GVPR(1) GVPR(1)

NAME
gvpr — graph pattern scanning and processing language
(previously known aglpr)

SYNOPSIS
gvpr [-icV?] [—ooutfile] [—aargs] ['prog | —f prodfile][files]

DESCRIPTION
gvpr is a graph stream editor inspired k. It copies input graphs to its output, possibly transforming
their structure and attnibes, creating me graphs, or printing arbitrary information. The graph model is
that provided byibagraph(3). Inparticular,gvpr reads and writes graphs using the dot language.

Basically,gvpr traverses each input graph, denoteddy, visiting each node and edge, matching it with
the predicate-action rules supplied in the input prograire rules arev@luated in order For each predi-
cate ®aluating to true, the corresponding action is performed. During thersad, the current node or
edge being visited is denoted &y

For each input graph, there is a target subgraph, denot&d hpitially empty and used to accumulate cho-
sen entities, and an output graff, used for final processing and then written to output. By default, the
output graph is the target graphhe output graph can be set in the prograninoa limited sense, on the
command line.

OPTIONS
The following options are supported:

—aargs The stringargsis split into whitespace-separated eéak, with the individual tokenssalable as
strings in thegvpr program asARGV[0],...,ARGV[ARGC-1]. Whitespace characters within
single or double quoted substrings, or preceded by a backslash, are ignored as separators. In gen-
eral, a backslash character turnsanfy pecial meaning of the folaing character Note that the
tokens derxied from multiple—a flags are concatenated.

-C Use the source graph as the output graph.
=i Derive the node-induced subgraph extension of the output graph in the context of its root graph.

—o outfile
Causes the output stream to be written to the specified file; by default, output is wsttiyuto

—f progfile
Use the contents of the specified file as the programetute on the input. Iprogfile contains a
slash charactethe name is taken as the pathname of the file. Otherguipewill use the directo-
ries specified in the environmerdnable GPRPATH to look for the file. If-f is not gven, gvpr
will use the first non-option argument as the program.

-V Causes the program to print version information and exit.
-? Causes the program to print usage information and exit.
OPERANDS

The following operand is supported:

files Names of files containing 1 or more graphs in the dot language.—if myation is gven, the first
name is remeed from the list and used as the input program. If the list of files is estgin
will be used.

PROGRAMS
A gvpr program consists of a list of predicate-action clauses, having one of the forms:

BEGIN { action}
BEG_G { action}
N [predicate] { action}
E [predicate] { action}

24 April 2008 1

GVPR(1) GVPR(1)

END_G { action}
END { action}

A program can contain at most one of each oBB&IN, BEG_G, END_G andEND clauses. Therean
be aty number ofN andE statements, the first applied to nodes, the second to edges. TheetepHean-
tics of agvpr program are:

Evaluate thaBEGIN clause, if ag.
For each input grapi® {
SetG as the current graph and current object.
Evaluate thaBEG_G clause, if ap.
For each node and edge @&{
Set the node or edge as the current object.
Evaluate theN or E clauses, as appropriate.
}
SetG as the current object.
Evaluate th&END_G clause, if ap.

}
Evaluate théEND clause, if ap.

The actions of th8EGIN, BEG_G, END_G andEND clauses are performed when the clauses\ata-e

ated. fer N or E clauses, either the predicate or action may be omitted. If there is no predicate with an
action, the action is performed ovegy node or edge, as appropriatéthere is no action and the predicate
evduates to true, the associated node or edge is added to the target graph.

Predicates and actions are sequences of statements in the C dialect supportéolexpits library. The
only difference between predicates and actions is that the former mrasa lype that may interpreted as
either true ordlse. Herdhe usual C carention is followed, in which a non-zero value is considered true.
This would include non-empty strings and non-empty references to nodes, edgesweter,Hfoa Sring

can be coverted to an integethis value is used.

