Libav 0.7.1
|
00001 /* 00002 * TwinVQ decoder 00003 * Copyright (c) 2009 Vitor Sessak 00004 * 00005 * This file is part of Libav. 00006 * 00007 * Libav is free software; you can redistribute it and/or 00008 * modify it under the terms of the GNU Lesser General Public 00009 * License as published by the Free Software Foundation; either 00010 * version 2.1 of the License, or (at your option) any later version. 00011 * 00012 * Libav is distributed in the hope that it will be useful, 00013 * but WITHOUT ANY WARRANTY; without even the implied warranty of 00014 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 00015 * Lesser General Public License for more details. 00016 * 00017 * You should have received a copy of the GNU Lesser General Public 00018 * License along with Libav; if not, write to the Free Software 00019 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA 00020 */ 00021 00022 #include "avcodec.h" 00023 #include "get_bits.h" 00024 #include "dsputil.h" 00025 #include "fft.h" 00026 #include "lsp.h" 00027 #include "sinewin.h" 00028 00029 #include <math.h> 00030 #include <stdint.h> 00031 00032 #include "twinvq_data.h" 00033 00034 enum FrameType { 00035 FT_SHORT = 0, 00036 FT_MEDIUM, 00037 FT_LONG, 00038 FT_PPC, 00039 }; 00040 00044 struct FrameMode { 00045 uint8_t sub; 00046 const uint16_t *bark_tab; 00047 00049 uint8_t bark_env_size; 00050 00051 const int16_t *bark_cb; 00052 uint8_t bark_n_coef; 00053 uint8_t bark_n_bit; 00054 00056 00057 const int16_t *cb0; 00058 const int16_t *cb1; 00060 00061 uint8_t cb_len_read; 00062 }; 00063 00068 typedef struct { 00069 struct FrameMode fmode[3]; 00070 00071 uint16_t size; 00072 uint8_t n_lsp; 00073 const float *lspcodebook; 00074 00075 /* number of bits of the different LSP CB coefficients */ 00076 uint8_t lsp_bit0; 00077 uint8_t lsp_bit1; 00078 uint8_t lsp_bit2; 00079 00080 uint8_t lsp_split; 00081 const int16_t *ppc_shape_cb; 00082 00084 uint8_t ppc_period_bit; 00085 00086 uint8_t ppc_shape_bit; 00087 uint8_t ppc_shape_len; 00088 uint8_t pgain_bit; 00089 00091 uint16_t peak_per2wid; 00092 } ModeTab; 00093 00094 static const ModeTab mode_08_08 = { 00095 { 00096 { 8, bark_tab_s08_64, 10, tab.fcb08s , 1, 5, tab.cb0808s0, tab.cb0808s1, 18}, 00097 { 2, bark_tab_m08_256, 20, tab.fcb08m , 2, 5, tab.cb0808m0, tab.cb0808m1, 16}, 00098 { 1, bark_tab_l08_512, 30, tab.fcb08l , 3, 6, tab.cb0808l0, tab.cb0808l1, 17} 00099 }, 00100 512 , 12, tab.lsp08, 1, 5, 3, 3, tab.shape08 , 8, 28, 20, 6, 40 00101 }; 00102 00103 static const ModeTab mode_11_08 = { 00104 { 00105 { 8, bark_tab_s11_64, 10, tab.fcb11s , 1, 5, tab.cb1108s0, tab.cb1108s1, 29}, 00106 { 2, bark_tab_m11_256, 20, tab.fcb11m , 2, 5, tab.cb1108m0, tab.cb1108m1, 24}, 00107 { 1, bark_tab_l11_512, 30, tab.fcb11l , 3, 6, tab.cb1108l0, tab.cb1108l1, 27} 00108 }, 00109 512 , 16, tab.lsp11, 1, 6, 4, 3, tab.shape11 , 9, 36, 30, 7, 90 00110 }; 00111 00112 static const ModeTab mode_11_10 = { 00113 { 00114 { 8, bark_tab_s11_64, 10, tab.fcb11s , 1, 5, tab.cb1110s0, tab.cb1110s1, 21}, 00115 { 2, bark_tab_m11_256, 20, tab.fcb11m , 2, 5, tab.cb1110m0, tab.cb1110m1, 18}, 00116 { 1, bark_tab_l11_512, 30, tab.fcb11l , 3, 6, tab.cb1110l0, tab.cb1110l1, 20} 00117 }, 00118 512 , 16, tab.lsp11, 1, 6, 4, 3, tab.shape11 , 9, 36, 30, 7, 90 00119 }; 00120 00121 static const ModeTab mode_16_16 = { 00122 { 00123 { 8, bark_tab_s16_128, 10, tab.fcb16s , 1, 5, tab.cb1616s0, tab.cb1616s1, 16}, 00124 { 2, bark_tab_m16_512, 20, tab.fcb16m , 2, 5, tab.cb1616m0, tab.cb1616m1, 15}, 00125 { 1, bark_tab_l16_1024,30, tab.fcb16l , 3, 6, tab.cb1616l0, tab.cb1616l1, 16} 00126 }, 00127 1024, 16, tab.lsp16, 1, 6, 4, 3, tab.shape16 , 9, 56, 60, 7, 180 00128 }; 00129 00130 static const ModeTab mode_22_20 = { 00131 { 00132 { 8, bark_tab_s22_128, 10, tab.fcb22s_1, 1, 6, tab.cb2220s0, tab.cb2220s1, 18}, 00133 { 2, bark_tab_m22_512, 20, tab.fcb22m_1, 2, 6, tab.cb2220m0, tab.cb2220m1, 17}, 00134 { 1, bark_tab_l22_1024,32, tab.fcb22l_1, 4, 6, tab.cb2220l0, tab.cb2220l1, 18} 00135 }, 00136 1024, 16, tab.lsp22_1, 1, 6, 4, 3, tab.shape22_1, 9, 56, 36, 7, 144 00137 }; 00138 00139 static const ModeTab mode_22_24 = { 00140 { 