserved.: STDLIB | 263

pool

pspawn(Mod, Fun, Args) -> pid()
Types:
Mod = Fun = atom()
Args=[term()]
Spawns a process on the pool node which is expected to have the lowest future load.

pspawn_l i nk(Mbd, Fun, Args) -> pid()
Types:
Mod = Fun = atom()
Args=[term()]
Spawn links a process on the pool node which is expected to have the lowest future load.

get _node() -> node()
Returns the node with the expected lowest future load.

Files

. host s. erl ang is used to pick hosts where nodes can be started. See net_adm(3) for information about format
and location of thisfile.

$HOMWE/ . er | ang. sl ave. out . HOST isused for all additional 10 that may come from the slave nodes on standard
|O. If the start-up procedure does not work, this file may indicate the reason.

264 | Ericsson AB. All Rights Reserved.: STDLIB

proc_lib

proc_lib

Erlang module

Thismoduleisused to start processes adhering to the OTP Design Principles. Specifically, thefunctionsinthismodule
are used by the OTP standard behaviors (gen_ser ver, gen_f sm ...) when starting new processes. The functions
can also be used to start special processes, user defined processes which comply to the OTP design principles. See
Sysand Proc_Libin OTP Design Principles for an example.

Some useful information is initialized when a process starts. The registered names, or the process identifiers, of the
parent process, and the parent ancestors, are stored together with information about the function initialy called in
the process.

Whilein"plain Erlang" aprocessissaid to terminate normally only for theexit reasonnor mal , aprocess started using
proc_| i bisasosaidtoterminatenormally if it exitswith reason shut down or { shut down, Ter n} . shut down
is the reason used when an application (supervision tree) is stopped.

When a process started using pr oc_| i b terminates abnormally -- that is, with another exit reason than nor rmal ,
shut down, or { shut down, Ter n} -- acrashreport isgenerated, which iswritten to terminal by the default SASL
event handler. That is, the crash report is normally only visible if the SASL application is started. See sasl(6) and
SASL User's Guide.

The crash report contains the previously stored information such as ancestors and initial function, the termination
reason, and information regarding other processes which terminate as a result of this process terminating.

Exports
spawn(Fun) -> pid()
spawn(Node, Fun) -> pid()
spawn(Mbdul e, Function, Args) -> pid()
spawn(Node, Mdul e, Function, Args) -> pid()
Types.

Node = node()

Fun = fun() -> void()

M odule = Function = atom()

Args=[term()]
Spawns a new process and initializes it as described above. The process is spawned using the spawn BIFs.

spawn_l i nk(Fun) -> pid()
spawn_l i nk(Node, Fun) -> pid()
spawn_| i nk(Modul e, Function, Args) -> pid()

spawn_l i nk(Node, Mdul e, Function, Args) -> pid()
Types.

Ericsson AB. All Rights Reserved.: STDLIB | 265

proc_lib

Node = node()
Fun = fun() -> void()
M odule = Function = atom()
Args=[term()]
Spawns a new process and initializes it as described above. The process is spawned using the spawn_link BIFs.

spawn_opt (Fun, SpawnQpts) -> pid()
spawn_opt (Node, Fun, SpawnQpts) -> pid()
spawn_opt (Modul e, Function, Args, SpawnQpts) -> pid()

spawn_opt (Node, Mbodul e, Func, Args, SpawnQpts) -> pid()
Types:
Node = node()
Fun = fun() -> void()
M odule = Function = atom()
Args=[term()]
SpawnOpts -- see erlang: spawn_opt/2,3,4,5
Spawns a new process and initializes it as described above. The processis spawned using the spawn_opt BIFs.

Note:

Using the spawn option noni t or is currently not allowed, but will cause the function to fail with reason
badar g.

start (Modul e, Function, Args) -> Ret
start (Modul e, Function, Args, Tine) -> Ret
start (Modul e, Function, Args, Tine, SpawnQpts) -> Ret
start _|ink(Mdule, Function, Args) -> Ret
start _|ink(Mdule, Function, Args, Tine) -> Ret
start _|ink(Mdule, Function, Args, Tine, SpawnOpts) -> Ret
Types:
Module = Function = atom()
Args=[term()]
Time=int() >= 0| infinity

SpawnOpts -- see erlang: spawn_opt/2,3,4,5
Ret =term() | {error, Reason}

266 | Ericsson AB. All Rights Reserved.: STDLIB

proc_lib

Starts a new process synchronously. Spawns the process and waits for it to start. When the process has started, it must
call init_ack(Parent,Ret) or init_ack(Ret), where Par ent isthe processthat evaluatesthisfunction. At thistime, Ret
is returned.

If the start _|ink/3, 4,5 function is used and the process crashes before it has called i nit_ack/ 1, 2,
{error, Reason} isreturnedif the calling process traps exits.

If Ti me is specified as an integer, this function waitsfor Ti me milliseconds for the new processto call i ni t _ack,
or{error, tineout} isreturned, and the processiskilled.

The SpawnOpt s argument, if given, will be passed as the last argument to the spawn_opt / 2, 3, 4, 5 BIF.

Note:

Using the spawn option noni t or is currently not allowed, but will cause the function to fail with reason
badar g.

init_ack(Parent, Ret) -> void()

init_ack(Ret) -> void()

Types:
Parent = pid()
Ret =term()

This function must used by a process that has been started by a start[_1ink]/3,4,5 function. It tells Par ent that the
process has initialized itself, has started, or has failed to initialize itself.

Thei ni t _ack/ 1 function uses the parent value previously stored by the start function used.

If this function is not called, the start function will return an error tuple (if a link and/or a timeout is used) or hang
otherwise.

The following example illustrates how thisfunctionand proc_1i b: start | i nk/ 3 areused.

- modul e(my_proc).
-export([start_link/0]).
-export([init/1]).

start_link() ->
proc_lib:start_link(my_proc, init, [self()]).

init(Parent) ->
case do_initialization() of
ok ->
proc_lib:init_ack(Parent, {ok, self()});
{error, Reason} ->
exi t (Reason)
end,
I oop() .

format (CrashReport) -> string()
Types:

Ericsson AB. All Rights Reserved.: STDLIB | 267

proc_lib

CrashReport = term()

This function can be used by a user defined event handler to format a crash report. The crash report is sent using
error_logger:error_report(crash _report, CrashReport). Thatis, the event to be handled is of
theformat{error_report, G, {Pid, crash report, CrashReport}} whereG. isthegroupleader
pid of the process Pi d which sent the crash report.

initial _call(Process) -> {Mdul e, Function, Args} | false
Types.
Process = pid() | {X,Y,Z} | Procinfo
X=Y=Z=int()
Proclnfo =term()
M odule = Function = atom()
Args=[atom()]
Extracts the initial call of a process that was started using one of the spawn or start functions described above.

Pr ocess can either be a pid, an integer tuple (from which a pid can be created), or the process information of a
process Pi d fetched through aner | ang: process_i nf o(Pi d) function call.

Note:

Thelist Ar gs nolonger containsthe actual arguments, but the same number of atoms asthe number of arguments;
the first atom is always"' Argunent __ 1', thesecond ' Argunent __ 2' , and so on. The reason is that the
argument list could waste a significant amount of memory, and if the argument list contained funs, it could be
impossible to upgrade the code for the module.

If the process was spawned using afun, i ni tial _cal | /1 nolonger returns the actual fun, but the module,
function for the local function implementing the fun, and the arity, for instance { sone_nodul e, - wor k/ 3-
fun-0-, 0} (meaning that the fun was created in the function some__nodul e: wor k/ 3). The reason is that
keeping the fun would prevent code upgrade for the module, and that a significant amount of memory could be
wasted.

translate_initial _call (Process) -> {Mdul e, Function, Arity} | Fun

Types:
Process = pid() | {X,Y,Z} | Procinfo
X=Y=Z=int()

Proclnfo = term()
M odule = Function = atom()
Arity =int()
Fun =fun() -> void()
Thisfunctionisused by thec: i / 0 and c: r egs/ O functionsin order to present process information.
Extracts the initial call of a process that was started using one of the spawn or start functions described above, and
tranglates it to more useful information. Pr ocess can either be a pid, an integer tuple (from which a pid can be

created), or the processinformation of aprocessPi d fetched through aner | ang: process_i nf o(Pi d) function
call.

268 | Ericsson AB. All Rights Reserved.: STDLIB

proc_lib

If theinitial call isto one of the system defined behaviors such asgen_server or gen_event, it istrandated to
more useful information. If agen_ser ver is spawned, the returned Modul e is the name of the callback module
and Funct i onisi ni t (thefunction that initiates the new server).