In addition to the usual C base typesid, int, char, float, long, unsigned and double), gvpr provides

string as a synonym fochar*, and the graph-based typeede_t edge_t graph_t andobj_t. Theobj_t

type can be viewed as a supertype of the other 3 concrete types; the correct base type is maintained dynami-
cally. Besides these base types, the only other supported type expressions are yasaneipsi

Constants foller C syntax, lut strings may be quoted with eitier” or’...’. In certain contexts, stringal-
ues are interpreted as patterns for the purpose of regular expression maRdtiegs useksh(1) file
match pattern syntaxgvpr accepts C++ comments as well as cpp-type commé&atsthe latter if a line
begins with a '#' charactethe rest of the line is ignored.

A statement can be a declaration of a function, a variable or an areayexecutable statement. For decla-
rations, there is a single scope. Array declaratious the form:

type array[type0]

where type0 is optional. If it is supplied, the parser will enforce that all array subscripéstiia specified

type. If it is not supplied, objects of all types can be used as subscripts. As in C, variables and arrays must
be declared. In particulaan undeclared variable will be interpreted as the name of an attribute of a node,
edge or graph, depending on the context.

Executable statements can be one of the following:
{[statement .] }
expression /I commonlyvar = expression
if(expression) statemenf elsestatement
for(expression; expression; expression) statement
for(array [var]) statement
while(expression) statement
switch(expression) case statements
break [expression|

24 April 2008 2

GVPR(1) GVPR(1)

continue [expression]
retur n [expression]
Items in brackets are optional.

In the second form of thier statement, theariablevar is set to each value used as an xnidethe speci-
fied array and then the associatgdtementis evaluated. Function definitions can only appear in the
BEGIN clause.

Expressions include the usual &peessions. Stringomparisons using= and != treat the right hand
operand as a pattergvpr will attempt to use an expression as a string or numeric value as appropriate.

Expressions of graphical type (i.graph_t, node_t, edge_t, obj)tmay be followed by a field reference in

the form of.name The resulting value is the value of the attribute nansdeof the given dbject. Inaddi-

tion, in certain contexts an undeclared, unmodified identifier is taken to be an attribute name. Specifically
such identifiers denote attutes of the current node or edge, respelgtiin N andE clauses, and the cur

rent graph irBEG_G andEND_G clauses.

As usual in thelibagraph(3) model, attributes are stringdued. Inaddition, gvpr supports certain
pseudo-attribtes of graph objects, not necessarily string-valued. These reflect intrinsic properties of the
graph objects and cannot be set by the user.

head: node _t
the head of an edge.

tail : node _t
the tail of an edge.

name: string
the name of an edge, node or graph. The name of an edge has the form
"<tail-name><edge-op><head-namg3<key>]", where<edge-op>is "->" or "——" depending on

whether the graph is directed or not. The bracket [gkey>] only appears if the edge has a
non-trivial key.
indegree: int
the indegree of a node.
outdegree: int
the outdegree of a node.
degree: int
the degree of a node.
root : graph_t
the root graph of an object. The root of a root graph is itself.
parent : graph_t
the parent graph of a subgraph. The parent of a root grajiblLis
n_edges int
the number of edges in the graph

n_nodes: int
the number of nodes in the graph

directed : int
true (non-zero) if the graph is directed
strict : int
true (non-zero) if the graph is strict
BUILT-IN FUNCTIONS

The following functions are built intgvpr. Those functions returning references to graph objects return
NULL in case of failure.