00141 { 8, bark_tab_s22_128, 10, tab.fcb22s_1, 1, 6, tab.cb2224s0, tab.cb2224s1, 15}, 00142 { 2, bark_tab_m22_512, 20, tab.fcb22m_1, 2, 6, tab.cb2224m0, tab.cb2224m1, 14}, 00143 { 1, bark_tab_l22_1024,32, tab.fcb22l_1, 4, 6, tab.cb2224l0, tab.cb2224l1, 15} 00144 }, 00145 1024, 16, tab.lsp22_1, 1, 6, 4, 3, tab.shape22_1, 9, 56, 36, 7, 144 00146 }; 00147 00148 static const ModeTab mode_22_32 = { 00149 { 00150 { 4, bark_tab_s22_128, 10, tab.fcb22s_2, 1, 6, tab.cb2232s0, tab.cb2232s1, 11}, 00151 { 2, bark_tab_m22_256, 20, tab.fcb22m_2, 2, 6, tab.cb2232m0, tab.cb2232m1, 11}, 00152 { 1, bark_tab_l22_512, 32, tab.fcb22l_2, 4, 6, tab.cb2232l0, tab.cb2232l1, 12} 00153 }, 00154 512 , 16, tab.lsp22_2, 1, 6, 4, 4, tab.shape22_2, 9, 56, 36, 7, 72 00155 }; 00156 00157 static const ModeTab mode_44_40 = { 00158 { 00159 {16, bark_tab_s44_128, 10, tab.fcb44s , 1, 6, tab.cb4440s0, tab.cb4440s1, 18}, 00160 { 4, bark_tab_m44_512, 20, tab.fcb44m , 2, 6, tab.cb4440m0, tab.cb4440m1, 17}, 00161 { 1, bark_tab_l44_2048,40, tab.fcb44l , 4, 6, tab.cb4440l0, tab.cb4440l1, 17} 00162 }, 00163 2048, 20, tab.lsp44, 1, 6, 4, 4, tab.shape44 , 9, 84, 54, 7, 432 00164 }; 00165 00166 static const ModeTab mode_44_48 = { 00167 { 00168 {16, bark_tab_s44_128, 10, tab.fcb44s , 1, 6, tab.cb4448s0, tab.cb4448s1, 15}, 00169 { 4, bark_tab_m44_512, 20, tab.fcb44m , 2, 6, tab.cb4448m0, tab.cb4448m1, 14}, 00170 { 1, bark_tab_l44_2048,40, tab.fcb44l , 4, 6, tab.cb4448l0, tab.cb4448l1, 14} 00171 }, 00172 2048, 20, tab.lsp44, 1, 6, 4, 4, tab.shape44 , 9, 84, 54, 7, 432 00173 }; 00174 00175 typedef struct TwinContext { 00176 AVCodecContext *avctx; 00177 DSPContext dsp; 00178 FFTContext mdct_ctx[3]; 00179 00180 const ModeTab *mtab; 00181 00182 // history 00183 float lsp_hist[2][20]; 00184 float bark_hist[3][2][40]; 00185 00186 // bitstream parameters 00187 int16_t permut[4][4096]; 00188 uint8_t length[4][2]; 00189 uint8_t length_change[4]; 00190 uint8_t bits_main_spec[2][4][2]; 00191 int bits_main_spec_change[4]; 00192 int n_div[4]; 00193 00194 float *spectrum; 00195 float *curr_frame; 00196 float *prev_frame; 00197 int last_block_pos[2]; 00198 00199 float *cos_tabs[3]; 00200 00201 // scratch buffers 00202 float *tmp_buf; 00203 } TwinContext; 00204 00205 #define PPC_SHAPE_CB_SIZE 64 00206 #define PPC_SHAPE_LEN_MAX 60 00207 #define SUB_AMP_MAX 4500.0 00208 #define MULAW_MU 100.0 00209 #define GAIN_BITS 8 00210 #define AMP_MAX 13000.0 00211 #define SUB_GAIN_BITS 5 00212 #define WINDOW_TYPE_BITS 4 00213 #define PGAIN_MU 200 00214 #define LSP_COEFS_MAX 20 00215 #define LSP_SPLIT_MAX 4 00216 #define CHANNELS_MAX 2 00217 #define SUBBLOCKS_MAX 16 00218 #define BARK_N_COEF_MAX 4 00219 00221 static void memset_float(float *buf, float val, int size) 00222 { 00223 while (size--) 00224 *buf++ = val; 00225 } 00226 00239 static float eval_lpc_spectrum(const float *lsp, float cos_val, int order) 00240 { 00241 int j; 00242 float p = 0.5f; 00243 float q = 0.5f; 00244 float two_cos_w = 2.0f*cos_val; 00245 00246 for (j = 0; j + 1 < order; j += 2*2) { 00247 // Unroll the loop once since order is a multiple of four 00248 q *= lsp[j ] - two_cos_w; 00249 p *= lsp[j+1] - two_cos_w; 00250 00251 q *= lsp[j+2] - two_cos_w; 00252 p *= lsp[j+3] - two_cos_w; 00253 } 00254 00255 p *= p * (2.0f - two_cos_w); 00256 q *= q * (2.0f + two_cos_w); 00257 00258 return 0.5 / (p + q); 00259 } 00260 00264 static void eval_lpcenv(TwinContext *tctx, const float *cos_vals, float *lpc) 00265 { 00266 int i; 00267 const ModeTab *mtab = tctx->mtab; 00268 int size_s = mtab->size / mtab->fmode[FT_SHORT].sub; 00269 00270 for (i = 0; i < size_s/2; i++) { 00271 float cos_i = tctx->cos_tabs[0][i]; 00272 lpc[i] = eval_lpc_spectrum(cos_vals, cos_i, mtab->n_lsp); 00273 lpc[size_s-i-1] = eval_lpc_spectrum(cos_vals, -cos_i, mtab->n_lsp); 00274 } 00275 } 00276 00277 static void interpolate(float *out, float v1, float v2, int size) 00278 { 00279 int i; 00280 float step = (v1 - v2)/(size + 1); 00281 00282 for (i = 0; i < size; i++) { 00283 v2 += step; 00284 out[i] = v2; 00285 } 00286 } 00287 00288 static inline float get_cos(int idx, int part, const float *cos_tab, int size) 00289 { 