A supervi sor and asupervi sor_bri dge areaso gen_server processes. In order to return information
that this processis a supervisor and the name of the call-back module, Modul e issuper vi sor and Functi on is
the name of the supervisor callback module. Ari ty is1 sincethei ni t/ 1 functioniscalled initially in the callback
module.

By default, { proc_l i b, i ni t _p, 5} isreturned if no information about theinitial call can befound. It is assumed
that the caller knows that the process has been spawned with the pr oc_| i b module.

hi ber nat e(Modul e, Function, Args)
Types:
Module = Function = atom()
Args=[term()]

This function does the same as (and does call) the BIF hibernate/3, but ensures that exception handling and logging
continues to work as expected when the process wakes up. Always use this function instead of the BIF for processes
started using pr oc_ | i b functions.

SEE ALSO

error_logger(3)

Ericsson AB. All Rights Reserved.: STDLIB | 269

proplists

proplists

Erlang module

Property lists are ordinary lists containing entries in the form of either tuples, whose first elements are keys used for
lookup and insertion, or atoms, which work as shorthand for tuples{ At om t r ue} . (Other termsare alowed inthe
lists, but are ignored by this module.) If there is more than one entry in alist for a certain key, the first occurrence
normally overrides any later (irrespective of the arity of the tuples).

Property lists are useful for representing inherited properties, such as options passed to a function where a user may
specify options overriding the default settings, object properties, annotations, etc.

Two keys are considered equal if they match (=: =). In other words, numbers are compared literally rather than by
value, so that, for instance, 1 and 1. O are different keys.

Exports

append_val ues(Key, List) -> List
Types:
Key =term()
List = [term()]
Similartoget _al | _val ues/ 2, but each valueiswrapped in alist unlessit isaready itself alist, and the resulting

list of lists is concatenated. This is often useful for "incremental” options; e.g., append_val ues(a, [{a,
[1,2]}, {b, 0}, {a, 3}, {c, -1}, {a, [4]}]) will returnthelist[1, 2, 3, 4] .

conpact (List) -> List

Types:
List =[term()]
Minimizes the representation of all entriesin thelist. Thisisequivalentto[property(P) || P <- List].

Seealso: property/1,unfol d/ 1.

del ete(Key, List) -> List

Types:
Key =term()
List = [term()]

Deletes al entries associated with Key fromLi st .

expand(Expansi ons, List) -> List
Types.
Key =term()
Expansions = [{Property,[term()]}]
Property = atom() | tuple()
Expands particular properties to corresponding sets of properties (or other terms). For each pair { Property,
Expansi on} in Expansi ons, if E is the first entry in Li st with the same key as Property, and E and

Pr operty have equivalent normal forms, then E is replaced with the terms in Expansi on, and any following
entries with the same key are deleted from Li st .

270 | Ericsson AB. All Rights Reserved.: STDLIB

proplists

For example, the following expressions all return[fi e, bar, baz, funi:

expand([{foo, [bar, baz]}],

[fie, foo, fun])

expand([{{foo, true}, [bar, baz]}],
[fie, foo, funl)

expand([{{foo, false}, [bar, baz]}],
[fie, {foo, false}, funl)

However, no expansion is done in the following call:

expand([{{foo, true}, [bar, baz]}],
[{foo, false}, fie, foo, funi)

because{ f oo, fal se} shadowsf oo.

Note that if the original property term is to be preserved in the result when expanded, it must be included in the
expansion list. The inserted terms are not expanded recursively. If Expansi ons contains more than one property
with the same key, only the first occurrenceis used.

Seedso:normal i ze/ 2.

get _all _values(Key, List) -> [term)]

Types:
Key =term()
List = [term()]

Similar to get _val ue/ 2, but returns the list of values for all entries{ Key, Val ue} inLi st. If no such entry
exists, the result is the empty list.

Seealso: get _val ue/ 2.

get _bool (Key, List) -> bool ()

Types.
Key =term()
List =[term()]

Returnsthevalue of abooleankey/valueoption. If | ookup(Key, Li st) wouldyield{ Key, true},thisfunction
returnst r ue; otherwisef al se isreturned.

Seealso: get _val ue/ 2,1 ookup/ 2.

get _keys(List) -> [term()]
Types:
List = [term()]
Returns an unordered list of the keysused in Li st , not containing duplicates.

get _val ue(Key, List) -> term)

Types:
Key =term()

Ericsson AB. All Rights Reserved.: STDLIB | 271

proplists

List = [term()]
Equivalenttoget val ue(Key, List, undefined).

get val ue(Key, List, Default) -> tern()
Types.
Key =term()
Default =term()
List = [term()]
Returnsthe value of asimple key/value property inLi st . If | ookup(Key, Li st) wouldyield{Key, Val ue},
this function returns the corresponding Val ue, otherwise Def aul t isreturned.

Seealso: get _al |l _val ues/ 2,get _bool / 2,get _val ue/ 2,1 ookup/ 2.

i s_defined(Key, List) -> bool ()
Types:

Key =term()

List = [term()]

Returnst r ue if Li st contains at least one entry associated with Key, otherwisef al se isreturned.

| ookup(Key, List) -> none | tuple()
Types:
Key =term()
List = [term()]
Returnsthe first entry associated with Key in Li st , if one exists, otherwise returns none. For an atom Ain thelist,
thetuple{ A, true} istheentry associated with A.

Seealso: get _bool / 2,get _val ue/ 2,1 ookup_al | / 2.

| ookup_al |l (Key, List) -> [tuple()]
Types:
Key =term()
List = [term()]
Returnsthelist of al entries associated with Key in Li st . If no such entry exists, the result is the empty list.
See also: | ookup/ 2.

normal i ze(Li st, Stages) -> List
Types:
List = [term()]
Stages = [Operation]
Operation = {aliases, Aliases} | {negations, Negations} | {expand, Expansions}
Aliases = [{Key, Key}]
Negations = [{Key, Key}]
Key =term()
Expansions = [{Property, [term()]}]
Property = atom() | tuple()

272 | Ericsson AB. All Rights Reserved.: STDLIB

proplists

Passes Li st through a sequence of substitution/expansion stages. For an al i ases operation, the function
substitute_aliases/2 is applied using the given list of diases; for a negati ons operation,
substitute_negations/ 2 is applied using the given negation list; for an expand operation, the function
expand/ 2 is applied using the given list of expansions. The fina result is automatically compacted (cf.
conpact/ 1).

Typically you want to substitute negations first, then aliases, then perform one or more expansions (sometimes you
want to pre-expand particular entries before doing the main expansion). Y ou might want to substitute negations and/
or aliases repeatedly, to allow such formsin the right-hand side of aliases and expansion lists.

Seealso: conpact/ 1,expand/ 2,substitute_al i ases/2,substitute_negations/?2.

property(Property) -> Property
Types:
Property = atom() | tuple()

Creates a normal form (minimal) representation of a property. If Property is{Key, true} where Key isan
atom, this returns Key, otherwise the wholeterm Pr oper t y isreturned.

See also: property/ 2.

property(Key, Value) -> Property

Types.
Key =term()
Value=term()

Property = atom() | tuple()

Creates anormal form (minimal) representation of a simple key/value property. Returns Key if Val ue ist r ue and
Key isan atom, otherwise atuple{ Key, Val ue} isreturned.

Seealso: property/ 1.

split(List, Keys) -> {Lists, Rest}
Types:

List = [term()]

Keys=[term()]

Lists=[[term()]]

Rest = [term()]
Partitions Li st into alist of sublists and a remainder. Li st s contains one sublist for each key in Keys, in the
corresponding order. The relative order of the elements in each sublist is preserved from the original Li st . Rest
contains the elements in Li st that are not associated with any of the given keys, also with their original relative
order preserved.
Example: split([{c, 2}, {e 1}, a {c, 3,4}, d, {b, 5}, b], [a b, c])
returns

{[[a, [{b, 5}, bl.[{c, 2}, {c, 3, 4}]], [{e, 1}, d]}

substitute_aliases(Aliases, List) -> List
Types:

Aliases = [{Key, Key}]

Key =term()

Ericsson AB. All Rights Reserved.: STDLIB | 273

proplists

List = [term()]

Substitutes keys of properties. For each entry in Li st , if it is associated with some key K1 such that { K1, K2}
occursin Al i ases, the key of the entry is changed to Key 2. If the same K1 occurs more than oncein Al i ases,
only thefirst occurrenceis used.

Example: substitute_aliases([{color, colour}], L) will replaceal tuples{col or, ...} inL
with{col our, ...},andal aomscol or withcol our.