24 April 2008 3

GVPR(1) GVPR(1)

Graphs and subgraph
graph(s: string, t : string) : graph_t
creates a graph whose namesignd whose type is specified by the stringgnoring case, the
characterd), D, S, N have the interpretation undirected, directed, strict, and non-strict, respec-
tively. If tis empty a drected, non-strict graph is generated.

subg(g: graph_t, s: string) : graph_t
creates a subgraph in graplvith names. If the subgraph already exists, it is returned.

isSubgg : graph_t, s: string) : graph_t
returns the subgraph in graghwvith names, if it exists, orNULL otherwise.

fstsubg(g : graph_t) : graph_t
returns the first subgraph in graghor NULL if none exists.

nxtsubg(sg: graph_t) : graph_t
returns the next subgraph aftgy or NULL .

isDirect(g : graph_t) : int
returns true if and only i is directed.

isStrict(g : graph_t) : int
returns true if and only i is strict.

nNodegg : graph_t) : int
returns the number of nodesgn

nEdgedg: graph_t) : int
returns the number of edgesgn

Nodes
node(sg: graph_t, s: string) : node_t
creates a node in graghof names. If such a node already exists, it is returned.

subnoddsg: graph_t, n: node_{ : node_t
inserts the node into the subgraph. Returns the node.

fstnode(g : graph_t) : node_t
returns the first node in graghor NULL if none exists.

nxtnode(n : node_9 : node_t
returns the next node aftein the root graph, alULL .

nxtnode_sdsg: graph_t, n: node_1{ : node_t
returns the next node aftein sg or NULL .

isNodg(sg: graph_t, s: string) : node_t
looks for a node in (sub)grajsig of names. If such a node exists, it is returned. Otherwi¢g] L
is returned.

isSubnoddsg: graph_t, n: node_9 : int
returns non-zero if nodeis in (sub)graplsg, or zero otherwise.

indegreeOfsg: graph_t, n: node_9J : int
returns the indegree of nodén (sub)graptsg

outdegreeOfsg: graph_t, n: node_J : int
returns the outdegree of nodé (sub)graplsg

degreeOfsg: graph_t, n: node_J : int
returns the degree of nodén (sub)graptsg

Edges

edgdt: node_t h:node_t s: string) : edge_t
creates an edge with tail notjehead nodeh and names in the root graph. If the graph is undi-
rected, the distinction between head and tail nodes is unimportant. If such an edge zistady e

24 April 2008 4

GVPR(1) GVPR(1)

it is returned.

edge_s¢sg: graph_t,t: node_t h: node_t s: string) : edge_t
creates an edge with tail nojédhead nodéh and names in (sub)graplsg (and all parent graphs).
If the graph is undirected, the distinction between head and tail nodes is unimportant. If such an
edge already exists, it is returned.

subedgég : graph_t, e: edge) : edge_t
inserts the edgeinto the subgraph. Returns the edge.

isEdgdt: node_t h:node_t s: string) : edge_t
looks for an edge with tail nodghead nodér and names. If the graph is undirected, the distinc-
tion between head and tail nodes is unimportant. If such an edge exists, it is returned. Otherwise,
NULL is returned.

isEdge_s¢sg: graph_t,t: node_t h: node_t s: string) : edge_t
looks for an edge with tail nodghead nodéh and names in (sub)graptsg If the graph is undi-
rected, the distinction between head and tail nodes is unimportant. If such an edge exists, it is
returned. OtherwiséjULL is returned.

isSubedgég : graph_t, e: edge_} : int

returns non-zero if edgeis in (sub)graplsg or zero otherwise.
fstout(n: node_{ : edge_t

returns the first outedge of nodén the root graph.
fstout_sgsg: graph_t, n: node_1 : edge_t

returns the first outedge of nodén (sub)graplsg
nxtout(e: edge_} : edge_t

returns the next outedge aftein the root graph.
nxtout_sg(sg: graph_t, e: edge } : edge_t

returns the next outedge aftein graphsg
fstin(n: node_J : edge_t

returns the first inedge of noden the root graph.
fstin_sg(sg: graph_t, n: node_1{ : edge_t

returns the first inedge of noden graphsg
nxtin(e: edge_} : edge_t

returns the next inedge aftein the root graph.
nxtin_sg(sg: graph_t, e: edge_} : edge_t

returns the next inedge afiem graphsg
fstedgdn : node_J : edge_t

returns the first edge of noden the root graph.
fstedge_s@sg: graph_t, n: node_J : edge_t

returns the first edge of noden graphsg
nxtedgge: edge_tnode_{ : edge_t

returns the next edge aftem the root graph.
nxtedge_s@sg: graph_t, e: edge_t node_1{ : edge_t

returns the next edge aftein the graptsg

Graph I/O
write (g : graph_t) : void
printsg in dot format onto the output stream.