00290 return part ? -cos_tab[size - idx - 1] : 00291 cos_tab[ idx ]; 00292 } 00293 00308 static inline void eval_lpcenv_or_interp(TwinContext *tctx, 00309 enum FrameType ftype, 00310 float *out, const float *in, 00311 int size, int step, int part) 00312 { 00313 int i; 00314 const ModeTab *mtab = tctx->mtab; 00315 const float *cos_tab = tctx->cos_tabs[ftype]; 00316 00317 // Fill the 's' 00318 for (i = 0; i < size; i += step) 00319 out[i] = 00320 eval_lpc_spectrum(in, 00321 get_cos(i, part, cos_tab, size), 00322 mtab->n_lsp); 00323 00324 // Fill the 'iiiibiiii' 00325 for (i = step; i <= size - 2*step; i += step) { 00326 if (out[i + step] + out[i - step] > 1.95*out[i] || 00327 out[i + step] >= out[i - step]) { 00328 interpolate(out + i - step + 1, out[i], out[i-step], step - 1); 00329 } else { 00330 out[i - step/2] = 00331 eval_lpc_spectrum(in, 00332 get_cos(i-step/2, part, cos_tab, size), 00333 mtab->n_lsp); 00334 interpolate(out + i - step + 1, out[i-step/2], out[i-step ], step/2 - 1); 00335 interpolate(out + i - step/2 + 1, out[i ], out[i-step/2], step/2 - 1); 00336 } 00337 } 00338 00339 interpolate(out + size - 2*step + 1, out[size-step], out[size - 2*step], step - 1); 00340 } 00341 00342 static void eval_lpcenv_2parts(TwinContext *tctx, enum FrameType ftype, 00343 const float *buf, float *lpc, 00344 int size, int step) 00345 { 00346 eval_lpcenv_or_interp(tctx, ftype, lpc , buf, size/2, step, 0); 00347 eval_lpcenv_or_interp(tctx, ftype, lpc + size/2, buf, size/2, 2*step, 1); 00348 00349 interpolate(lpc+size/2-step+1, lpc[size/2], lpc[size/2-step], step); 00350 00351 memset_float(lpc + size - 2*step + 1, lpc[size - 2*step], 2*step - 1); 00352 } 00353 00359 static void dequant(TwinContext *tctx, GetBitContext *gb, float *out, 00360 enum FrameType ftype, 00361 const int16_t *cb0, const int16_t *cb1, int cb_len) 00362 { 00363 int pos = 0; 00364 int i, j; 00365 00366 for (i = 0; i < tctx->n_div[ftype]; i++) { 00367 int tmp0, tmp1; 00368 int sign0 = 1; 00369 int sign1 = 1; 00370 const int16_t *tab0, *tab1; 00371 int length = tctx->length[ftype][i >= tctx->length_change[ftype]]; 00372 int bitstream_second_part = (i >= tctx->bits_main_spec_change[ftype]); 00373 00374 int bits = tctx->bits_main_spec[0][ftype][bitstream_second_part]; 00375 if (bits == 7) { 00376 if (get_bits1(gb)) 00377 sign0 = -1; 00378 bits = 6; 00379 } 00380 tmp0 = get_bits(gb, bits); 00381 00382 bits = tctx->bits_main_spec[1][ftype][bitstream_second_part]; 00383 00384 if (bits == 7) { 00385 if (get_bits1(gb)) 00386 sign1 = -1; 00387 00388 bits = 6; 00389 } 00390 tmp1 = get_bits(gb, bits); 00391 00392 tab0 = cb0 + tmp0*cb_len; 00393 tab1 = cb1 + tmp1*cb_len; 00394 00395 for (j = 0; j < length; j++) 00396 out[tctx->permut[ftype][pos+j]] = sign0*tab0[j] + sign1*tab1[j]; 00397 00398 pos += length; 00399 } 00400 00401 } 00402 00403 static inline float mulawinv(float y, float clip, float mu) 00404 { 00405 y = av_clipf(y/clip, -1, 1); 00406 return clip * FFSIGN(y) * (exp(log(1+mu) * fabs(y)) - 1) / mu; 00407 } 00408 00429 static int very_broken_op(int a, int b) 00430 { 00431 int x = a*b + 200; 00432 int size; 00433 const uint8_t *rtab; 00434 00435 if (x%400 || b%5) 00436 return x/400; 00437 00438 x /= 400; 00439 00440 size = tabs[b/5].size; 00441 rtab = tabs[b/5].tab; 00442 return x - rtab[size*av_log2(2*(x - 1)/size)+(x - 1)%size]; 00443 } 00444 00450 static void add_peak(int period, int width, const float *shape, 00451 float ppc_gain, float *speech, int len) 00452 { 00453 int i, j; 00454 00455 const float *shape_end = shape + len; 00456 int center; 00457 00458 // First peak centered around zero 00459 for (i = 0; i < width/2; i++) 00460 speech[i] += ppc_gain * *shape++; 00461 00462 for (i = 1; i < ROUNDED_DIV(len,width) ; i++) { 00463 center = very_broken_op(period, i); 00464 for (j = -width/2; j < (width+1)/2; j++) 00465 speech[j+center] += ppc_gain * *shape++; 00466 } 00467 00468 // For the last block, be careful not to go beyond the end of the buffer 00469 center = very_broken_op(period, i); 00470 for (j = -width/2; j < (width + 1)/2 && shape < shape_end; j++) 00471 speech[j+center] += ppc_gain * *shape++; 00472 } 00473 00474 static void decode_ppc(TwinContext *tctx, int period_coef, const float *shape, 00475 float ppc_gain, float *speech) 00476 { 00477 const ModeTab *mtab = tctx->mtab; 00478 int isampf = tctx->avctx->sample_rate/1000; 00479 int ibps = tctx->avctx->bit_rate/(1000 * tctx->avctx->channels); 00480 int min_period = ROUNDED_DIV( 40*2*mtab->size, isampf); 00481 int max_period = ROUNDED_DIV(6*40*2*mtab->size, isampf); 00482 int period_range = max_period - min_period; 00483 00484 // This is actually the period multiplied by 400. It is just linearly coded 00485 // between its maximum and minimum value. 