Seedso: nornmal i ze/ 2,substitute_negations/ 2.

substitute_negations(Negations, List) -> List
Types:

Negations = [{Key, Key}]

Key =term()

List = [term()]
Substitutes keys of boolean-valued properties and simultaneously negates their values. For each entry in Li st , if it
is associated with some key K1 such that { K1, K2} occursin Negat i ons, then if the entry was{ K1, true}
it will be replaced with { K2, f al se}, otherwise it will be replaced with { K2, t rue}, thus changing the name

of the option and simultaneously negating the value given by get _bool (Li st) . If the same K1 occurs more than
oncein Negat i ons, only thefirst occurrenceis used.

Example: substitute_negations([{no_foo, foo}], L) will replace any atom no_f oo or tuple
{no_foo, true} inLwith{foo, false},andanyothertuple{no_foo, ...} with{foo, true}.

Seealso: get _bool / 2,normal i ze/ 2,substitute_aliases/ 2.

unfol d(List) -> List
Types:
List = [term()]
Unfolds all occurrences of atomsinLi st totuples{ At om true}.

274 | Ericsson AB. All Rights Reserved.: STDLIB

qlc

glc

Erlang module

Theql ¢ module provides aquery interfaceto Mnesia, ETS, Dets and other data structures that implement an iterator
style traversal of objects.

Overview

The gl ¢ module implements a query interface to QLC tables. Typical QLC tablesare ETS, Dets, and Mnesia tables.
Thereisalso support for user defined tables, see the Implementing a QLC table section. A query is stated using Query
List Comprehensions (QLCs). The answersto aquery are determined by datain QL C tablesthat fulfill the constraints
expressed by the QLCs of the query. QLCs are similar to ordinary list comprehensions as described in the Erlang
Reference Manual and Programming Examples except that variables introduced in patterns cannot be used in list
expressions. In fact, in the absence of optimizations and options such ascache and uni que (seebelow), every QLC
free of QL C tables evaluates to the same list of answers astheidentical ordinary list comprehension.

While ordinary list comprehensions evaluate to lists, calling glc:g/1,2 returns a Query Handle. To obtain al the
answersto aquery, glc:eval/1,2 should be called with the query handle asfirst argument. Query handles are essentially
functional objects ("funs") created in the module calling g/ 1, 2. Asthe funs refer to the modul€'s code, one should
be careful not to keep query handlestoo long if the modul€'s code isto be replaced. Code replacement is described in
the Erlang Reference Manual. The list of answers can aso be traversed in chunks by use of a Query Cursor. Query
cursorsare created by calling glc: cursor/1,2 with aquery handle asfirst argument. Query cursors are essentially Erlang
processes. One answer at atimeis sent from the query cursor process to the process that created the cursor.

Syntax

Syntactically QL Cs have the same parts as ordinary list comprehensions:
[Expression || Qualifierl, Qalifier2, ...]

Expr essi on (the template) is an arbitrary Erlang expression. Qualifiers are either filters or generators. Filters
are Erlang expressions returning bool (). Generators have the form Pattern <- Li st Expression,
where Li st Expressi on is an expression evaluating to a query handle or a list. Query handles are
returned from gl c: tabl e/ 2, gl c: append/ 1, 2,qlc:sort/ 1, 2,9l c: keysort/2,3,qlc:qg/1, 2, and
glc:string_to_handle/1, 2, 3.

Evaluation

The evaluation of aquery handle begins by the inspection of options and the collection of information about tables. As
aresult qualifiers are modified during the optimization phase. Next all list expressions are evaluated. If a cursor has
been created evaluation takes place in the cursor process. For those list expressions that are QL Cs, the list expressions
of the QLCs generators are evaluated aswell. One hasto be careful if list expressions have side effects since the order
in which list expressions are evaluated is unspecified. Finally the answers are found by evaluating the qualifiers from
left to right, backtracking when somefilter returnsf al se, or collecting the template when all filtersreturnt r ue.

Filters that do not return bool () but fail are handled differently depending on their syntax: if the filter isaguard it
returnsf al se, otherwise the query evaluation fails. This behavior makes it possible for the ql ¢ module to do some
optimizations without affecting the meaning of aquery. For example, when testing some position of atable and one or
more constants for equality, only the objects with equal values are candidates for further evaluation. The other objects
are guaranteed to make thefilter return f al se, but never fail. The (small) set of candidate objects can often be found
by looking up some key values of the table or by traversing the table using a match specification. It is necessary to
place the guard filters immediately after the tabl€e's generator, otherwise the candidate objects will not be restricted

Ericsson AB. All Rights Reserved.: STDLIB | 275

glc

to asmall set. The reason is that objects that could make the query evaluation fail must not be excluded by looking
up akey or running a match specification.

Join

Thegl ¢ module supportsfast join of two query handles. Fast joinispossibleif some position P1 of one query handler
and some position P2 of another query handler are tested for equality. Two fast join methods have been implemented:

* Lookup join traverses al objects of one query handle and finds objects of the other handle (a QL C table) such
that the values at P1 and P2 match or compare equal. The gl ¢ module does not create any indices but |ooks up
values using the key position and the indexed positions of the QL C table.

« Mergejoin sorts the objects of each query handle if necessary and filters out objects where the values at P1 and
P2 do not compare equal. If there are many objects with the same value of P2 atemporary file will be used for
the equivalence classes.

The gl ¢ module warns at compile time if a QLC combines query handles in such away that more than onejoinis
possible. In other words, there is no query planner that can choose a good order between possible join operations. It
is up to the user to order the joins by introducing query handles.

The join is to be expressed as a guard filter. The filter must be placed immediately after the two joined generators,
possibly after guard filters that use variables from no other generators but the two joined generators. The gl ¢
moduleinspectstheoperandsof =: =/ 2,==/ 2,i s_r ecord/ 2,el ement / 2, andlogical operators(and/ 2,or / 2,
andal so/ 2, or el se/ 2, xor / 2) when determining which joins to consider.

Common options
The following options are accepted by cur sor/ 2,eval / 2,f ol d/ 4,andi nf o/ 2:

e {cache_all, Cache} whereCacheisequaltoets orli st addsa{cache, Cache} optiontoevery
list expression of the query except tables and lists. Defaultis{ cache_al | , no}.Theoptioncache_al |l is
equivalentto{ cache_al |, ets}.

« {max_list_size, MaxListSize} whereMaxLi st Si ze isthesizein bytes of terms on the external
format. If the accumulated size of collected objects exceeds MaxLi st Si ze the objects are written onto a
temporary file. Thisoption isused by the{ cache, |i st} option aswell as by the merge join method.
Default is 512* 1024 bytes.

e {tnpdir_usage, TnpFil eUsage} determinesthe action taken when gl ¢ isabout to create temporary
files on the directory set by thet npdi r option. If thevalueisnot _al | owed an error tupleis returned,
otherwise temporary files are created as needed. Default isal | owed which means that no further action
istaken. Thevaluesi nf o_nsg, war ni ng_nsg, and er r or _nsg mean that the function with the
corresponding name in the module er r or _I ogger iscalled for printing some information (currently the
stacktrace).

e {tnmpdir, TenpDirectory} setsthedirectory used by merge join for temporary files and by the
{cache, |i st} option. Theoption also overridesthet npdi r option of keysort/ 3 andsort/ 2. The
default valueis™ " which meansthat the directory returned by f i | e: get _cwd() isused.

e {unique_all, true} addsa{uni que, true} optiontoevery list expression of the query. Default is
{unique_all, false}.Theoptionuni que_al | isequivaentto{uni que_al |, true}.

Common data types

e QueryCursor = {glc_cursor, ternm()}

e QueryHandle = {glc_handle, tern()}

e QeryHandl eOrList = QueryHandle | list()
e Answers = [Answer]

e Answer = tern()

276 | Ericsson AB. All Rights Reserved.: STDLIB

qlc

e Abstract Expressi on = - parsetreesfor Erlang expressions, see the abstract format documentation in
the ERTS User's Guide -
« Mat chExpressi on = -match specifications, see the match specification documentation in the ERTS User's

Guide and ms_transform(3) -

e SpawnOptions = default | spawn_options()

e SortOptions = [SortOption] | SortOption

e SortOption = {conpressed, bool ()} | {no files, NoFiles} | {order, Oder} |
{size, Size} | {tmpdir, TenpDirectory} | {unique, bool ()} -seefile sorter(3)-

e Oder = ascending | descending | OrderFun

e OderFun = fun(term(), term()) -> bool ()

e TenpDirectory = "" | filenane()

e Size =int() >0

 NoFiles =int() > 1

e KeyPos =int() >0 | [int() > O]

e MaxListSize =int() >=0

e bool() =true | false

e Cache =ets | list | no

e TnpFileUsage = allowed | not _allowed | info _nsg | warning _nsg | error_nsg
« filenane() = - seefilename(3) -

e spawn_options() = -seeerlang(3) -

Getting started

Asalready mentioned queries are stated in the list comprehension syntax as described in the Erlang Reference Manual.
In the following some familiarity with list comprehensionsis assumed. There are examplesin Programming Examples
that can get you started. It should be stressed that list comprehensions do not add any computational power to the
language; anything that can be done with list comprehensions can also be done without them. But they add a syntax
for expressing simple search problems which is compact and clear once you get used to it.