writeG (g : graph_t, fname: string) : void
printsg in dot format into the filéname

24 April 2008 5

GVPR(1) GVPR(1)

fwriteG (g : graph_t, fd : int) : void
printsg in dot format onto the open stream denoted by the infdger

readG(fname: string) : graph_t
returns a graph read from the fillmme The graph should be in dot format. If no graph can be
read,NULL is returned.

freadG(fd : int) : graph_t
returns the next graph read from the open stiféarReturnsNULL at end of file.

Graph miscellany
deletgg: graph_t, x: obj_t) : void
deletes object from graphg. If gis NULL, the function uses the root graphxofif x is a graph
or subgraph, it is closed unlests locked.

isin(g: graph_t, x: obj_t) :int
returns true ik is in subgraply. If xis a graph, this indicates thagts the immediate parent graph
of x.

clong(g: graph_t, x: obj_t) : obj_t
creates a clone of objegtin graphg. In particular the nev object has the same namalive
attributes and structure as the original objd€tan object with the sameely & x already exists, its
attributes are werlaid by those ok and the object is returned. If an edge is cloned, both endpoints
are implicitly cloned. If a graph is cloned, all nodes, edges and subgraphs are implicitly ¢foned.
x is a graphg may beNULL , in which case the cloned object will be awr®ot graph.

copy(g : graph_t, x: obj_t) : obj_t
creates a cgpof objectx in graphg, where the n& object has the same namallyve attributes as
the original object. If an object with the sameyks x already exists, its attributes argedaid by
those ofx and the object is returned. Note that this is a siadlopy. If x is a graph, none of its
nodes, edges or subgraphs are copied into tlvegraph. Ifx is an edge, the endpoints are created
if necessarybut they are not cloned.If x is a graphg may beNULL , in which case the cloned
object will be a ne& root graph.

copyA(src: obj_t, tgt: obj_t) : int
copies the attributes of objestc to objecttgt, overwriting ary attribute \aluestgt may initially
have.

induce(g : graph_t) : void
extendsg to its node-induced subgraph extension in its root graph.

agef(src: obj_t, name: string) : string
returns the value of atttitte namein objectsrc. This is useful for those cases wheameconflicts
with one of the kywords such as "head" or "rootReturnsNULL on failure or if the attribute is
not defined.

ase{src: obj_t, name: string, value: string) : int
sets the value of atttilbe namein objectsrc to value Returns O on success, non-zero aitufe.
Seeagetabore.

getDflt(g : graph_t, kind: string, name: string) : string
returns the default value of attuite namein objects ing of the given kind. For nodes, edges, and
graphs,kind should be "N", "E", and "G", respeetly. ReturnsNULL on failure or if the
attribute is not defined.

setDflt(g : graph_t, kind : string, name: string, value: string) : int
sets the defult value of attribte nameto valuein objects ing of the gven kind. For nodes, edges,
and graphskind should be "N", "E", and "G", respea#ly. Returns O on success, non-zero on
failure. SeesetDflt abore.