00486 int period = min_period + 00487 ROUNDED_DIV(period_coef*period_range, (1 << mtab->ppc_period_bit) - 1); 00488 int width; 00489 00490 if (isampf == 22 && ibps == 32) { 00491 // For some unknown reason, NTT decided to code this case differently... 00492 width = ROUNDED_DIV((period + 800)* mtab->peak_per2wid, 400*mtab->size); 00493 } else 00494 width = (period )* mtab->peak_per2wid/(400*mtab->size); 00495 00496 add_peak(period, width, shape, ppc_gain, speech, mtab->ppc_shape_len); 00497 } 00498 00499 static void dec_gain(TwinContext *tctx, GetBitContext *gb, enum FrameType ftype, 00500 float *out) 00501 { 00502 const ModeTab *mtab = tctx->mtab; 00503 int i, j; 00504 int sub = mtab->fmode[ftype].sub; 00505 float step = AMP_MAX / ((1 << GAIN_BITS) - 1); 00506 float sub_step = SUB_AMP_MAX / ((1 << SUB_GAIN_BITS) - 1); 00507 00508 if (ftype == FT_LONG) { 00509 for (i = 0; i < tctx->avctx->channels; i++) 00510 out[i] = (1./(1<<13)) * 00511 mulawinv(step * 0.5 + step * get_bits(gb, GAIN_BITS), 00512 AMP_MAX, MULAW_MU); 00513 } else { 00514 for (i = 0; i < tctx->avctx->channels; i++) { 00515 float val = (1./(1<<23)) * 00516 mulawinv(step * 0.5 + step * get_bits(gb, GAIN_BITS), 00517 AMP_MAX, MULAW_MU); 00518 00519 for (j = 0; j < sub; j++) { 00520 out[i*sub + j] = 00521 val*mulawinv(sub_step* 0.5 + 00522 sub_step* get_bits(gb, SUB_GAIN_BITS), 00523 SUB_AMP_MAX, MULAW_MU); 00524 } 00525 } 00526 } 00527 } 00528 00535 static void rearrange_lsp(int order, float *lsp, float min_dist) 00536 { 00537 int i; 00538 float min_dist2 = min_dist * 0.5; 00539 for (i = 1; i < order; i++) 00540 if (lsp[i] - lsp[i-1] < min_dist) { 00541 float avg = (lsp[i] + lsp[i-1]) * 0.5; 00542 00543 lsp[i-1] = avg - min_dist2; 00544 lsp[i ] = avg + min_dist2; 00545 } 00546 } 00547 00548 static void decode_lsp(TwinContext *tctx, int lpc_idx1, uint8_t *lpc_idx2, 00549 int lpc_hist_idx, float *lsp, float *hist) 00550 { 00551 const ModeTab *mtab = tctx->mtab; 00552 int i, j; 00553 00554 const float *cb = mtab->lspcodebook; 00555 const float *cb2 = cb + (1 << mtab->lsp_bit1)*mtab->n_lsp; 00556 const float *cb3 = cb2 + (1 << mtab->lsp_bit2)*mtab->n_lsp; 00557 00558 const int8_t funny_rounding[4] = { 00559 -2, 00560 mtab->lsp_split == 4 ? -2 : 1, 00561 mtab->lsp_split == 4 ? -2 : 1, 00562 0 00563 }; 00564 00565 j = 0; 00566 for (i = 0; i < mtab->lsp_split; i++) { 00567 int chunk_end = ((i + 1)*mtab->n_lsp + funny_rounding[i])/mtab->lsp_split; 00568 for (; j < chunk_end; j++) 00569 lsp[j] = cb [lpc_idx1 * mtab->n_lsp + j] + 00570 cb2[lpc_idx2[i] * mtab->n_lsp + j]; 00571 } 00572 00573 rearrange_lsp(mtab->n_lsp, lsp, 0.0001); 00574 00575 for (i = 0; i < mtab->n_lsp; i++) { 00576 float tmp1 = 1. - cb3[lpc_hist_idx*mtab->n_lsp + i]; 00577 float tmp2 = hist[i] * cb3[lpc_hist_idx*mtab->n_lsp + i]; 00578 hist[i] = lsp[i]; 00579 lsp[i] = lsp[i] * tmp1 + tmp2; 00580 } 00581 00582 rearrange_lsp(mtab->n_lsp, lsp, 0.0001); 00583 rearrange_lsp(mtab->n_lsp, lsp, 0.000095); 00584 ff_sort_nearly_sorted_floats(lsp, mtab->n_lsp); 00585 } 00586 00587 static void dec_lpc_spectrum_inv(TwinContext *tctx, float *lsp, 00588 enum FrameType ftype, float *lpc) 00589 { 00590 int i; 00591 int size = tctx->mtab->size / tctx->mtab->fmode[ftype].sub; 00592 00593 for (i = 0; i < tctx->mtab->n_lsp; i++) 00594 lsp[i] = 2*cos(lsp[i]); 00595 00596 switch (ftype) { 00597 case FT_LONG: 00598 eval_lpcenv_2parts(tctx, ftype, lsp, lpc, size, 8); 00599 break; 00600 case FT_MEDIUM: 00601 eval_lpcenv_2parts(tctx, ftype, lsp, lpc, size, 2); 00602 