Many list comprehension expressions can be evauated by the gl ¢ module. Exceptions are expressions such that
variables introduced in patterns (or filters) are used in some generator later in the list comprehension. As an example
consider an implementation of lists:append(L): [X || Y <- L, X <- Y].Y isintroduced in the first generator
and used in the second. The ordinary list comprehension is normally to be preferred when there is a choice as to
which to use. One differenceisthat gl c: eval / 1, 2 collects answersin alist which is finaly reversed, while list
comprehensions collect answers on the stack which is finally unwound.

What the gl ¢ module primarily adds to list comprehensions is that data can be read from QLC tables in small
chunks. A QLC tableiscreated by calling gl c: t abl e/ 2. Usudly gl c: t abl e/ 2 isnot caled directly from the
guery but via an interface function of some data structure. There are a few examples of such functions in Erlang/
OTP:. mesi a:table/ 1,2, ets:table/ 1, 2,and dets: tabl e/ 1, 2. For a given data structure there can
be several functions that create QL C tables, but common for all these functions is that they return a query handle
created by gl c: t abl e/ 2. Using the QLC tables provided by OTP is probably sufficient in most cases, but for
the more advanced user the section Implementing a QLC table describes the implementation of a function calling
gl c: tabl e/ 2.

Besidesql c: t abl e/ 2 there are other functions that return query handles. They might not be used as often astables,
but are useful from timeto time. gl ¢: append traverses objects from several tables or lists after each other. If, for
instance, you want to traverse all answersto aquery QH and then finish off by aterm { f i ni shed}, you can do that
by calling gl c: append(@H, [{finished}]).append first returnsall objects of QH, then{f i ni shed}. If
thereisonetuple{fi ni shed} among the answersto QH it will be returned twice from append.

Ericsson AB. All Rights Reserved.: STDLIB | 277

glc

As another example, consider concatenating the answers to two queries QH1 and QH2 while removing all duplicates.
The means to accomplish thisis to use the uni que option:

glc:g([X || X <- glc:append(QHl, QH2)], {unique, true})

The cost is substantial: every returned answer will be stored in an ETS table. Before returning an answer it is looked
up in the ETS table to check if it has already been returned. Without the uni que options al answersto QH1 would
be returned followed by all answersto QH2. The uni que options keeps the order between the remaining answers.

If the order of the answers is not important there is the aternative to sort the answers uniquely:

glc:sort(glc:q([X || X <- glc:append(QHl, QH2)], {unique, true})).

This query aso removes duplicates but the answers will be sorted. If there are many answers temporary files will
be used. Note that in order to get the first unique answer all answers have to be found and sorted. Both alternatives
find duplicates by comparing answers, that is, if A1 and A2 are answers found in that order, then A2 is a removed
if Al==A2.

To return just afew answers cursors can be used. The following code returns no more than five answersusing an ETS
table for storing the unique answers:

C=glc:cursor(qglc:q([X || X <- glc:append(QHl, QH2)], {uni que,true})),
R = gl c: next _answers(C, 5),

ok = gl c:delete_cursor (0O,

R

Query list comprehensions are convenient for stating constraints on data from two or more tables. An example that
does a natural join on two query handles on position 2:

gl c: q([{X1, X2, X3, Y1} ||
{X1, X2, X3} <- QHI,

(Y1, Y2} < QH2,
X2 == Y2])

The gl ¢ module will evaluate this differently depending on the query handles QH1 and QH2. If, for example, X2 is
matched against the key of a QL C table the lookup join method will traverse the objects of QH2 while looking up key
values in the table. On the other hand, if neither X2 nor Y2 is matched against the key or an indexed position of a
QLC table, the merge join method will make sure that QH1 and QH2 are both sorted on position 2 and next do the
join by traversing the objects one by one.

The| oi n option can be used to force the gl ¢ module to use a certain join method. For the rest of this section it is
assumed that the excessively slow join method called "nested loop" has been chosen:

gl c: q([{X1, X2, X3, Y1} ||
{X1, X2, X3} <- QH1,
{Y1, Y2} <- Q,
X2 == Y2],
{join, nested_| oop})

278 | Ericsson AB. All Rights Reserved.: STDLIB

qlc

In this case the filter will be applied to every possible pair of answersto QH1 and QH2, one at atime. If there are M
answersto QH1 and N answers to QH2 the filter will be run M*N times.

If QH2 is a call to the function for gb_trees as defined in the Implementing a QLC table section,
gb_tabl e: t abl e/ 1, theiterator for the gb-tree will beinitiated for each answer to QH1 after which the objects of
the gb-tree will be returned one by one. Thisis probably the most efficient way of traversing thetablein that case since
it takes minima computational power to get the following object. But if QH2 is not a table but a more complicated
QLC, it can be more efficient use some RAM memory for collecting the answers in a cache, particularly if there are
only afew answers. It must then be assumed that evaluating QH2 has no side effects so that the meaning of the query
does not change if QH2 is evaluated only once. One way of caching the answers is to evaluate QH2 first of all and
substitute the list of answers for QH2 in the query. Another way isto usethe cache option. It is stated like this:

Q2" =glc:q([X || X <- 2], {cache, ets})

or just

Q2" =gqlc:q([X || X < QH], cache)

The effect of the cache option is that when the generator QH2' is run the first time every answer is stored in an
ETS table. When next answer of QH1 istried, answersto QH2' are copied from the ETS table which is very fast. As
for the uni que option the cost is a possibly substantial anount of RAM memory. The { cache, |i st} option
offers the possibility to store the answers in a list on the process heap. While this has the potential of being faster
than ETS tables since there is no need to copy answers from the table it can often result in slower evaluation due to
more garbage collections of the process heap as well as increased RAM memory consumption due to larger heaps.
Another drawback with cache listsis that if the size of the list exceeds alimit atemporary file will be used. Reading
the answers from afileis very much slower than copying them from an ETStable. But if the available RAM memory
is scarce setting the limit to some low value is an aternative.

There is an option cache_al | that can be set to et s or | i st when evaluating a query. It adds a cache or
{cache, |i st} optionto every list expression except QLC tables and lists on all levels of the query. This can be
used for testing if caching would improve efficiency at all. If the answer is yes further testing is needed to pinpoint
the generators that should be cached.

Implementing a QLC table

As an example of how to use the glc:table/2 function the implementation of a QLC table for the gb_trees module
isgiven:

-nmodul e(gb_t abl e) .
-export([table/1]).

table(T) ->

TF = fun() -> qglc_next(gb_trees:next(gb_ trees:iterator(T))) end,

I nfoFun = fun(num of objects) -> gb trees:size(T);
(keypos) -> 1;
(is_sorted_key) -> true;
(i s_uni que_obj ects) -> true;
(_) -> undefined

end,
LookupFun =
fun(l, Ks) ->

lists:flatmap(fun(K) ->

Ericsson AB. All Rights Reserved.: STDLIB | 279

glc

case gb_trees: | ookup(K, T) of

{value, V} -> [{K V}];

none -> []
end
end, Ks)
end,
For mat Fun =
fun({all, NEl enents, ElenentFun}) ->

Val sS = io_lib:format("gb_trees:fromorddict(~w",
[gb_nodes(T, NEl enents, ElenentFun)]),
io_lib:format ("gb_table:table(~s)", [ValsS]);
({! ookup, 1, KeyVal ues, _NElenents, ElenmentFun}) ->
Val sS = io_lib:format("gb_trees:fromorddict(~w",
[gb_nodes(T, infinity, ElementFun)]),
io_lib:format ("lists:flatmap(fun(K) -> "
"case gb_trees: | ookup(K, ~s) of "
"{value, V} -> [{K V}];none -> [] end "

"end, ~w)",
[Val sS, [El enent Fun(KV) || KV <- KeyVal ues]])
end,
glc:tabl e(TF, [{info_fun, InfoFun}, {format_fun, FormatFun},
{l ookup_fun, LookupFun},{key_equality,'=="}]).

glc_next({X, V, S}) ->
[{X V} | fun() -> glc_next(gb_trees:next(S)) end];
gl c_next (none) ->

(1.

gb_nodes(T, infinity, ElenmentFun) ->
gb_nodes(T, -1, El enentFun);

gb_nodes(T, NEl enents, ElenmentFun) ->
gb_iter(gb_trees:iterator(T), NEl enents, ElenentFun).

gb_iter(_I, 0, _EFun) ->

gb_iter(10, N EFun) ->
case gb_trees: next (10) of
{X, VvV, I} ->
[EFun({X, V}) | gb_iter(l, N1, EFun)];
none ->

[l

end.