24 April 2008 6

GVPR(1) GVPR(1)

compOf(g: graph_t, n: node_9 : graph_t
returns the connected component of the gpbntaining noden, as a sbgraph ofg. The sub-
graph only contains the nodes. One canindeceto add the edges. The function fails and returns
NULL if nis not ing. Connectivity is based on the underlying undirected gragh of

kindOf (obj : obj_t) : string
returns an indication of what kind of graph object is tlgaiarent. Br nodes, edges, and graphs,
it returns should be "N", "E", and "G", resp&ely.

lock(g: graph_t, v:int) :int
implements graph locking on root graphs. If thedete is positve, the graph is set so that future
calls todeletehave o immediate déct. If vis zero, the graph is unlocked. If there has been a call
to delete the graph while it was locked, the graph is clodedis negaive, nothing is done. In all
cases, the previous lock value is returned.

Strings
sprintf (fmt: string, ...) : string
returns the string resulting from formatting the values of the expressions occurrindmdfter
according to therintf (3) format fmt

gsub(str : string, pat: string) : string

gsub(str : string, pat: string, repl : string) : string
returnsstr with all substrings matchingat deleted or replaced brgpl, respectiely.

sub(str : string, pat: string) : string

sub(str : string, pat: string, repl : string) : string
returnsstr with the leftmost substring matchimat deleted or replaced bgpl, respectiely. The
characters ™ and '$’ may be used at the beginning and end, resheai patto anchor the pat-
tern to the beginning or end stf.

substr(str : string, idx : int) : string

substr(str : string, idx : int, len: int) : string
returns the substring atr starting at positiondx to the end of the string or of lengm, respec-
tively. Indexing starts at O. Ifdx is negative a idx is greater than the length sfr, a fatal error
occurs. Similarlyin the second case,lénis neyative a idx + lenis greater than the length sif,
a fatal error occurs.

length(s: string) : int
returns the length of the strisg

index(s: string, t : string) : int
returns the indeof the character in stringwhere the leftmost cgpof string t can be found, or -1
if tis not a substring of

match(s: string, p : string) : int
returns the indeof the character in stringwhere the leftmost match of pattgyean be found, or
-1 if no substring o§ matche.
canon(s: string) : string
returns a version afappropriate to be used as an identifier in a dot file.
xOf(s: string) : string
returns the stringX” if shas the formxX,y", where bothx andy are numeric.
yOf(s: string) : string
returns the stringy” if shas the formX,y", where bothx andy are numeric.
[IOf (s: string) : string
returns the stringlik lly" if s has the form Ifx,lly,urx,ury”, where all ofllx, lly, urx, and ury are
numeric.

24 April 2008 7

GVPR(1) GVPR(1)

urOf(s)
urOf (s: string) : string returns the stringurx,ury" if s has the form lix,lly,urx,ury”, where all of
[Ix, lly, urx, and ury are numeric.

sscanfs: string, fmt: string, ...) : int
scans the string, extracting values according to tlsscan{3) formatfmt. The values are stored
in the addresses folldng fmt, addresses having the for&w, wherev is some declared variable of
the correct type. Returns the number of items successfully scanned.

I/O
print (...) : void
print(expr, ...) prints a string representation of eachwement in turn ontstdout, followed by a
newline.

printf (fmt: string, ...) : int

printf (fd : int, fmt: string, ..)) : int
prints the string resulting from formatting the values of ttressions follwing fmt according to
the printf (3) formatfmt. Returns 0 on succes®8y default, it prints orstdout. If the optional
integerfd is given, output is written on the open stream associatedfdith

scanffmt: string, ...) : int

scanffd : int, fmt: string, ...) : int
scans in glues from an input stream according to shanf(3) formatfmt. The values are stored
in the addresses folldng fmt, addresses having the for&w, wherev is some declared variable of
the correct type. By default, it reads fratdin. If the optional intgerfd is given, input is read
from the open stream associated viith Returns the number of items successfully scanned.

openHs: string, t : string) : int
opens the files as an I/O stream. The stringgamentt specifies ha the file is opened. Thegu-
ments are the same as for the C functagen(3). It returns an integer denoting the stream, or -1
on error.