break; 00603 case FT_SHORT: 00604 eval_lpcenv(tctx, lsp, lpc); 00605 break; 00606 } 00607 } 00608 00609 static void imdct_and_window(TwinContext *tctx, enum FrameType ftype, int wtype, 00610 float *in, float *prev, int ch) 00611 { 00612 FFTContext *mdct = &tctx->mdct_ctx[ftype]; 00613 const ModeTab *mtab = tctx->mtab; 00614 int bsize = mtab->size / mtab->fmode[ftype].sub; 00615 int size = mtab->size; 00616 float *buf1 = tctx->tmp_buf; 00617 int j; 00618 int wsize; // Window size 00619 float *out = tctx->curr_frame + 2*ch*mtab->size; 00620 float *out2 = out; 00621 float *prev_buf; 00622 int first_wsize; 00623 00624 static const uint8_t wtype_to_wsize[] = {0, 0, 2, 2, 2, 1, 0, 1, 1}; 00625 int types_sizes[] = { 00626 mtab->size / mtab->fmode[FT_LONG ].sub, 00627 mtab->size / mtab->fmode[FT_MEDIUM].sub, 00628 mtab->size / (2*mtab->fmode[FT_SHORT ].sub), 00629 }; 00630 00631 wsize = types_sizes[wtype_to_wsize[wtype]]; 00632 first_wsize = wsize; 00633 prev_buf = prev + (size - bsize)/2; 00634 00635 for (j = 0; j < mtab->fmode[ftype].sub; j++) { 00636 int sub_wtype = ftype == FT_MEDIUM ? 8 : wtype; 00637 00638 if (!j && wtype == 4) 00639 sub_wtype = 4; 00640 else if (j == mtab->fmode[ftype].sub-1 && wtype == 7) 00641 sub_wtype = 7; 00642 00643 wsize = types_sizes[wtype_to_wsize[sub_wtype]]; 00644 00645 mdct->imdct_half(mdct, buf1 + bsize*j, in + bsize*j); 00646 00647 tctx->dsp.vector_fmul_window(out2, 00648 prev_buf + (bsize-wsize)/2, 00649 buf1 + bsize*j, 00650 ff_sine_windows[av_log2(wsize)], 00651 wsize/2); 00652 out2 += wsize; 00653 00654 memcpy(out2, buf1 + bsize*j + wsize/2, (bsize - wsize/2)*sizeof(float)); 00655 00656 out2 += ftype == FT_MEDIUM ? (bsize-wsize)/2 : bsize - wsize; 00657 00658 prev_buf = buf1 + bsize*j + bsize/2; 00659 } 00660 00661 tctx->last_block_pos[ch] = (size + first_wsize)/2; 00662 } 00663 00664 static void imdct_output(TwinContext *tctx, enum FrameType ftype, int wtype, 00665 float *out) 00666 { 00667 const ModeTab *mtab = tctx->mtab; 00668 float *prev_buf = tctx->prev_frame + tctx->last_block_pos[0]; 00669 int i, j; 00670 00671 for (i = 0; i < tctx->avctx->channels; i++) { 00672 imdct_and_window(tctx, ftype, wtype, 00673 tctx->spectrum + i*mtab->size, 00674 prev_buf + 2*i*mtab->size, 00675 i); 00676 } 00677 00678 if (tctx->avctx->channels == 2) { 00679 for (i = 0; i < mtab->size - tctx->last_block_pos[0]; i++) { 00680 float f1 = prev_buf[ i]; 00681 float f2 = prev_buf[2*mtab->size + i]; 00682 out[2*i ] = f1 + f2; 00683 out[2*i + 1] = f1 - f2; 00684 } 00685 for (j = 0; i < mtab->size; j++,i++) { 00686 float f1 = tctx->curr_frame[ j]; 00687 float f2 = tctx->curr_frame[2*mtab->size + j]; 00688 out[2*i ] = f1 + f2; 00689 out[2*i + 1] = f1 - f2; 00690 } 00691 } else { 00692 memcpy(out, prev_buf, 00693 (mtab->size - tctx->last_block_pos[0]) * sizeof(*out)); 00694 00695 out += mtab->size - tctx->last_block_pos[0]; 00696 00697 memcpy(out, tctx->curr_frame, 00698 (tctx->last_block_pos[0]) * sizeof(*out)); 00699 } 00700 00701 } 00702 00703 static void dec_bark_env(TwinContext *tctx, const uint8_t *in, int use_hist, 00704 int ch, float *out, float gain, enum FrameType ftype) 00705 { 00706 const ModeTab *mtab = tctx->mtab; 00707 int i,j; 00708 float *hist = tctx->bark_hist[ftype][ch]; 00709 float val = ((const float []) {0.4, 0.35, 0.28})[ftype]; 00710 int bark_n_coef = mtab->fmode[ftype].bark_n_coef; 00711 int fw_cb_len = mtab->fmode[ftype].bark_env_size / bark_n_coef; 00712 int idx = 0; 00713 00714 for (i = 0; i < fw_cb_len; i++) 00715 for (j = 0; j < bark_n_coef; j++, idx++) { 00716 float tmp2 = 00717 mtab->fmode[ftype].bark_cb[fw_cb_len*in[j] + i] * (1./4096); 00718 float st = use_hist ? 