TF isthetraversal function. Theql ¢ modulerequiresthat thereisaway of traversing al objects of the data structure;
ingb_trees thereis an iterator function suitable for that purpose. Note that for each object returned a new fun is
created. Aslong asthelist is not terminated by [] it is assumed that the tail of the list is a nullary function and that
calling the function returns further objects (and functions).

The lookup function is optional. It is assumed that the lookup function always finds values much faster than it would
take to traverse the table. The first argument is the position of the key. Since gl c_next returns the objects as
{Key, Value} pairs the position is 1. Note that the lookup function should return {Key, Value} pairs, just as the
traversal function does.

The format function is also optional. It is called by gl c: i nf o to give feedback at runtime of how the query will
be evaluated. One should try to give as good feedback as possible without showing too much details. In the example
at most 7 objects of the table are shown. The format function handles two cases: al | means that all objects of the
table will be traversed; { | ookup, 1, KeyVal ues} means that the lookup function will be used for looking up
key values.

Whether the whole table will be traversed or just some keys looked up depends on how the query is stated. If the
query hasthe form

280 | Ericsson AB. All Rights Reserved.: STDLIB

qlc

glc:qg([T || P <- LE F])

and Pisatuple, the gl ¢ module analyzes P and F in compile time to find positions of the tuple P that are tested for
equality to constants. If such a position at runtime turns out to be the key position, the lookup function can be used,
otherwise al objects of the table have to be traversed. It is the info function | nf oFun that returns the key position.
There can beindexed positionsaswell, also returned by theinfo function. Anindex isan extratable that makeslookup
on some position fast. Mnesia maintai ns indices upon request, thereby introducing so called secondary keys. Theql ¢
module prefersto look up objects using the key before secondary keysregardless of the number of constantsto ook up.

Key equality

In Erlang there are two operators for testing term equality, namely ==/ 2 and =: =/ 2. The difference between them
isall about the integers that can be represented by floats. For instance, 2 == 2. 0 evaluatestotr ue while2 =: =
2. 0 evaluatesto f al se. Normally this is a minor issue, but the gl ¢ module cannot ignore the difference, which
affects the user's choice of operatorsin QLCs.

If the gl ¢ module can find out at compile time that some constant is free of integers, it does not matter which one
of ==/ 2 or =: =/ 2 isused:

1> E1 = ets:new(t, [set]), %uses =:=/2 for key equality
QL = qglc:q([K []
{K} <- ets:table(El),
K== 2.71 orel se K == a]),
io:format ("~s~n", [qglc:info(QLl)]).
ets: match_spec_run(lists:flatmp(fun(V) ->
et s: | ookup(20493, V)
end,
[a,2.71]),
ets: mat ch_spec_conpile([{{"'$1"},[].["$1']1}1))

In the example the ==/ 2 operator has been handled exactly as =: =/ 2 would have been handled. On the other hand,
if it cannot be determined at compile time that some constant is free of integers and the table uses =: =/ 2 when
comparing keys for equality (see the option key_equality), the gl ¢ module will not try to look up the constant. The
reason is that there isin the general case no upper limit on the number of key values that can compare equal to such
a constant; every combination of integers and floats has to be looked up:

2> E2 = ets:new(t, [set]),
true = ets:insert(E2, [{{2,2},a},{{2 2.0},b},{{2.0,2},c}]),
F2 = fun(l) ->

ale:q([V || {KV < ets:table(E2), K ==1])
end,
Q@ = F2({2,2}),

io:format ("~s~n", [qglc:info(@)]).
ets:tabl e(53264,
[{traverse,
{select, [{{"$1","$2"},[{"'==","$1",{const,{2,2}}}],["$2']}1}}])
3> lists:sort(qglc:e(@)).
[a, b, c]

Looking upjust { 2, 2} would not return b and c.

If the table uses ==/ 2 when comparing keys for equality, the gl ¢ module will ook up the constant regardless of
which operator is used in the QLC. However, ==/ 2 isto be preferred:

Ericsson AB. All Rights Reserved.: STDLIB | 281

glc

4> E3 = ets:new(t, [ordered_set]), %uses ==/2 for key equality
true = ets:insert(E3, [{{2,2.0},b}]),
F3 = fun(l) ->

glc:q([V || {KV} <- ets:table(E3), K ==1])
end,
@ = F3({2,2}),

io:format("~s~n", [qglc:info(@B)]).
ets: match_spec_run(ets: | ookup(86033, {2,2}),
ets: match_spec_conpile([{{"$1',"'$2"},[].["'$2'1}]1))
5> glc:e(®B).
[b]

Lookup join is handled analogously to lookup of constantsin atable: if thejoin operator is==/ 2 and the table where
constants are to be looked up uses =: =/ 2 when testing keys for equality, the gl ¢ module will not consider lookup
join for that table.

Exports

append(QL) -> H
Types:
QHL =[QueryHandleOrList]
QH = QueryHandle
Returns a query handle. When evaluating the query handle QH all answersto the first query handlein QHL isreturned
followed by all answersto the rest of the query handlesin QHL.

append(QHL, Q) -> Q3
Types:
QH1=QH2=QueryHandleOrList
QH3 = QueryHandle
Returns a query handle. When evaluating the query handle QH3 all answers to QH1 are returned followed by all
answersto QH2.

append(QHl, QH2) isequivaenttoappend([QHL, QH2]).

cursor (QueryHandl eOList [, Options]) -> QueryCursor

Types:
Options = [Option] | Option
Option = {cache _all, Cache} | cache_all | {max_list_size, MaxListSize} | {spawn_options, SpawnOptions} |
{tmpdir_usage, TmpFileUsage} | {tmpdir, TempDirectory} | {unique_all, bool()} | unique _all

Creates a query cursor and makes the calling process the owner of the cursor. The cursor is to be used as argument
tonext _answers/ 1, 2 and (eventually) del et e_cur sor/ 1. Calser| ang: spawn_opt to spawn and link
a process which will evaluate the query handle. The value of the option spawn_opt i ons isused as last argument
when calling spawn_opt . Thedefault valueis[| i nk] .

1> H =qglec:q([{X Y} || X< [ab], Y<- [12]]),
QC = gl c:cursor (QH),

gl c: next _answers(QC, 1).

[{a 1}]

2> gl c: next _answers(QC, 1).

282 | Ericsson AB. All Rights Reserved.: STDLIB

qlc

[{a 2}]

3> gl c: next _answers(QC, all _remaining).

[{b, 1}, {b, 2}]
4> gl c: del ete_cursor (QC).
ok

del ete_cursor (QueryCursor) -> ok
Deletes a query cursor. Only the owner of the cursor can delete the cursor.

eval (QueryHandl eO List [, Options]) -> Answers | Error

e(QueryHandl eO List [, Options]) -> Answers
Types.
Options = [Option] | Option
Option = {cache_all, Cache} | cache all | {max_list_size, MaxListSize} | {tmpdir_usage, TmpFileUsage} |
{tmpdir, TempDirectory} | {unique_all, bool()} | unique_all
Error = {error, module(), Reason}
Reason = - asreturned by file sorter(3) -

Evaluates a query handle in the calling process and collects all answersin alist.

1> QH = qgleciq([{X Y} [| X< [ab], Y< [1,2]]),
gl c: eval (QH).
[{a 1},{a 2},{b, 1},{b, 2}]

fol d(Function, AccO, QueryHandl eOrList [, Options]) -> Accl | Error
Types:
Function = fun(Answer, Accln) -> AccOut
AccO = Accl = Accln = AccOut =term()
Options = [Option] | Option
Option = {cache_all, Cache} | cache all | {max_list_size, MaxListSize} | {tmpdir_usage, TmpFileUsage} |
{tmpdir, TempDirectory} | {unique_all, bool()} | unique_all
Error = {error, module(), Reason}
Reason = - asreturned by file_sorter(3) -
CadllsFunct i on onsuccessive answersto the query handletogether with an extraargument Accl n. Thequery handle

and the function are evaluated in the calling process. Funct i on must return a new accumulator which is passed to
the next call. AccO isreturned if there are no answers to the query handle.