As usual, streams 0, 1 and 2 are already opesidais, stdout, and stderr, respectiely. Since
gvpr may usestdin to read the input graphs, the user shoutldausing this stream.

closeRfd : int) : int
closes the open stream denoted by thegertiel. Streams 0,1 and 2 cannot be closedReturns 0
on success.

readL (fd : int) : string
returns the next line read from the input strédmit returns the empty string
Note that the newline character is left in the returned string.

on end of file.

Math
exp(d : double) : double
returns e to thdth power.

log(d : double) : double
returns the natural log of

sqrt(d : double) : double
returns the square root of the douthle

pow(d : double, x : double) : double
returnsd raised to theth power.

cogd : double) : double
returns the cosine af

24 April 2008 8

GVPR(1) GVPR(1)

sin(d : double) : double
returns the sine af.

atan2(y : double, x : double) : double
returns the arctangent wiin the range —pi to pi.

Miscellaneous
exit() : void
exit(v : int) : void
causegvpr to exit with the exit code. v defaults to 0 if omitted.

rand() : double
returns a pseudo-random double between 0 and 1.

srand() : int

srand(v: int) : int
sets a seed for the random number generHeroptional argument\gs the seed; if it is omitted,
the current time is used. The pieus seed value is returnestand should be called before yan
calls torand.

BUILT-IN VARIABLES
gvpr provides certain specialuit-in variables, whose values are set automaticallgupr depending on
the context. Except as noted, the user cannot modify their values.
$:obj_t
denotes the current object (node, edge, graph) depending on thet.cdnte not aailable in
BEGIN or END clauses.

$F : string
is the name of the current input file.

$G: graph_t
denotes the current graph being processed. It isvaitdlsle inBEGIN or END clauses.

$O: graph_t
denotes the output graph. Before graphensal, it is initialized to the target graph. Aftenseesal
and ay END_G actions, if it refers to a non-empty graph, that graph is printed onto the output
stream. lis only valid inN, E andEND_G clauses. Theutput graph may be set by the user.

$T : graph_t
denotes the current gt graph. It is a subgraph $& and is &ailable only inN, E andEND_G
clauses.

$tgtname: string
denotes the name of the target graph. By default, it is s&vim_result" . If used multiple
times during thexecution ofgvpr, the name will be appended with an gee This variable may
be set by the user.

$tvroot : node_t
indicates the starting node for a (directed or undirected) depth-fivstsah of the graph (cf.
$tvtype below). Thedefault value isNULL for each input graph.

Stvtype : tvtype_t
indicates hw gvpr traverses a graph. At present, it can onlyetake of six alues:TV_flat,
TV_dfs, TV_fwd, TV_ref, TV_bfs, TV_ne, and TV_en. TV_flat is the de&ult. Themeaning of
these values is discussed helo

ARGC :int
denotes the number of arguments specified by &egscommand-line argument.

ARGV : string array
denotes the array of arguments specified by-#h@&gscommand-line argument. Tl agument
is given by ARGV[i].

24 April 2008 9

GVPR(1) GVPR(1)

BUILT-IN CONSTANTS
There are sgral symbolic constants defined gypr.

NULL : obj_t
a rull object reference, equalent to 0.

TV_flat : tvtype_t
a smple, flat trarersal, with graph objects visited in seemingly arbitrary order.

TV_ne: tvtype_t
a traversal which first visits all of the nodes, then all of the edges.

TV_en: tvtype_t
a traversal which first visits all of the edges, then all of the nodes.

TV_dfs : tvtype_t
a traversal of the graph using a depth-first search on the underlying undirected goapb.the
traversal,gvpr will check the value o$tvroot. If this has the samealue that it had previously (at
the start, the previous value is initializedNOJLL .), gvpr will simply look for some uwisited
node and tneerse its connected component. On the other hartyibot has changed, its con-
nected component will be toured, assuming it has not beetopsty visited oy if $tvroot is
NULL , the traversal will stop. Note that usingV_dfs and$tvroot, it is possible to create an infi-
nite loop.