00719 (1. - val) * tmp2 + val*hist[idx] + 1. : tmp2 + 1.; 00720 00721 hist[idx] = tmp2; 00722 if (st < -1.) st = 1.; 00723 00724 memset_float(out, st * gain, mtab->fmode[ftype].bark_tab[idx]); 00725 out += mtab->fmode[ftype].bark_tab[idx]; 00726 } 00727 00728 } 00729 00730 static void read_and_decode_spectrum(TwinContext *tctx, GetBitContext *gb, 00731 float *out, enum FrameType ftype) 00732 { 00733 const ModeTab *mtab = tctx->mtab; 00734 int channels = tctx->avctx->channels; 00735 int sub = mtab->fmode[ftype].sub; 00736 int block_size = mtab->size / sub; 00737 float gain[CHANNELS_MAX*SUBBLOCKS_MAX]; 00738 float ppc_shape[PPC_SHAPE_LEN_MAX * CHANNELS_MAX * 4]; 00739 uint8_t bark1[CHANNELS_MAX][SUBBLOCKS_MAX][BARK_N_COEF_MAX]; 00740 uint8_t bark_use_hist[CHANNELS_MAX][SUBBLOCKS_MAX]; 00741 00742 uint8_t lpc_idx1[CHANNELS_MAX]; 00743 uint8_t lpc_idx2[CHANNELS_MAX][LSP_SPLIT_MAX]; 00744 uint8_t lpc_hist_idx[CHANNELS_MAX]; 00745 00746 int i, j, k; 00747 00748 dequant(tctx, gb, out, ftype, 00749 mtab->fmode[ftype].cb0, mtab->fmode[ftype].cb1, 00750 mtab->fmode[ftype].cb_len_read); 00751 00752 for (i = 0; i < channels; i++) 00753 for (j = 0; j < sub; j++) 00754 for (k = 0; k < mtab->fmode[ftype].bark_n_coef; k++) 00755 bark1[i][j][k] = 00756 get_bits(gb, mtab->fmode[ftype].bark_n_bit); 00757 00758 for (i = 0; i < channels; i++) 00759 for (j = 0; j < sub; j++) 00760 bark_use_hist[i][j] = get_bits1(gb); 00761 00762 dec_gain(tctx, gb, ftype, gain); 00763 00764 for (i = 0; i < channels; i++) { 00765 lpc_hist_idx[i] = get_bits(gb, tctx->mtab->lsp_bit0); 00766 lpc_idx1 [i] = get_bits(gb, tctx->mtab->lsp_bit1); 00767 00768 for (j = 0; j < tctx->mtab->lsp_split; j++) 00769 lpc_idx2[i][j] = get_bits(gb, tctx->mtab->lsp_bit2); 00770 } 00771 00772 if (ftype == FT_LONG) { 00773 int cb_len_p = (tctx->n_div[3] + mtab->ppc_shape_len*channels - 1)/ 00774 tctx->n_div[3]; 00775 dequant(tctx, gb, ppc_shape, FT_PPC, mtab->ppc_shape_cb, 00776 mtab->ppc_shape_cb + cb_len_p*PPC_SHAPE_CB_SIZE, cb_len_p); 00777 } 00778 00779 for (i = 0; i < channels; i++) { 00780 float *chunk = out + mtab->size * i; 00781 float lsp[LSP_COEFS_MAX]; 00782 00783 for (j = 0; j < sub; j++) { 00784 dec_bark_env(tctx, bark1[i][j], bark_use_hist[i][j], i, 00785 tctx->tmp_buf, gain[sub*i+j], ftype); 00786 00787 tctx->dsp.vector_fmul(chunk + block_size*j, chunk + block_size*j, tctx->tmp_buf, 00788 block_size); 00789 00790 } 00791 00792 if (ftype == FT_LONG) { 00793 float pgain_step = 25000. / ((1 << mtab->pgain_bit) - 1); 00794 int p_coef = get_bits(gb, tctx->mtab->ppc_period_bit); 00795 int g_coef = get_bits(gb, tctx->mtab->pgain_bit); 00796 float v = 1./8192* 00797 mulawinv(pgain_step*g_coef+ pgain_step/2, 25000., PGAIN_MU); 00798 00799 decode_ppc(tctx, p_coef, ppc_shape + i*mtab->ppc_shape_len, v, 00800 chunk); 00801 } 00802 00803 decode_lsp(tctx, lpc_idx1[i], lpc_idx2[i], lpc_hist_idx[i], lsp, 00804 tctx->lsp_hist[i]); 00805 00806 dec_lpc_spectrum_inv(tctx, lsp, ftype, tctx->tmp_buf); 00807 00808 for (j = 0; j < mtab->fmode[ftype].sub; j++) { 00809 tctx->dsp.vector_fmul(chunk, chunk, tctx->tmp_buf, block_size); 00810 chunk += block_size; 00811 } 00812 } 00813 } 00814 00815 static int twin_decode_frame(AVCodecContext * avctx, void *data, 00816 int *data_size, AVPacket *avpkt) 00817 { 00818 const uint8_t *buf = avpkt->data; 00819 int buf_size = avpkt->size; 00820 TwinContext *tctx = avctx->priv_data; 00821 GetBitContext gb; 00822 const ModeTab *mtab = tctx->mtab; 00823 float *out = data; 00824 enum FrameType ftype; 00825 int window_type; 00826 static const enum FrameType wtype_to_ftype_table[] = { 00827 FT_LONG, FT_LONG, FT_SHORT, FT_LONG, 00828 FT_MEDIUM, FT_LONG, FT_LONG, FT_MEDIUM, FT_MEDIUM 00829 }; 00830 00831 if (buf_size*8 < avctx->bit_rate*mtab->size/avctx->sample_rate + 8) { 00832 av_log(avctx, AV_LOG_ERROR, 00833 "Frame too small (%d bytes). Truncated file?\n", buf_size); 00834 *data_size = 0; 00835 return buf_size; 00836 } 00837 00838 init_get_bits(&gb, buf, buf_size * 8); 00839 skip_bits(&gb, get_bits(&gb, 8)); 00840 window_type = get_bits(&gb, WINDOW_TYPE_BITS); 00841 00842 if (window_type > 8) { 00843 av_log(avctx, AV_LOG_ERROR, "Invalid window type, broken sample?\n"); 00844 return -1; 00845 } 00846 00847 ftype = wtype_to_ftype_table[window_type]; 00848 00849 read_and_decode_spectrum(tctx, &gb, tctx->spectrum, ftype); 00850 00851 imdct_output(tctx, ftype, window_type, out); 00852 00853 FFSWAP(float*, tctx->curr_frame, tctx->prev_frame); 00854 00855 if (tctx->avctx->frame_number < 2) { 00856 *data_size=0; 00857 return buf_size; 00858 } 00859 00860 *data_size = mtab->size*avctx->channels*4; 00861 00862 return buf_size; 00863 } 00864 00868 static av_cold void init_mdct_win(TwinContext *tctx) 00869 { 00870 int i,j; 00871 const ModeTab *mtab = tctx->mtab; 00872 int size_s = mtab->size / mtab->fmode[FT_SHORT].sub; 00873 int size_m = mtab->size / mtab->fmode[FT_MEDIUM].sub; 00874 int channels = tctx->avctx->channels; 00875 float norm = channels == 1 ? 