1> H=1[1,23,4,5, 6],
glc:fold(fun(X, Sum) -> X + Sumend, 0, QH).
21

format _error(Error) -> Chars
Types:
Error ={error, module(), term()}

Ericsson AB. All Rights Reserved.: STDLIB | 283

glc

Chars=[char() | Charg|

Returns a descriptive string in English of an error tuple returned by some of the functions of the ql ¢ module or the
parse transform. This function is mainly used by the compiler invoking the parse transform.

i nfo(QueryHandl eOrList [, Options]) -> Info
Types.
Options = [Option] | Option
Option = EvalOption | ReturnOption
EvalOption = {cache all, Cache} | cache_all | {max_list_size, MaxListSize} | {tmpdir_usage,
TmpFileUsage} | {tmpdir, TempDirectory} | {unique_all, bool()} | unique_all
ReturnOption = {depth, Depth} | {flat, bool()} | {format, Format} | {n_elements, NElements}
Depth = infinity | int() >=0
Format = abstract_code | string
NElements = infinity | int() >0
Info = AbstractExpression | string()

Returns information about a query handle. The information describes the simplifications and optimizations that are
the results of preparing the query for evaluation. This function is probably useful mostly during debugging.

The information has the form of an Erlang expression where QLCs most likely occur. Depending on the format
functions of mentioned QL C tables it may not be absolutely accurate.

The default is to return a sequence of QLCsin ablock, but if theoption{f | at, fal se} isgiven, onesingleQLC
isreturned. The default isto return astring, but if the option { f or mat , abstract code} isgiven, abstract code
isreturned instead. In the abstract code port identifiers, references, and pids are represented by strings. The default is
to return all elementsin lists, but if the{ n_el enent s, NEl enent s} option is given, only alimited number of
elements are returned. The default is to show all of objects and match specifications, but if the { dept h, Dept h}
option is given, parts of terms below a certain depth arereplaced by ' . . ."'

1> QH = qglciq([{X Y} || X< [x,¥], Y < [ab]]),

io:format ("~s~n", [qglc:info(QH, wunique_all)]).
begi n
Vi =
alc:q([
SQV | |
: SQV <- [x,y]
[{uni que, true}]),
V2 =
alc:q([
SQV | |
SQV <- [a,b]
IE
[{unique, true}]),
alc:q([
(XY} I
X <- Vi,
Y <- V2
IE
[{uni que, true}])
end

In this example two simple QL Cs have been inserted just to hold the { uni que, true} option.

284 | Ericsson AB. All Rights Reserved.: STDLIB

qlc

1> E1 = ets:newmel, []),

E2 = ets:new(e2, []),

true = ets:insert(El, [{1,a},{2, b}]),
true = ets:insert(E2, [{a, 1},{b,2}]),
Q=qlec:q([{Xz W ||

{X, Z} <- ets:table(El),

{W Y} <- ets:table(E2),

X ==Y]),
io:format ("~s~n", [glc:info(Q]).
begi n
V1 =
alc:q([
PO ||
PO = {WY} <- ets:table(17)
D).
V2 =
alc:q([
[Gl&] ||
& <- Vi,
Gl <- ets:table(16),
elenment (2, Gl) =:= elenent(l, &)
Il
[{j oi n, | ookup}]),
alc:q([
{(X.zwW ||
]) {X Z{WY}] < V2
end

In this example the query list comprehension V2 has been inserted to show the joined generators and the join method
chosen. A convention is used for lookup join: the first generator (&2) is the one traversed, the second one (G1) isthe
table where constants are looked up.

keysort (KeyPos, QH1 [, SortOptions]) -> Q12
Types:

QH1=QueryHandleOrList

QH2 = QueryHandle

Returns a query handle. When evaluating the query handle QH2 the answers to the query handle QH1 are sorted by
file_sorter:keysort/4 according to the options.

The sorter will use temporary files only if QHL does not evaluate to alist and the size of the binary representation of
the answers exceeds Si ze bytes, where Si ze isthe value of thesi ze option.

next _answers(QueryCursor [, Number Of Answers]) -> Answers | Error
Types:
Number OfAnswers=all_remaining |int() >0
Error = {error, module(), Reason}
Reason = - asreturned by file_sorter(3) -
Returns some or all of the remaining answers to a query cursor. Only the owner of Cur sor can retrieve answers.

Theoptional argument Nunber OF Answer s determinesthe maximum number of answersreturned. The default value
is10. If less than the requested number of answersis returned, subsequent callsto next _answer s will return|[] .

Ericsson AB. All Rights Reserved.: STDLIB | 285

glc

g(QueryLi st Conprehension [, Options]) -> QueryHandl e
Types:
QueryListComprehension = - literal query listcomprehension -
Options = [Option] | Option
Option = {max_lookup, MaxL ookup} | {cache, Cache} | cache | {join, Join} | {lookup, Lookup} | {unique,
bool()} | unique
MaxL ookup = int() >= 0| infinity
Join = any | lookup | merge | nested_loop
L ookup = bool() | any

Returns a query handle for a query list comprehension. The query list comprehension must be the first argument to
gl c: g/ 1, 2 oritwill be evaluated as an ordinary list comprehension. It is also necessary to add the line

-include_lib("stdlib/include/qglc.hrl").

to the source file. This causes a parse transform to substitute a fun for the query list comprehension. The (compiled)
fun will be called when the query handle is evaluated.

When calling gl ¢: g/ 1, 2 from the Erlang shell the parse transform is automatically called. When this happens the
fun substituted for the query list comprehension is not compiled but will be evaluated by er | _eval (3) . Thisisaso
true when expressions are evaluated by meansof fi | e: eval / 1, 2 or in the debugger.

To be very explicit, thiswill not work:
EX} <- [{1}.{2}]],

The variable Awill be bound to the evaluated value of the list comprehension ([1, 2]). The compiler complainswith
an error message ("argument is not a query list comprehension”); the shell process stops with abadar g reason.

The{ cache, et s} optioncan beusedto cachetheanswerstoaquery list comprehension. Theanswersarestoredin
one ETS table for each cached query list comprehension. When a cached query list comprehension is evaluated again,
answers are fetched from the table without any further computations. As a consequence, when all answersto a cached
query list comprehension have been found, the ET S tables used for caching answers to the query list comprehension's
qualifiers can be emptied. The option cache isequivaentto{ cache, ets}.

The {cache, list} option can be used to cache the answers to a query list comprehension just like
{cache, ets}. The difference is that the answers are kept in alist (on the process heap). If the answers would
occupy more than a certain amount of RAM memory a temporary file is used for storing the answers. The option
max_| i st _si ze setsthelimit in bytes and the temporary fileis put on the directory set by thet nmpdi r option.

The cache option has no effect if it is known that the query list comprehension will be evaluated at most once. This
is always true for the top-most query list comprehension and also for the list expression of the first generator in a
list of qualifiers. Note that in the presence of side effects in filters or callback functions the answers to query list
comprehensions can be affected by the cache option.

The{uni que, true} optioncan be used to remove duplicate answers to a query list comprehension. The unique
answers are stored in one ETStable for each query list comprehension. Thetableisemptied every timeit isknown that
there are no more answersto the query list comprehension. Theoption uni que isequivalentto{ uni que, true}.
If the uni que option is combined with the { cache, et s} option, two ETS tables are used, but the full answers

286 | Ericsson AB. All Rights Reserved.: STDLIB

qlc

are stored in one table only. If the uni que option is combined with the{ cache, 1|i st} option the answers are
sorted twice using keysor t / 3; once to remove duplicates, and once to restore the order.

Thecache anduni que optionsapply not only to the query list comprehension itself but also to the results of looking
up constants, running match specifications, and joining handles.

1> Q=gqlc:q([{AX Z W ||

A <- [a b,c],

{sz} <- [{a,l},{b,4},{c,6}],
{WY} <- [{2 a},{3,b},{4,c}],

X == Y],

{cache, list}),

io:format ("~s~n", [qglc:info(Q]).

begi n
Vil =
ql c:q([
PO ||
PO = {X, Z} <-
gl c: keysort (1, [{a,1},{b, 4},{c,6}], [])
1.
V2 =
ql c:q([
PO ||
PO = {WY} <-
gl c: keysort (2, [{2,a},{3,b},{4,c}], [])
1.
V3 =
ql c:q([
[Gl&] []
Gl <- V1,
@ <- V2,
elenent (1, Gl) == elenent(2, &)
Il
[{j oin, merge}, {cache, list}]),
ql c:q([
{AXZW ||
A <- [a, b,],
{X ZH{WY}] < V3,
X ==Y
1
end

In this example the cached results of the merge join are traversed for each value of A. Note that without the cache
option the join would have been carried out three times, once for each value of A

sort/ 1,2 and keysort/ 2, 3 can also be used for caching answers and for removing duplicates. When sorting
answers are cached in alist, possibly stored on atemporary file, and no ETS tables are used.