TV_fwd : tvtype_t
a trraversal of the graph using a depth-first search on the graph following only forward arcs. In
TV_Dbfs : tvtype_t
a traversal of the graph using a bread-first search on the graph ignoring edge directions. See the
item onTV_dfs above for the role offtvroot. libagraph(3), edges in undirected graphs aneegi
an arbitrary direction, which is used for thisvessal. The choice of roots for the ¢essal is the
same as described foW_dfs above.
TV rev: tvtype t
a fraversal of the graph using a depth-first search on the graph following aelgeercs. Iiiba-

graph(3), edges in undirected graphs aneegian abitrary direction, which is used for this ves-
sal. The choice of roots for theessal is the same as describedTot_dfs above.

EXAMPLES
gvpr —i 'N[color=="blue"] file.dot
Generate the node-induced subgraph of all nodes with color blue.
gvpr —c 'N[color=="blue"[{color = "red"} file.dot
Make dl blue nodes red.
BEGIN {intn, e; inttot_n=0; inttot_e =0; }
BEG_G {
n = nNodes($G);
e = nEdges($G);
printf ("%d nodes %d edges %s0, n, e, $G.name);
tot_n +=n;
tot_e +=e;

}
END { printf ("%d nodes %d edges total0, tot_n, tot_e) }

Version of the progrargc.
gvpr —c
Equivaent tonop.

BEG_G { graph_t g = graph ("merge", "S"); }
E{

24 April 2008 10

GVPR(1) GVPR(1)

node_t h = clone(g,$.head);
node_t t = clone(g,$.tail);
edge_t e = edge(t,h,"™);
e.weight = e.weight + 1;

}
END_G {$0 =g;}

Produces a strict version of the input graph, where the weightusgtrdd an edge indicates wanany
edges from the input graph the edge represents.

BEGIN {node_t n; int deg[]}
E{deg[head]++; deg[tail]++; }
END_G {
for (deg(n]) {
printf ("deg[%s] = %d0, n.name, deg[n]);
}
}

Computes the degrees of nodes with edges.

ENVIRONMENT
GPRPATH
Colon-separated list of directories to be searched to find the file specified by the —f option.

BUGS AND WARNINGS
When the program isggn as a ommand line ayument, the usual shell interpretation takes place, which
may affect some of the special nameg\pr. To avoid this, it is best to wrap the program in single quotes.

As of 24 April 2008 gvpr switched to using a me underlying graph librarywhich uses the simpler model

that there is only one cgpmf a node, not one cgpfor each subgraph logically containing it. This means
that iterators such as InxtnodeP cannatense a subgraph using just a node argument. For this reason, sub-
graph traersal requires ne functions ending in "_sg", which also &l sibgraph argument. Thersions
without that suffix will alvays traverse the root graph.

There is a single global scope&gcept for formal function parameters, anerethese can interfere with the

type system. Also, the extent of all variables is the entire life of the program. It might be preferable for
scope to reflect the natural nesting of the clauses, or for the program to at least reset locally deelared v
ables. Br now, it is advisable to use distinct names for all variables.

If a function ends with a complestatement, such as an IF statement, with each branch doing a return, type
checking maydil. Functionsshould use a return at the end.

The expr library does not support string values of (char*)0. This means wedistimguish between
and (char*)0 edgedys. For the purposes of looking up and creating edges, we translate "™ to be (char*)0,
since this latter value is necessary in order to look yp@dge with a matching head and tail.

Related to this, strings cearted to integers act lék char pointers, getting the value 0 or 1 depending on
whether the string consists solely of zeroes or not. Thus, the ((inty&tp&es to 1.

The language inherits the usual C problems such as dangling references and the confusion between '=" and

AUTHOR
Emden R. Gansner <erg@research.att.com>

SEE ALSO
awk(1), gc(1), dot(1), nop(1), libexpr(3), libagraph(3)

24 April 2008 11