2. : 1.; 00876 00877 for (i = 0; i < 3; i++) { 00878 int bsize = tctx->mtab->size/tctx->mtab->fmode[i].sub; 00879 ff_mdct_init(&tctx->mdct_ctx[i], av_log2(bsize) + 1, 1, 00880 -sqrt(norm/bsize) / (1<<15)); 00881 } 00882 00883 tctx->tmp_buf = av_malloc(mtab->size * sizeof(*tctx->tmp_buf)); 00884 00885 tctx->spectrum = av_malloc(2*mtab->size*channels*sizeof(float)); 00886 tctx->curr_frame = av_malloc(2*mtab->size*channels*sizeof(float)); 00887 tctx->prev_frame = av_malloc(2*mtab->size*channels*sizeof(float)); 00888 00889 for (i = 0; i < 3; i++) { 00890 int m = 4*mtab->size/mtab->fmode[i].sub; 00891 double freq = 2*M_PI/m; 00892 tctx->cos_tabs[i] = av_malloc((m/4)*sizeof(*tctx->cos_tabs)); 00893 00894 for (j = 0; j <= m/8; j++) 00895 tctx->cos_tabs[i][j] = cos((2*j + 1)*freq); 00896 for (j = 1; j < m/8; j++) 00897 tctx->cos_tabs[i][m/4-j] = tctx->cos_tabs[i][j]; 00898 } 00899 00900 00901 ff_init_ff_sine_windows(av_log2(size_m)); 00902 ff_init_ff_sine_windows(av_log2(size_s/2)); 00903 ff_init_ff_sine_windows(av_log2(mtab->size)); 00904 } 00905 00912 static void permutate_in_line(int16_t *tab, int num_vect, int num_blocks, 00913 int block_size, 00914 const uint8_t line_len[2], int length_div, 00915 enum FrameType ftype) 00916 00917 { 00918 int i,j; 00919 00920 for (i = 0; i < line_len[0]; i++) { 00921 int shift; 00922 00923 if (num_blocks == 1 || 00924 (ftype == FT_LONG && num_vect % num_blocks) || 00925 (ftype != FT_LONG && num_vect & 1 ) || 00926 i == line_len[1]) { 00927 shift = 0; 00928 } else if (ftype == FT_LONG) { 00929 shift = i; 00930 } else 00931 shift = i*i; 00932 00933 for (j = 0; j < num_vect && (j+num_vect*i < block_size*num_blocks); j++) 00934 tab[i*num_vect+j] = i*num_vect + (j + shift) % num_vect; 00935 } 00936 } 00937 00953 static void transpose_perm(int16_t *out, int16_t *in, int num_vect, 00954 const uint8_t line_len[2], int length_div) 00955 { 00956 int i,j; 00957 int cont= 0; 00958 for (i = 0; i < num_vect; i++) 00959 for (j = 0; j < line_len[i >= length_div]; j++) 00960 out[cont++] = in[j*num_vect + i]; 00961 } 00962 00963 static void linear_perm(int16_t *out, int16_t *in, int n_blocks, int size) 00964 { 00965 int block_size = size/n_blocks; 00966 int i; 00967 00968 for (i = 0; i < size; i++) 00969 out[i] = block_size * (in[i] % n_blocks) + in[i] / n_blocks; 00970 } 00971 00972 static av_cold void construct_perm_table(TwinContext *tctx,enum FrameType ftype) 00973 { 00974 int block_size; 00975 const ModeTab *mtab = tctx->mtab; 00976 int size = tctx->avctx->channels*mtab->fmode[ftype].sub; 00977 int16_t *tmp_perm = (int16_t *) tctx->tmp_buf; 00978 00979 if (ftype == FT_PPC) { 00980 size = tctx->avctx->channels; 00981 block_size = mtab->ppc_shape_len; 00982 } else 00983 block_size = mtab->size / mtab->fmode[ftype].sub; 00984 00985 permutate_in_line(tmp_perm, tctx->n_div[ftype], size, 00986 block_size, tctx->length[ftype], 00987 tctx->length_change[ftype], ftype); 00988 00989 transpose_perm(tctx->permut[ftype], tmp_perm, tctx->n_div[ftype], 00990 tctx->length[ftype], tctx->length_change[ftype]); 00991 00992 linear_perm(tctx->permut[ftype], tctx->permut[ftype], size, 00993 size*block_size); 00994 } 00995 00996 static av_cold void init_bitstream_params(TwinContext *tctx) 00997 { 00998 const ModeTab *mtab = tctx->mtab; 00999 int n_ch = tctx->avctx->channels; 01000 int total_fr_bits = tctx->avctx->bit_rate*mtab->size/ 01001 tctx->avctx->sample_rate; 01002 01003 int lsp_bits_per_block = n_ch*(mtab->lsp_bit0 + mtab->lsp_bit1 + 01004 mtab->lsp_split*mtab->lsp_bit2); 01005 01006 int ppc_bits = n_ch*(mtab->pgain_bit + mtab->ppc_shape_bit + 01007 mtab->ppc_period_bit); 01008 01009 int bsize_no_main_cb[3]; 01010 int bse_bits[3]; 01011 int i; 01012 enum FrameType frametype; 01013 