Sometimes (see glc:table/2 below) traversal of tables can be done by looking up key values, which is assumed
to be fast. Under certain (rare) circumstances it could happen that there are too many key values to look up. The
{max_| ookup, MaxLookup} option canthen be used to limit the number of lookups: if more than MaxLookup
lookups would be required no lookups are done but the table traversed instead. The default valueisi nf i ni t y which
means that there is no limit on the number of keysto look up.

1> T = gb_trees: enpty(),

H=aqlc:q([X|] {{XY},_} <- gb_table:table(T),
((X ==1) or (X ==2)) andal so

((Y==a) or (Y==D) or (Y==2¢))]),

io:format ("~s~n", [qglc:info(QH)]).

Ericsson AB. All Rights Reserved.: STDLIB | 287

glc

ets: mat ch_spec_run(
lists:flatmap(fun(K) ->
case
gb_trees: | ookup(K
gb_trees:fromorddict([]))
of
{val ue, V} ->

[{K V}];
none ->
[
end
end
[{1,a},{1,b},{1,¢c} {2 a},{2 b}, {2,¢c}]),
ets: mat ch_spec_conpile([{{{"$1","$2"},' "},[1.["'$1'1}]))

In this example using the gb_t abl e module from the Implementing a QLC table section there are six keys to look
up: {1,a},{1,b},{1,c},{2,a},{2,b},and{2, c}. Thereason is that the two elements of the key { X, Y}
are compared separately.

The{ | ookup, true} optioncanbeusedto ensurethat thegl ¢ modulewill look up constantsin some QL C table.
If there are more than one QL C table among the generators list expressions, constants have to be looked up in at least
one of thetables. The evaluation of the query failsif there are no constantsto ook up. Thisoptionisuseful in situations
when it would be unacceptable to traverse all objectsin sometable. Settingthel ookup optiontof al se ensuresthat
no constants will be looked up ({ max_| ookup, 0} hasthe same effect). The default value is any which means
that constants will be looked up whenever possible.

The {j oi n, Joi n} option can be used to ensure that a certain join method will be used: {j oi n, | ookup}
invokesthe lookup join method; {j oi n, ner ge} invokesthe mergejoin method; and{j oi n, nested_| oop}
invokes the method of matching every pair of objects from two handles. The last method is mostly very slow. The
evaluation of the query fails if the gl ¢ module cannot carry out the chosen join method. The default value is any
which means that some fast join method will be used if possible.

sort(QHL [, SortOptions]) -> QH2
Types:
QH1=QueryHandleOrList
QH2 = QueryHandle
Returns a query handle. When evaluating the query handle QH2 the answers to the query handle QHL are sorted by
file_sorter:sort/3 according to the options.

The sorter will use temporary files only if QHL does not evaluate to alist and the size of the binary representation of
the answers exceeds Si ze bytes, where Si ze isthe value of the si ze option.

string_to_handl e(QueryString [, Options [, Bindings]]) -> QueryHandle | Error
Types.

QueryString = string()

Options = [Option] | Option

Option = {max_lookup, MaxL ookup} | {cache, Cache} | cache | {join, Join} | {lookup, Lookup} | {unique,

bool()} | unique

MaxL ookup = int() >= 0| infinity

Join = any | lookup | merge | nested_loop

Lookup =bool() | any

Bindings = - asreturned by erl_eval:bindings/1 -

Error = {error, module(), Reason}

288 | Ericsson AB. All Rights Reserved.: STDLIB

qlc

Reason = - Errorinfo asreturned by erl_scan:string/1 or erl_parse:parse exprs/1-

A string version of gl c: g/ 1, 2. When the query handle is evaluated the fun created by the parse transform is
interpreted by er | _eval (3) . The query string isto be one single query list comprehension terminated by a period.

1> L =11,23],

Bs = erl _eval : add_bi nding('L'", L, erl_eval:new_bindings()),
H =glc:string_to_handle("[X+1 || X <- L].", [], Bs),

gl c:eval (QH).

[2,3, 4]

Thisfunction is probably useful mostly when called from outside of Erlang, for instance from a driver writtenin C.

tabl e(TraverseFun, Options) -> QueryHandl e
Types:

TraverseFun = TraverseFun0 | TraverseFunl

Traver seFun0 = fun() -> Traver seResult

TraverseFunl = fun(MatchExpression) -> Traver seResult

Traver seResult = Objects|term()

Objects=[] | [term() | ObjectList]

ObjectList = TraverseFunO | Objects

Options = [Option] | Option

Option = {format_fun, FormatFun} | {info_fun, InfoFun} | {lookup_fun, LookupFun} | {parent_fun,
ParentFun} | {post_fun, PostFun} | {pre_fun, PreFun} | {key_equality, KeyComparison}
FormatFun = undefined | fun(SelectedObjects) -> FormatedTable

SelectedObjects = all | {all, NElements, DepthFun} | {match_spec, MatchExpression} | {lookup, Position,
Keys} | {lookup, Position, K eys, NElements, DepthFun}

NElements = infinity | int() >0

DepthFun = fun(term()) -> term()

FormatedTable={Mod, Fun, Args} | AbstractExpression | character_list()
InfoFun = undefined | fun(InfoTag) -> InfoValue

InfoTag =indices|is_unique_objects| keypos| num_of objects
InfoValue = undefined | term()

L ookupFun = undefined | fun(Position, Keys) -> L ookupResult

L ookupResult =[term()] | term()

ParentFun = undefined | fun() -> ParentFunValue

PostFun = undefined | fun() -> void()

PreFun = undefined | fun([PreArg]) -> void()

PreArg = {parent_value, ParentFunValue} | {stop_fun, StopFun}
ParentFunValue = undefined | term()

StopFun = undefined | fun() -> void()

KeyComparison ='=:=" | '=="'

Position =int() >0

Keys=[term()]

Mod = Fun = atom()

Args=[term()]

Ericsson AB. All Rights Reserved.: STDLIB | 289

glc

Returns a query handle for a QLC table. In Erlang/OTP there is support for ETS, Dets and Mnesia tables, but it is
also possible to turn many other data structures into QL C tables. The way to accomplish thisisto let function(s) in
the module implementing the data structure create a query handle by calling gl c: t abl e/ 2. The different ways
to traverse the table as well as properties of the table are handled by callback functions provided as options to
gl c: tabl e/ 2.

The callback function Tr aver seFun is used for traversing the table. It is to return alist of objects terminated by
either [] or anullary fun to be used for traversing the not yet traversed objects of the table. Any other return value
isimmediately returned as value of the query evaluation. Unary Tr aver seFuns are to accept a match specification
as argument. The match specification is created by the parse transform by analyzing the pattern of the generator
calingql c: t abl e/ 2 andfiltersusing variablesintroduced in the pattern. If the parse transform cannot find amatch
specification equivalent to the pattern and filters, Tr aver seFun will be called with a match specification returning
every object. Modul esthat can utilize match specificationsfor optimized traversal of tablesshouldcall gl c: t abl e/ 2
with a unary Tr aver seFun while other modules can provide a nullary Tr aver seFun. et s: tabl e/ 2 isan
example of theformer; gb_t abl e: t abl e/ 1 inthe Implementing a QLC table section is an example of the latter.

Pr eFun is a unary calback function that is called once before the table is read for the first time. If the call fails,
the query evaluation fails. Similarly, the nullary callback function Post Fun is called once after the table was last
read. The return value, which is caught, isignored. If Pr eFun has been caled for atable, Post Fun is guaranteed
to be called for that table, even if the evaluation of the query fails for some reason. The order in which pre (post)
functionsfor different tables are evaluated is not specified. Other table access than reading, such ascalling | nf oFun,
is assumed to be OK at any time. The argument Pr eAr gs is alist of tagged values. Currently there are two tags,
par ent _val ue and st op_f un, used by Mnesiafor managing transactions. The value of par ent _val ue isthe
value returned by Par ent Fun, or undef i ned if thereisno Par ent Fun. Par ent Fun is called once just before
the call of Pr eFun in the context of the process calling eval , f ol d, or cur sor. The value of st op_funisa
nullary fun that deletes the cursor if called from the parent, or undef i ned if thereisno cursor.