01014 for (i = 0; i < 3; i++) 01015 // +1 for history usage switch 01016 bse_bits[i] = n_ch * 01017 (mtab->fmode[i].bark_n_coef * mtab->fmode[i].bark_n_bit + 1); 01018 01019 bsize_no_main_cb[2] = bse_bits[2] + lsp_bits_per_block + ppc_bits + 01020 WINDOW_TYPE_BITS + n_ch*GAIN_BITS; 01021 01022 for (i = 0; i < 2; i++) 01023 bsize_no_main_cb[i] = 01024 lsp_bits_per_block + n_ch*GAIN_BITS + WINDOW_TYPE_BITS + 01025 mtab->fmode[i].sub*(bse_bits[i] + n_ch*SUB_GAIN_BITS); 01026 01027 // The remaining bits are all used for the main spectrum coefficients 01028 for (i = 0; i < 4; i++) { 01029 int bit_size; 01030 int vect_size; 01031 int rounded_up, rounded_down, num_rounded_down, num_rounded_up; 01032 if (i == 3) { 01033 bit_size = n_ch * mtab->ppc_shape_bit; 01034 vect_size = n_ch * mtab->ppc_shape_len; 01035 } else { 01036 bit_size = total_fr_bits - bsize_no_main_cb[i]; 01037 vect_size = n_ch * mtab->size; 01038 } 01039 01040 tctx->n_div[i] = (bit_size + 13) / 14; 01041 01042 rounded_up = (bit_size + tctx->n_div[i] - 1)/tctx->n_div[i]; 01043 rounded_down = (bit_size )/tctx->n_div[i]; 01044 num_rounded_down = rounded_up * tctx->n_div[i] - bit_size; 01045 num_rounded_up = tctx->n_div[i] - num_rounded_down; 01046 tctx->bits_main_spec[0][i][0] = (rounded_up + 1)/2; 01047 tctx->bits_main_spec[1][i][0] = (rounded_up )/2; 01048 tctx->bits_main_spec[0][i][1] = (rounded_down + 1)/2; 01049 tctx->bits_main_spec[1][i][1] = (rounded_down )/2; 01050 tctx->bits_main_spec_change[i] = num_rounded_up; 01051 01052 rounded_up = (vect_size + tctx->n_div[i] - 1)/tctx->n_div[i]; 01053 rounded_down = (vect_size )/tctx->n_div[i]; 01054 num_rounded_down = rounded_up * tctx->n_div[i] - vect_size; 01055 num_rounded_up = tctx->n_div[i] - num_rounded_down; 01056 tctx->length[i][0] = rounded_up; 01057 tctx->length[i][1] = rounded_down; 01058 tctx->length_change[i] = num_rounded_up; 01059 } 01060 01061 for (frametype = FT_SHORT; frametype <= FT_PPC; frametype++) 01062 construct_perm_table(tctx, frametype); 01063 } 01064 01065 static av_cold int twin_decode_init(AVCodecContext *avctx) 01066 { 01067 TwinContext *tctx = avctx->priv_data; 01068 int isampf = avctx->sample_rate/1000; 01069 int ibps = avctx->bit_rate/(1000 * avctx->channels); 01070 01071 tctx->avctx = avctx; 01072 avctx->sample_fmt = AV_SAMPLE_FMT_FLT; 01073 01074 if (avctx->channels > CHANNELS_MAX) { 01075 av_log(avctx, AV_LOG_ERROR, "Unsupported number of channels: %i\n", 01076 avctx->channels); 01077 return -1; 01078 } 01079 01080 switch ((isampf << 8) + ibps) { 01081 case (8 <<8) + 8: tctx->mtab = &mode_08_08; break; 01082 case (11<<8) + 8: tctx->mtab = &mode_11_08; break; 01083 case (11<<8) + 10: tctx->mtab = &mode_11_10; break; 01084 case (16<<8) + 16: tctx->mtab = &mode_16_16; break; 01085 case (22<<8) + 20: tctx->mtab = &mode_22_20; break; 01086 case (22<<8) + 24: tctx->mtab = &mode_22_24; break; 01087 case (22<<8) + 32: tctx->mtab = &mode_22_32; break; 01088 case (44<<8) + 40: tctx->mtab = &mode_44_40; break; 01089 case (44<<8) + 48: tctx->mtab = &mode_44_48; break; 01090 default: 01091 av_log(avctx, AV_LOG_ERROR, "This version does not support %d kHz - %d kbit/s/ch mode.\n", isampf, isampf); 01092 return -1; 01093 } 01094 01095 dsputil_init(&tctx->dsp, avctx); 01096 init_mdct_win(tctx); 01097 init_bitstream_params(tctx); 01098 01099 memset_float(tctx->bark_hist[0][0], 0.1, FF_ARRAY_ELEMS(tctx->bark_hist)); 01100 01101 return 0; 01102 } 01103 01104 static av_cold int twin_decode_close(AVCodecContext *avctx) 01105 { 01106 TwinContext *tctx = avctx->priv_data; 01107 int i; 01108 01109 for (i = 0; i < 3; i++) { 01110 ff_mdct_end(&tctx->mdct_ctx[i]); 01111 av_free(tctx->cos_tabs[i]); 01112 } 01113 01114 01115 av_free(tctx->curr_frame); 01116 av_free(tctx->spectrum); 01117 av_free(tctx->prev_frame); 01118 av_free(tctx->tmp_buf); 01119 01120 return 0; 01121 } 01122 01123 AVCodec ff_twinvq_decoder = 01124 { 01125 "twinvq", 01126 AVMEDIA_TYPE_AUDIO, 01127 CODEC_ID_TWINVQ, 01128 sizeof(TwinContext), 01129 twin_decode_init, 01130 NULL, 01131 twin_decode_close, 01132 twin_decode_frame, 01133 .long_name = NULL_IF_CONFIG_SMALL("VQF TwinVQ"), 01134 };