The binary callback function LookupFun isused for looking up objectsin the table. The first argument Posi ti on
isthe key position or an indexed position and the second argument Keys is asorted list of unique values. The return
valueisto bealist of al objects (tuples) such that the element at Posi t i on isamember of Keys. Any other return
valueisimmediately returned as value of the query evaluation. LookupFun iscalled instead of traversing thetableif
the parse transform at compiletime can find out that the filters match and compare the element at Posi t i oninsucha
way that only Keys need to belooked up in order to find all potential answers. The key position is obtained by calling
I nf oFun(keypos) and the indexed positions by calling | nf oFun(i ndi ces) . If the key position can be used
for lookup it is always chosen, otherwise the indexed position requiring the least number of lookupsis chosen. If there
is atie between two indexed positions the one occurring first in the list returned by | nf oFun is chosen. Positions
reguiring more than max_lookup lookups are ignored.

The unary callback function | nf oFun is to return information about the table. undef i ned should be returned if
the value of some tag is unknown:

« indices. Returnsalist of indexed positions, alist of positive integers.

* is_unique_objects.Returnst r ue if the objects returned by Tr aver seFun are unique.

» keypos. Returns the position of the table's key, a positive integer.

e is_sorted_key.Returnst r ue if the objects returned by Tr aver seFun are sorted on the key.

« num of _obj ect s. Returns the number of objects in the table, a non-negative integer.

The unary callback function For mat Fun isused by glc:info/1,2 for displaying the call that created the table's query
handle. The default value, undef i ned, meansthati nfo/ 1, 2 displaysacall to' $MOD : ' $FUN /0. Itisupto
For mat Fun to present the selected objects of the table in a suitable way. However, if a character list is chosen for
presentation it must be an Erlang expression that can be scanned and parsed (atrailing dot will beaddedby gl c: i nf o
though). For mat Fun is caled with an argument that describes the selected objects based on optimizations done

as aresult of analyzing the filters of the QLC where the call to gl c: t abl e/ 2 occurs. The possible values of the
argument are:

290 | Ericsson AB. All Rights Reserved.: STDLIB

qlc

e {lookup, Position, Keys, NElenents, DepthFun}.LookupFun isused forlooking up objects
in the table.

« {match_spec, WMatchExpressi on}.Noway of finding al possible answers by looking up keys
was found, but the filters could be transformed into a match specification. All answers are found by calling
Traver seFun(Mat chExpr essi on).

« {all, NElenents, DepthFun}.No optimizationwasfound. A match specification matching all objects
will beused if Tr aver seFun isunary.

NEl erment s isthe value of thei nf o/ 1, 2 option n_el enent s, and Dept hFun is a function that can be used
for limiting the size of terms; calling Dept hFun(Ter n) substitutes' . .. " for parts of Ter mbelow the depth
specified by thei nf o/ 1, 2 option dept h. If caling For mat Fun with an argument including NEI enent s and
Dept hFun fails, For mat Fun is caled once again with an argument excluding NEI enent s and Dept hFun
({! ookup, Position, Keys} orall).

Thevaueof key_equal ity istobe' =: =" if the table considers two keys equal if they match, and to be ' ==
if two keys are equal if they compare equal. The default is' =: ="' .

See ets(3), dets(3) and mnesia(3) for the various options recognized by t abl e/ 1, 2 in respective module.

See Also

dets(3), Erlang Reference Manual, erl_eval(3), erlang(3), ets(3), file(3), error_logger(3), file_sorter(3), mnesia(3),
Programming Examples, shell(3)

Ericsson AB. All Rights Reserved.: STDLIB | 291

queue

queue

Erlang module

This module implements (double ended) FIFO queuesin an efficient manner.

All functions fail with reason badar g if arguments are of wrong type, for example queue arguments are not queues,
indexes are not integers, list arguments are not lists. Improper lists cause internal crashes. An index out of range for
aqueue also causes afailure with reason badar g.

Some functions, where noted, fail with reason enpt y for an empty queue.

The data representing a queue as used by this module should be regarded as opaque by other modules. Any code
assuming knowledge of the format is running on thinice.

All operations has an amortized O(1) running time, except| en/ 1,j oin/ 2,split/2,filter/2andmenber/ 2
that have O(n). To minimize the size of a queue minimizing the amount of garbage built by queue operations, the
gueues do not contain explicit length information, and that is why | en/ 1 is O(n). If better performance for this
particular operation is essential, it is easy for the caller to keep track of the length.

Queues are double ended. The mental picture of a queue is aline of people (items) waiting for their turn. The queue
front is the end with the item that has waited the longest. The queue rear is the end an item enters when it starts to
walit. If instead using the mental picture of alist, the front is called head and the rear is called tail.

Entering at the front and exiting at the rear are reverse operations on the queue.
The module has several sets of interface functions. The "Original API", the "Extended API" and the "Okasaki API".

The "Original API" and the "Extended API" both use the mental picture of a waiting line of items. Both also have
reverse operations suffixed " _r".

The "Original API" item removal functions return compound terms with both the removed item and the resulting
gueue. The"Extended API" contain alternative functionsthat build less garbage aswell asfunctionsfor just inspecting
the queue ends. Also the "Okasaki API" functions build less garbage.

The "Okasaki API" is inspired by "Purely Functional Data structures' by Chris Okasaki. It regards queues as lists.
The API isby many regarded as strange and avoidable. For example many reverse operations have lexically reversed
names, some with more readable but perhaps less understandabl e aliases.

Original API

Exports

new() -> Q
Types.

Q = queue()

Returns an empty queue.

i s_queue(Term) ->true | false
Types:
Term =term()
Testsif Qisaqueueand returnst r ue if soand f al se otherwise.

292 | Ericsson AB. All Rights Reserved.: STDLIB

queue

is enpty(Q ->true | false

Types:
Q = queue()
Testsif Qisempty and returnst r ue if soand f al se otherwise.
len(Q -> N
Types.
Q = queue()
N =integer()

Calculates and returns the length of queue Q

in(ltem Q) -> @

Types:
Item =term()
Q1= Q2 =queus()

Inserts | t emat the rear of queue QL. Returns the resulting queue Q2.

inr(ltem Q) -> @

Types.
Item =term()
Q1=Q2 = queue()

Inserts | t emat the front of queue QL. Returns the resulting queue Q2.

out(Ql) -> Result

Types.
Result = {{value, Item}, Q2} | {empty, Q1}
Q1=Q2=queue()

Removes the item at the front of queue QL. Returnsthe tuple { { val ue, Iten}, @}, whereltemistheitem
removed and Q2 isthe resulting queue. If QL isempty, thetuple{ enpty, QL} isreturned.

out _r(Ql) -> Result

Types:
Result = {{value, Item}, Q2} | {empty, Q1}
Q1= Q2 =queus()

Removesthe item at the rear of the queue QL. Returnsthetuple{{val ue, Iten}, Q@},whereltemistheitem
removed and Q2 isthe new queue. If QL isempty, thetuple{ enpty, Ql} isreturned.

fromlist(L) -> queue()
Types:
L =list()
Returns a queue containing the itemsin L in the same order; the head item of the list will become the front item of
the queue.

Ericsson AB. All Rights Reserved.: STDLIB | 293

queue

to_ list(Q ->1list()
Types:
Q = queue()

Returns alist of the itemsin the queue in the same order; the front item of the queue will become the head of the list.

reverse(Ql) -> @
Types.
Q1=Q2=queue()

Returns a queue @2 that contains the items of QL in the reverse order.

split(N, Q) ->{Q, B}
Types.
N =integer()
Q1=0Q2=Q3=queue()
Splits QL in two. The Nfront items are put in @2 and the rest in 3

join(Ql, Q@) -> @
Types:
Q1=Q2=Q3=queug()
Returns a queue B that is the result of joining QL and Q2 with QL in front of Q2.

filter(Fun, QL) ->

Types.
Fun = fun(ltem) -> bool() | list()
Q1=Q2=queue()

Returns a queue Q2 that isthe result of calling Fun(1t em) onall itemsin QL, in order from front to rear.

If Fun(ltem returnst r ue, | t emiscopiedtotheresult queue. If it returnsf al se, | t emisnot copied. If it returns
alist thelist elements are inserted instead of | t emin the result queue.

So, Fun(ltem returning [It en] is thereby semantically equivalent to returning t r ue, just asreturning [] is
semantically equivalent to returning f al se. But returning alist builds more garbage than returning an atom.

menber (Item Q -> bool ()
Types:

Item =term()

Q = queue()

Returnst r ue if | t emmatches some element in Q otherwisef al se.
Extended API

Exports

get(Q ->Item
Types:

294 | Ericsson AB. All Rights Reserved.: STDLIB

queue

Item =term()

Q = queue()
Returns| t emat the front of queue Q
Failswith reason enpt y if Qisempty.

get r(Q ->Item
Types:
