Libav 0.7.1
|
00001 /* 00002 * AAC Spectral Band Replication decoding functions 00003 * Copyright (c) 2008-2009 Robert Swain ( rob opendot cl ) 00004 * Copyright (c) 2009-2010 Alex Converse <alex.converse@gmail.com> 00005 * 00006 * This file is part of Libav. 00007 * 00008 * Libav is free software; you can redistribute it and/or 00009 * modify it under the terms of the GNU Lesser General Public 00010 * License as published by the Free Software Foundation; either 00011 * version 2.1 of the License, or (at your option) any later version. 00012 * 00013 * Libav is distributed in the hope that it will be useful, 00014 * but WITHOUT ANY WARRANTY; without even the implied warranty of 00015 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 00016 * Lesser General Public License for more details. 00017 * 00018 * You should have received a copy of the GNU Lesser General Public 00019 * License along with Libav; if not, write to the Free Software 00020 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA 00021 */ 00022 00029 #include "aac.h" 00030 #include "sbr.h" 00031 #include "aacsbr.h" 00032 #include "aacsbrdata.h" 00033 #include "fft.h" 00034 #include "aacps.h" 00035 #include "libavutil/libm.h" 00036 00037 #include <stdint.h> 00038 #include <float.h> 00039 00040 #define ENVELOPE_ADJUSTMENT_OFFSET 2 00041 #define NOISE_FLOOR_OFFSET 6.0f 00042 00046 enum { 00047 T_HUFFMAN_ENV_1_5DB, 00048 F_HUFFMAN_ENV_1_5DB, 00049 T_HUFFMAN_ENV_BAL_1_5DB, 00050 F_HUFFMAN_ENV_BAL_1_5DB, 00051 T_HUFFMAN_ENV_3_0DB, 00052 F_HUFFMAN_ENV_3_0DB, 00053 T_HUFFMAN_ENV_BAL_3_0DB, 00054 F_HUFFMAN_ENV_BAL_3_0DB, 00055 T_HUFFMAN_NOISE_3_0DB, 00056 T_HUFFMAN_NOISE_BAL_3_0DB, 00057 }; 00058 00062 enum { 00063 FIXFIX, 00064 FIXVAR, 00065 VARFIX, 00066 VARVAR, 00067 }; 00068 00069 enum { 00070 EXTENSION_ID_PS = 2, 00071 }; 00072 00073 static VLC vlc_sbr[10]; 00074 static const int8_t vlc_sbr_lav[10] = 00075 { 60, 60, 24, 24, 31, 31, 12, 12, 31, 12 }; 00076 static const DECLARE_ALIGNED(16, float, zero64)[64]; 00077 00078 #define SBR_INIT_VLC_STATIC(num, size) \ 00079 INIT_VLC_STATIC(&vlc_sbr[num], 9, sbr_tmp[num].table_size / sbr_tmp[num].elem_size, \ 00080 sbr_tmp[num].sbr_bits , 1, 1, \ 00081 sbr_tmp[num].sbr_codes, sbr_tmp[num].elem_size, sbr_tmp[num].elem_size, \ 00082 size) 00083 00084 #define SBR_VLC_ROW(name) \ 00085 { name ## _codes, name ## _bits, sizeof(name ## _codes), sizeof(name ## _codes[0]) } 00086 00087 av_cold void ff_aac_sbr_init(void) 00088 { 00089 int n; 00090 static const struct { 00091 const void *sbr_codes, *sbr_bits; 00092 const unsigned int table_size, elem_size; 00093 } sbr_tmp[] = { 00094 SBR_VLC_ROW(t_huffman_env_1_5dB), 00095 SBR_VLC_ROW(f_huffman_env_1_5dB), 00096 SBR_VLC_ROW(t_huffman_env_bal_1_5dB), 00097 SBR_VLC_ROW(f_huffman_env_bal_1_5dB), 00098 SBR_VLC_ROW(t_huffman_env_3_0dB), 00099 SBR_VLC_ROW(f_huffman_env_3_0dB), 00100 SBR_VLC_ROW(t_huffman_env_bal_3_0dB), 00101 SBR_VLC_ROW(f_huffman_env_bal_3_0dB), 00102 SBR_VLC_ROW(t_huffman_noise_3_0dB), 00103 SBR_VLC_ROW(t_huffman_noise_bal_3_0dB), 00104 }; 00105 00106 // SBR VLC table initialization 00107 SBR_INIT_VLC_STATIC(0, 1098); 00108 SBR_INIT_VLC_STATIC(1, 1092); 00109 SBR_INIT_VLC_STATIC(2, 768); 00110 SBR_INIT_VLC_STATIC(3, 1026); 00111 SBR_INIT_VLC_STATIC(4, 1058); 00112 SBR_INIT_VLC_STATIC(5, 1052); 00113 SBR_INIT_VLC_STATIC(6, 544); 00114 SBR_INIT_VLC_STATIC(7, 544); 00115 SBR_INIT_VLC_STATIC(8, 592); 00116 SBR_INIT_VLC_STATIC(9, 512); 00117 00118 for (n = 1; n < 320; n++) 00119 sbr_qmf_window_us[320 + n] = sbr_qmf_window_us[320 - n]; 00120 sbr_qmf_window_us[384] = -sbr_qmf_window_us[384]; 00121 sbr_qmf_window_us[512] = -sbr_qmf_window_us[512]; 00122 00123 for (n = 0; n < 320; n++) 00124 sbr_qmf_window_ds[n] = sbr_qmf_window_us[2*n]; 00125 00126 ff_ps_init(); 00127 } 00128 00129 av_cold void ff_aac_sbr_ctx_init(AACContext *ac, SpectralBandReplication *sbr) 00130 { 00131 float mdct_scale; 00132 sbr->kx[0] = sbr->kx[1] = 32; //Typo in spec, kx' inits to 32 00133 sbr->data[0].e_a[1] = sbr->data[1].e_a[1] = -1; 00134 sbr->data[0].synthesis_filterbank_samples_offset = SBR_SYNTHESIS_BUF_SIZE - (1280 - 128); 00135 sbr->data[1].synthesis_filterbank_samples_offset = SBR_SYNTHESIS_BUF_SIZE - (1280 - 128); 00136 /* SBR requires samples to be scaled to +/-32768.0 to work correctly. 00137 * mdct scale factors are adjusted to scale up from +/-1.0 at analysis 00138 * and scale back down at synthesis. */ 00139 mdct_scale = ac->avctx->sample_fmt == AV_SAMPLE_FMT_FLT ? 32768.0f : 1.0f; 00140 ff_mdct_init(&sbr->mdct, 7, 1, 1.0 / (64 * mdct_scale)); 00141 ff_mdct_init(&sbr->mdct_ana, 7, 1, -2.0 * mdct_scale); 00142 ff_ps_ctx_init(&sbr->ps); 00143 } 00144 00145 av_cold void ff_aac_sbr_ctx_close(SpectralBandReplication *sbr) 00146 { 00147 ff_mdct_end(&sbr->mdct); 00148 ff_mdct_end(&sbr->mdct_ana); 00149 } 00150 00151 static int qsort_comparison_function_int16(const void *a, const void *b) 00152 { 00153 return *(const int16_t *)a - *(const int16_t *)b; 00154 } 00155 00156 static inline int in_table_int16(const int16_t *table, int last_el, int16_t needle) 00157 { 00158 int i; 00159 for (i = 0; i <= last_el; i++) 00160 if (table[i] == needle) 00161 return 1; 00162 return 0; 00163 } 00164 00166 static void sbr_make_f_tablelim(SpectralBandReplication *sbr) 00167 { 00168 int k; 00169 if (sbr->bs_limiter_bands > 0) { 00170 static const float bands_warped[3] = { 1.32715174233856803909f, //2^(0.49/1.2) 00171 1.18509277094158210129f, //2^(0.49/2) 00172 1.11987160404675912501f }; //2^(0.49/3) 00173 const float lim_bands_per_octave_warped = bands_warped[sbr->bs_limiter_bands - 1]; 00174 int16_t patch_borders[7]; 00175 uint16_t *in = sbr->f_tablelim + 1, *out = sbr->f_tablelim; 00176 00177 patch_borders[0] = sbr->kx[1]; 00178 for (k = 1; k <= sbr->num_patches; k++) 00179 patch_borders[k] = patch_borders[k-1] + sbr->patch_num_subbands[k-1]; 00180 00181 memcpy(sbr->f_tablelim, sbr->f_tablelow, 00182 (sbr->n[0] + 1) * sizeof(sbr->f_tablelow[0])); 00183 if (sbr->num_patches > 1) 00184 memcpy(sbr->f_tablelim + sbr->n[0] + 1, patch_borders + 1, 00185 (sbr->num_patches - 1) * sizeof(patch_borders[0])); 00186 00187 qsort(sbr->f_tablelim, sbr->num_patches + sbr->n[0], 00188 sizeof(sbr->f_tablelim[0]), 00189 qsort_comparison_function_int16); 00190 00191 sbr->n_lim = sbr->n[0] + sbr->num_patches - 1; 00192 while (out < sbr->f_tablelim + sbr->n_lim) { 00193 if (*in >= *out * lim_bands_per_octave_warped) { 00194 *++out = *in++; 00195 } else if (*in == *out || 00196 !in_table_int16(patch_borders, sbr->num_patches, *in)) { 00197 in++; 00198 sbr->n_lim--; 00199 } else if (!in_table_int16(patch_borders, sbr->num_patches, *out)) { 00200 *out = *in++; 00201 sbr->n_lim--; 00202 } else { 00203 *++out = *in++; 00204 } 00205 } 00206 } else { 00207 sbr->f_tablelim[0] = sbr->f_tablelow[0]; 00208 sbr->f_tablelim[1] = sbr->f_tablelow[sbr->n[0]]; 00209 sbr->n_lim = 1; 00210 } 00211 } 00212 00213 static unsigned int read_sbr_header(SpectralBandReplication *sbr, GetBitContext *gb) 00214 { 00215 unsigned int cnt = get_bits_count(gb); 00216 uint8_t bs_header_extra_1; 00217 uint8_t bs_header_extra_2; 00218 int old_bs_limiter_bands = sbr->bs_limiter_bands; 00219 SpectrumParameters old_spectrum_params; 00220 00221 sbr->start = 1; 00222 00223 // Save last spectrum parameters variables to compare to new ones 00224 memcpy(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParameters)); 00225 00226 sbr->bs_amp_res_header = get_bits1(gb); 00227 sbr->spectrum_params.bs_start_freq = get_bits(gb, 4); 00228 sbr->spectrum_params.bs_stop_freq = get_bits(gb, 4); 00229 sbr->spectrum_params.bs_xover_band = get_bits(gb, 3); 00230 skip_bits(gb, 2); // bs_reserved 00231 00232 bs_header_extra_1 = get_bits1(gb); 00233 bs_header_extra_2 = get_bits1(gb); 00234 00235 if (bs_header_extra_1) { 00236 sbr->spectrum_params.bs_freq_scale = get_bits(gb, 2); 00237 sbr->spectrum_params.bs_alter_scale = get_bits1(gb); 00238 sbr->spectrum_params.bs_noise_bands = get_bits(gb, 2); 00239 } else { 00240 sbr->spectrum_params.bs_freq_scale = 2; 00241 sbr->spectrum_params.bs_alter_scale = 1; 00242 sbr->spectrum_params.bs_noise_bands = 2; 00243 } 00244 00245 // Check if spectrum parameters changed 00246 if (memcmp(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParameters))) 00247 sbr->reset = 1; 00248 00249 if (bs_header_extra_2) { 00250 sbr->bs_limiter_bands = get_bits(gb, 2); 00251 sbr->bs_limiter_gains = get_bits(gb, 2); 00252 sbr->bs_interpol_freq = get_bits1(gb); 00253 sbr->bs_smoothing_mode = get_bits1(gb); 00254 } else { 00255 sbr->bs_limiter_bands = 2; 00256 sbr->bs_limiter_gains = 2; 00257 sbr->bs_interpol_freq = 1; 00258 sbr->bs_smoothing_mode = 1; 00259 } 00260 00261 if (sbr->bs_limiter_bands != old_bs_limiter_bands && !sbr->reset) 00262 sbr_make_f_tablelim(sbr); 00263 00264 return get_bits_count(gb) - cnt; 00265 } 00266 00267 static int array_min_int16(const int16_t *array, int nel) 00268 { 00269 int i, min = array[0]; 00270 for (i = 1; i < nel; i++) 00271 min = FFMIN(array[i], min); 00272 return min; 00273 } 00274 00275 static void make_bands(int16_t* bands, int start, int stop, int num_bands) 00276 { 00277 int k, previous, present; 00278 float base, prod; 00279 00280 base = powf((float)stop / start, 1.0f / num_bands); 00281 prod = start; 00282 previous = start; 00283 00284 for (k = 0; k < num_bands-1; k++) { 00285 prod *= base; 00286 present = lrintf(prod); 00287 bands[k] = present - previous; 00288 previous = present; 00289 } 00290 bands[num_bands-1] = stop - previous; 00291 } 00292 00293 static int check_n_master(AVCodecContext *avctx, int n_master, int bs_xover_band) 00294 { 00295 // Requirements (14496-3 sp04 p205) 00296 if (n_master <= 0) { 00297 av_log(avctx, AV_LOG_ERROR, "Invalid n_master: %d\n", n_master); 00298 return -1; 00299 } 00300 if (bs_xover_band >= n_master) { 00301 av_log(avctx, AV_LOG_ERROR, 00302 "Invalid bitstream, crossover band index beyond array bounds: %d\n", 00303 bs_xover_band); 00304 return -1; 00305 } 00306 return 0; 00307 } 00308 00310 static int sbr_make_f_master(AACContext *ac, SpectralBandReplication *sbr, 00311 SpectrumParameters *spectrum) 00312 { 00313 unsigned int temp, max_qmf_subbands; 00314 unsigned int start_min, stop_min; 00315 int k; 00316 const int8_t *sbr_offset_ptr; 00317 int16_t stop_dk[13]; 00318 00319 if (sbr->sample_rate < 32000) { 00320 temp = 3000; 00321 } else if (sbr->sample_rate < 64000) { 00322 temp = 4000; 00323 } else 00324 temp = 5000; 00325 00326 start_min = ((temp << 7) + (sbr->sample_rate >> 1)) / sbr->sample_rate; 00327 stop_min = ((temp << 8) + (sbr->sample_rate >> 1)) / sbr->sample_rate; 00328 00329 switch (sbr->sample_rate) { 00330 case 16000: 00331 sbr_offset_ptr = sbr_offset[0]; 00332 break; 00333 case 22050: 00334 sbr_offset_ptr = sbr_offset[1]; 00335 break; 00336 case 24000: 00337 sbr_offset_ptr = sbr_offset[2]; 00338 break; 00339 case 32000: 00340 sbr_offset_ptr = sbr_offset[3]; 00341 break; 00342 case 44100: case 48000: case 64000: 00343 sbr_offset_ptr = sbr_offset[4]; 00344 break; 00345 case 88200: case 96000: case 128000: case 176400: case 192000: 00346 sbr_offset_ptr = sbr_offset[5]; 00347 break; 00348 default: 00349 av_log(ac->avctx, AV_LOG_ERROR, 00350 "Unsupported sample rate for SBR: %d\n", sbr->sample_rate); 00351 return -1; 00352 } 00353 00354 sbr->k[0] = start_min + sbr_offset_ptr[spectrum->bs_start_freq]; 00355 00356 if (spectrum->bs_stop_freq < 14) { 00357 sbr->k[2] = stop_min; 00358 make_bands(stop_dk, stop_min, 64, 13); 00359 qsort(stop_dk, 13, sizeof(stop_dk[0]), qsort_comparison_function_int16); 00360 for (k = 0; k < spectrum->bs_stop_freq; k++) 00361 sbr->k[2] += stop_dk[k]; 00362 } else if (spectrum->bs_stop_freq == 14) { 00363 sbr->k[2] = 2*sbr->k[0]; 00364 } else if (spectrum->bs_stop_freq == 15) { 00365 sbr->k[2] = 3*sbr->k[0]; 00366 } else { 00367 av_log(ac->avctx, AV_LOG_ERROR, 00368 "Invalid bs_stop_freq: %d\n", spectrum->bs_stop_freq); 00369 return -1; 00370 } 00371 sbr->k[2] = FFMIN(64, sbr->k[2]); 00372 00373 // Requirements (14496-3 sp04 p205) 00374 if (sbr->sample_rate <= 32000) { 00375 max_qmf_subbands = 48; 00376 } else if (sbr->sample_rate == 44100) { 00377 max_qmf_subbands = 35; 00378 } else if (sbr->sample_rate >= 48000) 00379 max_qmf_subbands = 32; 00380 00381 if (sbr->k[2] - sbr->k[0] > max_qmf_subbands) { 00382 av_log(ac->avctx, AV_LOG_ERROR, 00383 "Invalid bitstream, too many QMF subbands: %d\n", sbr->k[2] - sbr->k[0]); 00384 return -1; 00385 } 00386 00387 if (!spectrum->bs_freq_scale) { 00388 int dk, k2diff; 00389 00390 dk = spectrum->bs_alter_scale + 1; 00391 sbr->n_master = ((sbr->k[2] - sbr->k[0] + (dk&2)) >> dk) << 1; 00392 if (check_n_master(ac->avctx, sbr->n_master, sbr->spectrum_params.bs_xover_band)) 00393 return -1; 00394 00395 for (k = 1; k <= sbr->n_master; k++) 00396 sbr->f_master[k] = dk; 00397 00398 k2diff = sbr->k[2] - sbr->k[0] - sbr->n_master * dk; 00399 if (k2diff < 0) { 00400 sbr->f_master[1]--; 00401 sbr->f_master[2]-= (k2diff < -1); 00402 } else if (k2diff) { 00403 sbr->f_master[sbr->n_master]++; 00404 } 00405 00406 sbr->f_master[0] = sbr->k[0]; 00407 for (k = 1; k <= sbr->n_master; k++) 00408 sbr->f_master[k] += sbr->f_master[k - 1]; 00409 00410 } else { 00411 int half_bands = 7 - spectrum->bs_freq_scale; // bs_freq_scale = {1,2,3} 00412 int two_regions, num_bands_0; 00413 int vdk0_max, vdk1_min; 00414 int16_t vk0[49]; 00415 00416 if (49 * sbr->k[2] > 110 * sbr->k[0]) { 00417 two_regions = 1; 00418 sbr->k[1] = 2 * sbr->k[0]; 00419 } else { 00420 two_regions = 0; 00421 sbr->k[1] = sbr->k[2]; 00422 } 00423 00424 num_bands_0 = lrintf(half_bands * log2f(sbr->k[1] / (float)sbr->k[0])) * 2; 00425 00426 if (num_bands_0 <= 0) { // Requirements (14496-3 sp04 p205) 00427 av_log(ac->avctx, AV_LOG_ERROR, "Invalid num_bands_0: %d\n", num_bands_0); 00428 return -1; 00429 } 00430 00431 vk0[0] = 0; 00432 00433 make_bands(vk0+1, sbr->k[0], sbr->k[1], num_bands_0); 00434 00435 qsort(vk0 + 1, num_bands_0, sizeof(vk0[1]), qsort_comparison_function_int16); 00436 vdk0_max = vk0[num_bands_0]; 00437 00438 vk0[0] = sbr->k[0]; 00439 for (k = 1; k <= num_bands_0; k++) { 00440 if (vk0[k] <= 0) { // Requirements (14496-3 sp04 p205) 00441 av_log(ac->avctx, AV_LOG_ERROR, "Invalid vDk0[%d]: %d\n", k, vk0[k]); 00442 return -1; 00443 } 00444 vk0[k] += vk0[k-1]; 00445 } 00446 00447 if (two_regions) { 00448 int16_t vk1[49]; 00449 float invwarp = spectrum->bs_alter_scale ? 0.76923076923076923077f 00450 : 1.0f; // bs_alter_scale = {0,1} 00451 int num_bands_1 = lrintf(half_bands * invwarp * 00452 log2f(sbr->k[2] / (float)sbr->k[1])) * 2; 00453 00454 make_bands(vk1+1, sbr->k[1], sbr->k[2], num_bands_1); 00455 00456 vdk1_min = array_min_int16(vk1 + 1, num_bands_1); 00457 00458 if (vdk1_min < vdk0_max) { 00459 int change; 00460 qsort(vk1 + 1, num_bands_1, sizeof(vk1[1]), qsort_comparison_function_int16); 00461 change = FFMIN(vdk0_max - vk1[1], (vk1[num_bands_1] - vk1[1]) >> 1); 00462 vk1[1] += change; 00463 vk1[num_bands_1] -= change; 00464 } 00465 00466 qsort(vk1 + 1, num_bands_1, sizeof(vk1[1]), qsort_comparison_function_int16); 00467 00468 vk1[0] = sbr->k[1]; 00469 for (k = 1; k <= num_bands_1; k++) { 00470 if (vk1[k] <= 0) { // Requirements (14496-3 sp04 p205) 00471 av_log(ac->avctx, AV_LOG_ERROR, "Invalid vDk1[%d]: %d\n", k, vk1[k]); 00472 return -1; 00473 } 00474 vk1[k] += vk1[k-1]; 00475 } 00476 00477 sbr->n_master = num_bands_0 + num_bands_1; 00478 if (check_n_master(ac->avctx, sbr->n_master, sbr->spectrum_params.bs_xover_band)) 00479 return -1; 00480 memcpy(&sbr->f_master[0], vk0, 00481 (num_bands_0 + 1) * sizeof(sbr->f_master[0])); 00482 memcpy(&sbr->f_master[num_bands_0 + 1], vk1 + 1, 00483 num_bands_1 * sizeof(sbr->f_master[0])); 00484 00485 } else { 00486 sbr->n_master = num_bands_0; 00487 if (check_n_master(ac->avctx, sbr->n_master, sbr->spectrum_params.bs_xover_band)) 00488 return -1; 00489 memcpy(sbr->f_master, vk0, (num_bands_0 + 1) * sizeof(sbr->f_master[0])); 00490 } 00491 } 00492 00493 return 0; 00494 } 00495 00497 static int sbr_hf_calc_npatches(AACContext *ac, SpectralBandReplication *sbr) 00498 { 00499 int i, k, sb = 0; 00500 int msb = sbr->k[0]; 00501 int usb = sbr->kx[1]; 00502 int goal_sb = ((1000 << 11) + (sbr->sample_rate >> 1)) / sbr->sample_rate; 00503 00504 sbr->num_patches = 0; 00505 00506 if (goal_sb < sbr->kx[1] + sbr->m[1]) { 00507 for (k = 0; sbr->f_master[k] < goal_sb; k++) ; 00508 } else 00509 k = sbr->n_master; 00510 00511 do { 00512 int odd = 0; 00513 for (i = k; i == k || sb > (sbr->k[0] - 1 + msb - odd); i--) { 00514 sb = sbr->f_master[i]; 00515 odd = (sb + sbr->k[0]) & 1; 00516 } 00517 00518 // Requirements (14496-3 sp04 p205) sets the maximum number of patches to 5. 00519 // After this check the final number of patches can still be six which is 00520 // illegal however the Coding Technologies decoder check stream has a final 00521 // count of 6 patches 00522 if (sbr->num_patches > 5) { 00523 av_log(ac->avctx, AV_LOG_ERROR, "Too many patches: %d\n", sbr->num_patches); 00524 return -1; 00525 } 00526 00527 sbr->patch_num_subbands[sbr->num_patches] = FFMAX(sb - usb, 0); 00528 sbr->patch_start_subband[sbr->num_patches] = sbr->k[0] - odd - sbr->patch_num_subbands[sbr->num_patches]; 00529 00530 if (sbr->patch_num_subbands[sbr->num_patches] > 0) { 00531 usb = sb; 00532 msb = sb; 00533 sbr->num_patches++; 00534 } else 00535 msb = sbr->kx[1]; 00536 00537 if (sbr->f_master[k] - sb < 3) 00538 k = sbr->n_master; 00539 } while (sb != sbr->kx[1] + sbr->m[1]); 00540 00541 if (sbr->patch_num_subbands[sbr->num_patches-1] < 3 && sbr->num_patches > 1) 00542 sbr->num_patches--; 00543 00544 return 0; 00545 } 00546 00548 static int sbr_make_f_derived(AACContext *ac, SpectralBandReplication *sbr) 00549 { 00550 int k, temp; 00551 00552 sbr->n[1] = sbr->n_master - sbr->spectrum_params.bs_xover_band; 00553 sbr->n[0] = (sbr->n[1] + 1) >> 1; 00554 00555 memcpy(sbr->f_tablehigh, &sbr->f_master[sbr->spectrum_params.bs_xover_band], 00556 (sbr->n[1] + 1) * sizeof(sbr->f_master[0])); 00557 sbr->m[1] = sbr->f_tablehigh[sbr->n[1]] - sbr->f_tablehigh[0]; 00558 sbr->kx[1] = sbr->f_tablehigh[0]; 00559 00560 // Requirements (14496-3 sp04 p205) 00561 if (sbr->kx[1] + sbr->m[1] > 64) { 00562 av_log(ac->avctx, AV_LOG_ERROR, 00563 "Stop frequency border too high: %d\n", sbr->kx[1] + sbr->m[1]); 00564 return -1; 00565 } 00566 if (sbr->kx[1] > 32) { 00567 av_log(ac->avctx, AV_LOG_ERROR, "Start frequency border too high: %d\n", sbr->kx[1]); 00568 return -1; 00569 } 00570 00571 sbr->f_tablelow[0] = sbr->f_tablehigh[0]; 00572 temp = sbr->n[1] & 1; 00573 for (k = 1; k <= sbr->n[0]; k++) 00574 sbr->f_tablelow[k] = sbr->f_tablehigh[2 * k - temp]; 00575 00576 sbr->n_q = FFMAX(1, lrintf(sbr->spectrum_params.bs_noise_bands * 00577 log2f(sbr->k[2] / (float)sbr->kx[1]))); // 0 <= bs_noise_bands <= 3 00578 if (sbr->n_q > 5) { 00579 av_log(ac->avctx, AV_LOG_ERROR, "Too many noise floor scale factors: %d\n", sbr->n_q); 00580 return -1; 00581 } 00582 00583 sbr->f_tablenoise[0] = sbr->f_tablelow[0]; 00584 temp = 0; 00585 for (k = 1; k <= sbr->n_q; k++) { 00586 temp += (sbr->n[0] - temp) / (sbr->n_q + 1 - k); 00587 sbr->f_tablenoise[k] = sbr->f_tablelow[temp]; 00588 } 00589 00590 if (sbr_hf_calc_npatches(ac, sbr) < 0) 00591 return -1; 00592 00593 sbr_make_f_tablelim(sbr); 00594 00595 sbr->data[0].f_indexnoise = 0; 00596 sbr->data[1].f_indexnoise = 0; 00597 00598 return 0; 00599 } 00600 00601 static av_always_inline void get_bits1_vector(GetBitContext *gb, uint8_t *vec, 00602 int elements) 00603 { 00604 int i; 00605 for (i = 0; i < elements; i++) { 00606 vec[i] = get_bits1(gb); 00607 } 00608 } 00609 00611 static const int8_t ceil_log2[] = { 00612 0, 1, 2, 2, 3, 3, 00613 }; 00614 00615 static int read_sbr_grid(AACContext *ac, SpectralBandReplication *sbr, 00616 GetBitContext *gb, SBRData *ch_data) 00617 { 00618 int i; 00619 unsigned bs_pointer = 0; 00620 // frameLengthFlag ? 15 : 16; 960 sample length frames unsupported; this value is numTimeSlots 00621 int abs_bord_trail = 16; 00622 int num_rel_lead, num_rel_trail; 00623 unsigned bs_num_env_old = ch_data->bs_num_env; 00624 00625 ch_data->bs_freq_res[0] = ch_data->bs_freq_res[ch_data->bs_num_env]; 00626 ch_data->bs_amp_res = sbr->bs_amp_res_header; 00627 ch_data->t_env_num_env_old = ch_data->t_env[bs_num_env_old]; 00628 00629 switch (ch_data->bs_frame_class = get_bits(gb, 2)) { 00630 case FIXFIX: 00631 ch_data->bs_num_env = 1 << get_bits(gb, 2); 00632 num_rel_lead = ch_data->bs_num_env - 1; 00633 if (ch_data->bs_num_env == 1) 00634 ch_data->bs_amp_res = 0; 00635 00636 if (ch_data->bs_num_env > 4) { 00637 av_log(ac->avctx, AV_LOG_ERROR, 00638 "Invalid bitstream, too many SBR envelopes in FIXFIX type SBR frame: %d\n", 00639 ch_data->bs_num_env); 00640 return -1; 00641 } 00642 00643 ch_data->t_env[0] = 0; 00644 ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail; 00645 00646 abs_bord_trail = (abs_bord_trail + (ch_data->bs_num_env >> 1)) / 00647 ch_data->bs_num_env; 00648 for (i = 0; i < num_rel_lead; i++) 00649 ch_data->t_env[i + 1] = ch_data->t_env[i] + abs_bord_trail; 00650 00651 ch_data->bs_freq_res[1] = get_bits1(gb); 00652 for (i = 1; i < ch_data->bs_num_env; i++) 00653 ch_data->bs_freq_res[i + 1] = ch_data->bs_freq_res[1]; 00654 break; 00655 case FIXVAR: 00656 abs_bord_trail += get_bits(gb, 2); 00657 num_rel_trail = get_bits(gb, 2); 00658 ch_data->bs_num_env = num_rel_trail + 1; 00659 ch_data->t_env[0] = 0; 00660 ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail; 00661 00662 for (i = 0; i < num_rel_trail; i++) 00663 ch_data->t_env[ch_data->bs_num_env - 1 - i] = 00664 ch_data->t_env[ch_data->bs_num_env - i] - 2 * get_bits(gb, 2) - 2; 00665 00666 bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]); 00667 00668 for (i = 0; i < ch_data->bs_num_env; i++) 00669 ch_data->bs_freq_res[ch_data->bs_num_env - i] = get_bits1(gb); 00670 break; 00671 case VARFIX: 00672 ch_data->t_env[0] = get_bits(gb, 2); 00673 num_rel_lead = get_bits(gb, 2); 00674 ch_data->bs_num_env = num_rel_lead + 1; 00675 ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail; 00676 00677 for (i = 0; i < num_rel_lead; i++) 00678 ch_data->t_env[i + 1] = ch_data->t_env[i] + 2 * get_bits(gb, 2) + 2; 00679 00680 bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]); 00681 00682 get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env); 00683 break; 00684 case VARVAR: 00685 ch_data->t_env[0] = get_bits(gb, 2); 00686 abs_bord_trail += get_bits(gb, 2); 00687 num_rel_lead = get_bits(gb, 2); 00688 num_rel_trail = get_bits(gb, 2); 00689 ch_data->bs_num_env = num_rel_lead + num_rel_trail + 1; 00690 00691 if (ch_data->bs_num_env > 5) { 00692 av_log(ac->avctx, AV_LOG_ERROR, 00693 "Invalid bitstream, too many SBR envelopes in VARVAR type SBR frame: %d\n", 00694 ch_data->bs_num_env); 00695 return -1; 00696 } 00697 00698 ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail; 00699 00700 for (i = 0; i < num_rel_lead; i++) 00701 ch_data->t_env[i + 1] = ch_data->t_env[i] + 2 * get_bits(gb, 2) + 2; 00702 for (i = 0; i < num_rel_trail; i++) 00703 ch_data->t_env[ch_data->bs_num_env - 1 - i] = 00704 ch_data->t_env[ch_data->bs_num_env - i] - 2 * get_bits(gb, 2) - 2; 00705 00706 bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]); 00707 00708 get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env); 00709 break; 00710 } 00711 00712 if (bs_pointer > ch_data->bs_num_env + 1) { 00713 av_log(ac->avctx, AV_LOG_ERROR, 00714 "Invalid bitstream, bs_pointer points to a middle noise border outside the time borders table: %d\n", 00715 bs_pointer); 00716 return -1; 00717 } 00718 00719 for (i = 1; i <= ch_data->bs_num_env; i++) { 00720 if (ch_data->t_env[i-1] > ch_data->t_env[i]) { 00721 av_log(ac->avctx, AV_LOG_ERROR, "Non monotone time borders\n"); 00722 return -1; 00723 } 00724 } 00725 00726 ch_data->bs_num_noise = (ch_data->bs_num_env > 1) + 1; 00727 00728 ch_data->t_q[0] = ch_data->t_env[0]; 00729 ch_data->t_q[ch_data->bs_num_noise] = ch_data->t_env[ch_data->bs_num_env]; 00730 if (ch_data->bs_num_noise > 1) { 00731 unsigned int idx; 00732 if (ch_data->bs_frame_class == FIXFIX) { 00733 idx = ch_data->bs_num_env >> 1; 00734 } else if (ch_data->bs_frame_class & 1) { // FIXVAR or VARVAR 00735 idx = ch_data->bs_num_env - FFMAX(bs_pointer - 1, 1); 00736 } else { // VARFIX 00737 if (!bs_pointer) 00738 idx = 1; 00739 else if (bs_pointer == 1) 00740 idx = ch_data->bs_num_env - 1; 00741 else // bs_pointer > 1 00742 idx = bs_pointer - 1; 00743 } 00744 ch_data->t_q[1] = ch_data->t_env[idx]; 00745 } 00746 00747 ch_data->e_a[0] = -(ch_data->e_a[1] != bs_num_env_old); // l_APrev 00748 ch_data->e_a[1] = -1; 00749 if ((ch_data->bs_frame_class & 1) && bs_pointer) { // FIXVAR or VARVAR and bs_pointer != 0 00750 ch_data->e_a[1] = ch_data->bs_num_env + 1 - bs_pointer; 00751 } else if ((ch_data->bs_frame_class == 2) && (bs_pointer > 1)) // VARFIX and bs_pointer > 1 00752 ch_data->e_a[1] = bs_pointer - 1; 00753 00754 return 0; 00755 } 00756 00757 static void copy_sbr_grid(SBRData *dst, const SBRData *src) { 00758 //These variables are saved from the previous frame rather than copied 00759 dst->bs_freq_res[0] = dst->bs_freq_res[dst->bs_num_env]; 00760 dst->t_env_num_env_old = dst->t_env[dst->bs_num_env]; 00761 dst->e_a[0] = -(dst->e_a[1] != dst->bs_num_env); 00762 00763 //These variables are read from the bitstream and therefore copied 00764 memcpy(dst->bs_freq_res+1, src->bs_freq_res+1, sizeof(dst->bs_freq_res)-sizeof(*dst->bs_freq_res)); 00765 memcpy(dst->t_env, src->t_env, sizeof(dst->t_env)); 00766 memcpy(dst->t_q, src->t_q, sizeof(dst->t_q)); 00767 dst->bs_num_env = src->bs_num_env; 00768 dst->bs_amp_res = src->bs_amp_res; 00769 dst->bs_num_noise = src->bs_num_noise; 00770 dst->bs_frame_class = src->bs_frame_class; 00771 dst->e_a[1] = src->e_a[1]; 00772 } 00773 00775 static void read_sbr_dtdf(SpectralBandReplication *sbr, GetBitContext *gb, 00776 SBRData *ch_data) 00777 { 00778 get_bits1_vector(gb, ch_data->bs_df_env, ch_data->bs_num_env); 00779 get_bits1_vector(gb, ch_data->bs_df_noise, ch_data->bs_num_noise); 00780 } 00781 00783 static void read_sbr_invf(SpectralBandReplication *sbr, GetBitContext *gb, 00784 SBRData *ch_data) 00785 { 00786 int i; 00787 00788 memcpy(ch_data->bs_invf_mode[1], ch_data->bs_invf_mode[0], 5 * sizeof(uint8_t)); 00789 for (i = 0; i < sbr->n_q; i++) 00790 ch_data->bs_invf_mode[0][i] = get_bits(gb, 2); 00791 } 00792 00793 static void read_sbr_envelope(SpectralBandReplication *sbr, GetBitContext *gb, 00794 SBRData *ch_data, int ch) 00795 { 00796 int bits; 00797 int i, j, k; 00798 VLC_TYPE (*t_huff)[2], (*f_huff)[2]; 00799 int t_lav, f_lav; 00800 const int delta = (ch == 1 && sbr->bs_coupling == 1) + 1; 00801 const int odd = sbr->n[1] & 1; 00802 00803 if (sbr->bs_coupling && ch) { 00804 if (ch_data->bs_amp_res) { 00805 bits = 5; 00806 t_huff = vlc_sbr[T_HUFFMAN_ENV_BAL_3_0DB].table; 00807 t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_BAL_3_0DB]; 00808 f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_3_0DB].table; 00809 f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_3_0DB]; 00810 } else { 00811 bits = 6; 00812 t_huff = vlc_sbr[T_HUFFMAN_ENV_BAL_1_5DB].table; 00813 t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_BAL_1_5DB]; 00814 f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_1_5DB].table; 00815 f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_1_5DB]; 00816 } 00817 } else { 00818 if (ch_data->bs_amp_res) { 00819 bits = 6; 00820 t_huff = vlc_sbr[T_HUFFMAN_ENV_3_0DB].table; 00821 t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_3_0DB]; 00822 f_huff = vlc_sbr[F_HUFFMAN_ENV_3_0DB].table; 00823 f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_3_0DB]; 00824 } else { 00825 bits = 7; 00826 t_huff = vlc_sbr[T_HUFFMAN_ENV_1_5DB].table; 00827 t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_1_5DB]; 00828 f_huff = vlc_sbr[F_HUFFMAN_ENV_1_5DB].table; 00829 f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_1_5DB]; 00830 } 00831 } 00832 00833 for (i = 0; i < ch_data->bs_num_env; i++) { 00834 if (ch_data->bs_df_env[i]) { 00835 // bs_freq_res[0] == bs_freq_res[bs_num_env] from prev frame 00836 if (ch_data->bs_freq_res[i + 1] == ch_data->bs_freq_res[i]) { 00837 for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) 00838 ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][j] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav); 00839 } else if (ch_data->bs_freq_res[i + 1]) { 00840 for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) { 00841 k = (j + odd) >> 1; // find k such that f_tablelow[k] <= f_tablehigh[j] < f_tablelow[k + 1] 00842 ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][k] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav); 00843 } 00844 } else { 00845 for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) { 00846 k = j ? 2*j - odd : 0; // find k such that f_tablehigh[k] == f_tablelow[j] 00847 ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][k] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav); 00848 } 00849 } 00850 } else { 00851 ch_data->env_facs[i + 1][0] = delta * get_bits(gb, bits); // bs_env_start_value_balance 00852 for (j = 1; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) 00853 ch_data->env_facs[i + 1][j] = ch_data->env_facs[i + 1][j - 1] + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav); 00854 } 00855 } 00856 00857 //assign 0th elements of env_facs from last elements 00858 memcpy(ch_data->env_facs[0], ch_data->env_facs[ch_data->bs_num_env], 00859 sizeof(ch_data->env_facs[0])); 00860 } 00861 00862 static void read_sbr_noise(SpectralBandReplication *sbr, GetBitContext *gb, 00863 SBRData *ch_data, int ch) 00864 { 00865 int i, j; 00866 VLC_TYPE (*t_huff)[2], (*f_huff)[2]; 00867 int t_lav, f_lav; 00868 int delta = (ch == 1 && sbr->bs_coupling == 1) + 1; 00869 00870 if (sbr->bs_coupling && ch) { 00871 t_huff = vlc_sbr[T_HUFFMAN_NOISE_BAL_3_0DB].table; 00872 t_lav = vlc_sbr_lav[T_HUFFMAN_NOISE_BAL_3_0DB]; 00873 f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_3_0DB].table; 00874 f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_3_0DB]; 00875 } else { 00876 t_huff = vlc_sbr[T_HUFFMAN_NOISE_3_0DB].table; 00877 t_lav = vlc_sbr_lav[T_HUFFMAN_NOISE_3_0DB]; 00878 f_huff = vlc_sbr[F_HUFFMAN_ENV_3_0DB].table; 00879 f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_3_0DB]; 00880 } 00881 00882 for (i = 0; i < ch_data->bs_num_noise; i++) { 00883 if (ch_data->bs_df_noise[i]) { 00884 for (j = 0; j < sbr->n_q; j++) 00885 ch_data->noise_facs[i + 1][j] = ch_data->noise_facs[i][j] + delta * (get_vlc2(gb, t_huff, 9, 2) - t_lav); 00886 } else { 00887 ch_data->noise_facs[i + 1][0] = delta * get_bits(gb, 5); // bs_noise_start_value_balance or bs_noise_start_value_level 00888 for (j = 1; j < sbr->n_q; j++) 00889 ch_data->noise_facs[i + 1][j] = ch_data->noise_facs[i + 1][j - 1] + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav); 00890 } 00891 } 00892 00893 //assign 0th elements of noise_facs from last elements 00894 memcpy(ch_data->noise_facs[0], ch_data->noise_facs[ch_data->bs_num_noise], 00895 sizeof(ch_data->noise_facs[0])); 00896 } 00897 00898 static void read_sbr_extension(AACContext *ac, SpectralBandReplication *sbr, 00899 GetBitContext *gb, 00900 int bs_extension_id, int *num_bits_left) 00901 { 00902 switch (bs_extension_id) { 00903 case EXTENSION_ID_PS: 00904 if (!ac->m4ac.ps) { 00905 av_log(ac->avctx, AV_LOG_ERROR, "Parametric Stereo signaled to be not-present but was found in the bitstream.\n"); 00906 skip_bits_long(gb, *num_bits_left); // bs_fill_bits 00907 *num_bits_left = 0; 00908 } else { 00909 #if 1 00910 *num_bits_left -= ff_ps_read_data(ac->avctx, gb, &sbr->ps, *num_bits_left); 00911 #else 00912 av_log_missing_feature(ac->avctx, "Parametric Stereo is", 0); 00913 skip_bits_long(gb, *num_bits_left); // bs_fill_bits 00914 *num_bits_left = 0; 00915 #endif 00916 } 00917 break; 00918 default: 00919 av_log_missing_feature(ac->avctx, "Reserved SBR extensions are", 1); 00920 skip_bits_long(gb, *num_bits_left); // bs_fill_bits 00921 *num_bits_left = 0; 00922 break; 00923 } 00924 } 00925 00926 static int read_sbr_single_channel_element(AACContext *ac, 00927 SpectralBandReplication *sbr, 00928 GetBitContext *gb) 00929 { 00930 if (get_bits1(gb)) // bs_data_extra 00931 skip_bits(gb, 4); // bs_reserved 00932 00933 if (read_sbr_grid(ac, sbr, gb, &sbr->data[0])) 00934 return -1; 00935 read_sbr_dtdf(sbr, gb, &sbr->data[0]); 00936 read_sbr_invf(sbr, gb, &sbr->data[0]); 00937 read_sbr_envelope(sbr, gb, &sbr->data[0], 0); 00938 read_sbr_noise(sbr, gb, &sbr->data[0], 0); 00939 00940 if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb))) 00941 get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]); 00942 00943 return 0; 00944 } 00945 00946 static int read_sbr_channel_pair_element(AACContext *ac, 00947 SpectralBandReplication *sbr, 00948 GetBitContext *gb) 00949 { 00950 if (get_bits1(gb)) // bs_data_extra 00951 skip_bits(gb, 8); // bs_reserved 00952 00953 if ((sbr->bs_coupling = get_bits1(gb))) { 00954 if (read_sbr_grid(ac, sbr, gb, &sbr->data[0])) 00955 return -1; 00956 copy_sbr_grid(&sbr->data[1], &sbr->data[0]); 00957 read_sbr_dtdf(sbr, gb, &sbr->data[0]); 00958 read_sbr_dtdf(sbr, gb, &sbr->data[1]); 00959 read_sbr_invf(sbr, gb, &sbr->data[0]); 00960 memcpy(sbr->data[1].bs_invf_mode[1], sbr->data[1].bs_invf_mode[0], sizeof(sbr->data[1].bs_invf_mode[0])); 00961 memcpy(sbr->data[1].bs_invf_mode[0], sbr->data[0].bs_invf_mode[0], sizeof(sbr->data[1].bs_invf_mode[0])); 00962 read_sbr_envelope(sbr, gb, &sbr->data[0], 0); 00963 read_sbr_noise(sbr, gb, &sbr->data[0], 0); 00964 read_sbr_envelope(sbr, gb, &sbr->data[1], 1); 00965 read_sbr_noise(sbr, gb, &sbr->data[1], 1); 00966 } else { 00967 if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]) || 00968 read_sbr_grid(ac, sbr, gb, &sbr->data[1])) 00969 return -1; 00970 read_sbr_dtdf(sbr, gb, &sbr->data[0]); 00971 read_sbr_dtdf(sbr, gb, &sbr->data[1]); 00972 read_sbr_invf(sbr, gb, &sbr->data[0]); 00973 read_sbr_invf(sbr, gb, &sbr->data[1]); 00974 read_sbr_envelope(sbr, gb, &sbr->data[0], 0); 00975 read_sbr_envelope(sbr, gb, &sbr->data[1], 1); 00976 read_sbr_noise(sbr, gb, &sbr->data[0], 0); 00977 read_sbr_noise(sbr, gb, &sbr->data[1], 1); 00978 } 00979 00980 if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb))) 00981 get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]); 00982 if ((sbr->data[1].bs_add_harmonic_flag = get_bits1(gb))) 00983 get_bits1_vector(gb, sbr->data[1].bs_add_harmonic, sbr->n[1]); 00984 00985 return 0; 00986 } 00987 00988 static unsigned int read_sbr_data(AACContext *ac, SpectralBandReplication *sbr, 00989 GetBitContext *gb, int id_aac) 00990 { 00991 unsigned int cnt = get_bits_count(gb); 00992 00993 if (id_aac == TYPE_SCE || id_aac == TYPE_CCE) { 00994 if (read_sbr_single_channel_element(ac, sbr, gb)) { 00995 sbr->start = 0; 00996 return get_bits_count(gb) - cnt; 00997 } 00998 } else if (id_aac == TYPE_CPE) { 00999 if (read_sbr_channel_pair_element(ac, sbr, gb)) { 01000 sbr->start = 0; 01001 return get_bits_count(gb) - cnt; 01002 } 01003 } else { 01004 av_log(ac->avctx, AV_LOG_ERROR, 01005 "Invalid bitstream - cannot apply SBR to element type %d\n", id_aac); 01006 sbr->start = 0; 01007 return get_bits_count(gb) - cnt; 01008 } 01009 if (get_bits1(gb)) { // bs_extended_data 01010 int num_bits_left = get_bits(gb, 4); // bs_extension_size 01011 if (num_bits_left == 15) 01012 num_bits_left += get_bits(gb, 8); // bs_esc_count 01013 01014 num_bits_left <<= 3; 01015 while (num_bits_left > 7) { 01016 num_bits_left -= 2; 01017 read_sbr_extension(ac, sbr, gb, get_bits(gb, 2), &num_bits_left); // bs_extension_id 01018 } 01019 if (num_bits_left < 0) { 01020 av_log(ac->avctx, AV_LOG_ERROR, "SBR Extension over read.\n"); 01021 } 01022 if (num_bits_left > 0) 01023 skip_bits(gb, num_bits_left); 01024 } 01025 01026 return get_bits_count(gb) - cnt; 01027 } 01028 01029 static void sbr_reset(AACContext *ac, SpectralBandReplication *sbr) 01030 { 01031 int err; 01032 err = sbr_make_f_master(ac, sbr, &sbr->spectrum_params); 01033 if (err >= 0) 01034 err = sbr_make_f_derived(ac, sbr); 01035 if (err < 0) { 01036 av_log(ac->avctx, AV_LOG_ERROR, 01037 "SBR reset failed. Switching SBR to pure upsampling mode.\n"); 01038 sbr->start = 0; 01039 } 01040 } 01041 01050 int ff_decode_sbr_extension(AACContext *ac, SpectralBandReplication *sbr, 01051 GetBitContext *gb_host, int crc, int cnt, int id_aac) 01052 { 01053 unsigned int num_sbr_bits = 0, num_align_bits; 01054 unsigned bytes_read; 01055 GetBitContext gbc = *gb_host, *gb = &gbc; 01056 skip_bits_long(gb_host, cnt*8 - 4); 01057 01058 sbr->reset = 0; 01059 01060 if (!sbr->sample_rate) 01061 sbr->sample_rate = 2 * ac->m4ac.sample_rate; //TODO use the nominal sample rate for arbitrary sample rate support 01062 if (!ac->m4ac.ext_sample_rate) 01063 ac->m4ac.ext_sample_rate = 2 * ac->m4ac.sample_rate; 01064 01065 if (crc) { 01066 skip_bits(gb, 10); // bs_sbr_crc_bits; TODO - implement CRC check 01067 num_sbr_bits += 10; 01068 } 01069 01070 //Save some state from the previous frame. 01071 sbr->kx[0] = sbr->kx[1]; 01072 sbr->m[0] = sbr->m[1]; 01073 01074 num_sbr_bits++; 01075 if (get_bits1(gb)) // bs_header_flag 01076 num_sbr_bits += read_sbr_header(sbr, gb); 01077 01078 if (sbr->reset) 01079 sbr_reset(ac, sbr); 01080 01081 if (sbr->start) 01082 num_sbr_bits += read_sbr_data(ac, sbr, gb, id_aac); 01083 01084 num_align_bits = ((cnt << 3) - 4 - num_sbr_bits) & 7; 01085 bytes_read = ((num_sbr_bits + num_align_bits + 4) >> 3); 01086 01087 if (bytes_read > cnt) { 01088 av_log(ac->avctx, AV_LOG_ERROR, 01089 "Expected to read %d SBR bytes actually read %d.\n", cnt, bytes_read); 01090 } 01091 return cnt; 01092 } 01093 01095 static void sbr_dequant(SpectralBandReplication *sbr, int id_aac) 01096 { 01097 int k, e; 01098 int ch; 01099 01100 if (id_aac == TYPE_CPE && sbr->bs_coupling) { 01101 float alpha = sbr->data[0].bs_amp_res ? 1.0f : 0.5f; 01102 float pan_offset = sbr->data[0].bs_amp_res ? 12.0f : 24.0f; 01103 for (e = 1; e <= sbr->data[0].bs_num_env; e++) { 01104 for (k = 0; k < sbr->n[sbr->data[0].bs_freq_res[e]]; k++) { 01105 float temp1 = exp2f(sbr->data[0].env_facs[e][k] * alpha + 7.0f); 01106 float temp2 = exp2f((pan_offset - sbr->data[1].env_facs[e][k]) * alpha); 01107 float fac = temp1 / (1.0f + temp2); 01108 sbr->data[0].env_facs[e][k] = fac; 01109 sbr->data[1].env_facs[e][k] = fac * temp2; 01110 } 01111 } 01112 for (e = 1; e <= sbr->data[0].bs_num_noise; e++) { 01113 for (k = 0; k < sbr->n_q; k++) { 01114 float temp1 = exp2f(NOISE_FLOOR_OFFSET - sbr->data[0].noise_facs[e][k] + 1); 01115 float temp2 = exp2f(12 - sbr->data[1].noise_facs[e][k]); 01116 float fac = temp1 / (1.0f + temp2); 01117 sbr->data[0].noise_facs[e][k] = fac; 01118 sbr->data[1].noise_facs[e][k] = fac * temp2; 01119 } 01120 } 01121 } else { // SCE or one non-coupled CPE 01122 for (ch = 0; ch < (id_aac == TYPE_CPE) + 1; ch++) { 01123 float alpha = sbr->data[ch].bs_amp_res ? 1.0f : 0.5f; 01124 for (e = 1; e <= sbr->data[ch].bs_num_env; e++) 01125 for (k = 0; k < sbr->n[sbr->data[ch].bs_freq_res[e]]; k++) 01126 sbr->data[ch].env_facs[e][k] = 01127 exp2f(alpha * sbr->data[ch].env_facs[e][k] + 6.0f); 01128 for (e = 1; e <= sbr->data[ch].bs_num_noise; e++) 01129 for (k = 0; k < sbr->n_q; k++) 01130 sbr->data[ch].noise_facs[e][k] = 01131 exp2f(NOISE_FLOOR_OFFSET - sbr->data[ch].noise_facs[e][k]); 01132 } 01133 } 01134 } 01135 01142 static void sbr_qmf_analysis(DSPContext *dsp, FFTContext *mdct, const float *in, float *x, 01143 float z[320], float W[2][32][32][2]) 01144 { 01145 int i, k; 01146 memcpy(W[0], W[1], sizeof(W[0])); 01147 memcpy(x , x+1024, (320-32)*sizeof(x[0])); 01148 memcpy(x+288, in, 1024*sizeof(x[0])); 01149 for (i = 0; i < 32; i++) { // numTimeSlots*RATE = 16*2 as 960 sample frames 01150 // are not supported 01151 dsp->vector_fmul_reverse(z, sbr_qmf_window_ds, x, 320); 01152 for (k = 0; k < 64; k++) { 01153 float f = z[k] + z[k + 64] + z[k + 128] + z[k + 192] + z[k + 256]; 01154 z[k] = f; 01155 } 01156 //Shuffle to IMDCT 01157 z[64] = z[0]; 01158 for (k = 1; k < 32; k++) { 01159 z[64+2*k-1] = z[ k]; 01160 z[64+2*k ] = -z[64-k]; 01161 } 01162 z[64+63] = z[32]; 01163 01164 mdct->imdct_half(mdct, z, z+64); 01165 for (k = 0; k < 32; k++) { 01166 W[1][i][k][0] = -z[63-k]; 01167 W[1][i][k][1] = z[k]; 01168 } 01169 x += 32; 01170 } 01171 } 01172 01177 static void sbr_qmf_synthesis(DSPContext *dsp, FFTContext *mdct, 01178 float *out, float X[2][38][64], 01179 float mdct_buf[2][64], 01180 float *v0, int *v_off, const unsigned int div) 01181 { 01182 int i, n; 01183 const float *sbr_qmf_window = div ? sbr_qmf_window_ds : sbr_qmf_window_us; 01184 float *v; 01185 for (i = 0; i < 32; i++) { 01186 if (*v_off == 0) { 01187 int saved_samples = (1280 - 128) >> div; 01188 memcpy(&v0[SBR_SYNTHESIS_BUF_SIZE - saved_samples], v0, saved_samples * sizeof(float)); 01189 *v_off = SBR_SYNTHESIS_BUF_SIZE - saved_samples - (128 >> div); 01190 } else { 01191 *v_off -= 128 >> div; 01192 } 01193 v = v0 + *v_off; 01194 if (div) { 01195 for (n = 0; n < 32; n++) { 01196 X[0][i][ n] = -X[0][i][n]; 01197 X[0][i][32+n] = X[1][i][31-n]; 01198 } 01199 mdct->imdct_half(mdct, mdct_buf[0], X[0][i]); 01200 for (n = 0; n < 32; n++) { 01201 v[ n] = mdct_buf[0][63 - 2*n]; 01202 v[63 - n] = -mdct_buf[0][62 - 2*n]; 01203 } 01204 } else { 01205 for (n = 1; n < 64; n+=2) { 01206 X[1][i][n] = -X[1][i][n]; 01207 } 01208 mdct->imdct_half(mdct, mdct_buf[0], X[0][i]); 01209 mdct->imdct_half(mdct, mdct_buf[1], X[1][i]); 01210 for (n = 0; n < 64; n++) { 01211 v[ n] = -mdct_buf[0][63 - n] + mdct_buf[1][ n ]; 01212 v[127 - n] = mdct_buf[0][63 - n] + mdct_buf[1][ n ]; 01213 } 01214 } 01215 dsp->vector_fmul_add(out, v , sbr_qmf_window , zero64, 64 >> div); 01216 dsp->vector_fmul_add(out, v + ( 192 >> div), sbr_qmf_window + ( 64 >> div), out , 64 >> div); 01217 dsp->vector_fmul_add(out, v + ( 256 >> div), sbr_qmf_window + (128 >> div), out , 64 >> div); 01218 dsp->vector_fmul_add(out, v + ( 448 >> div), sbr_qmf_window + (192 >> div), out , 64 >> div); 01219 dsp->vector_fmul_add(out, v + ( 512 >> div), sbr_qmf_window + (256 >> div), out , 64 >> div); 01220 dsp->vector_fmul_add(out, v + ( 704 >> div), sbr_qmf_window + (320 >> div), out , 64 >> div); 01221 dsp->vector_fmul_add(out, v + ( 768 >> div), sbr_qmf_window + (384 >> div), out , 64 >> div); 01222 dsp->vector_fmul_add(out, v + ( 960 >> div), sbr_qmf_window + (448 >> div), out , 64 >> div); 01223 dsp->vector_fmul_add(out, v + (1024 >> div), sbr_qmf_window + (512 >> div), out , 64 >> div); 01224 dsp->vector_fmul_add(out, v + (1216 >> div), sbr_qmf_window + (576 >> div), out , 64 >> div); 01225 out += 64 >> div; 01226 } 01227 } 01228 01229 static void autocorrelate(const float x[40][2], float phi[3][2][2], int lag) 01230 { 01231 int i; 01232 float real_sum = 0.0f; 01233 float imag_sum = 0.0f; 01234 if (lag) { 01235 for (i = 1; i < 38; i++) { 01236 real_sum += x[i][0] * x[i+lag][0] + x[i][1] * x[i+lag][1]; 01237 imag_sum += x[i][0] * x[i+lag][1] - x[i][1] * x[i+lag][0]; 01238 } 01239 phi[2-lag][1][0] = real_sum + x[ 0][0] * x[lag][0] + x[ 0][1] * x[lag][1]; 01240 phi[2-lag][1][1] = imag_sum + x[ 0][0] * x[lag][1] - x[ 0][1] * x[lag][0]; 01241 if (lag == 1) { 01242 phi[0][0][0] = real_sum + x[38][0] * x[39][0] + x[38][1] * x[39][1]; 01243 phi[0][0][1] = imag_sum + x[38][0] * x[39][1] - x[38][1] * x[39][0]; 01244 } 01245 } else { 01246 for (i = 1; i < 38; i++) { 01247 real_sum += x[i][0] * x[i][0] + x[i][1] * x[i][1]; 01248 } 01249 phi[2][1][0] = real_sum + x[ 0][0] * x[ 0][0] + x[ 0][1] * x[ 0][1]; 01250 phi[1][0][0] = real_sum + x[38][0] * x[38][0] + x[38][1] * x[38][1]; 01251 } 01252 } 01253 01258 static void sbr_hf_inverse_filter(float (*alpha0)[2], float (*alpha1)[2], 01259 const float X_low[32][40][2], int k0) 01260 { 01261 int k; 01262 for (k = 0; k < k0; k++) { 01263 float phi[3][2][2], dk; 01264 01265 autocorrelate(X_low[k], phi, 0); 01266 autocorrelate(X_low[k], phi, 1); 01267 autocorrelate(X_low[k], phi, 2); 01268 01269 dk = phi[2][1][0] * phi[1][0][0] - 01270 (phi[1][1][0] * phi[1][1][0] + phi[1][1][1] * phi[1][1][1]) / 1.000001f; 01271 01272 if (!dk) { 01273 alpha1[k][0] = 0; 01274 alpha1[k][1] = 0; 01275 } else { 01276 float temp_real, temp_im; 01277 temp_real = phi[0][0][0] * phi[1][1][0] - 01278 phi[0][0][1] * phi[1][1][1] - 01279 phi[0][1][0] * phi[1][0][0]; 01280 temp_im = phi[0][0][0] * phi[1][1][1] + 01281 phi[0][0][1] * phi[1][1][0] - 01282 phi[0][1][1] * phi[1][0][0]; 01283 01284 alpha1[k][0] = temp_real / dk; 01285 alpha1[k][1] = temp_im / dk; 01286 } 01287 01288 if (!phi[1][0][0]) { 01289 alpha0[k][0] = 0; 01290 alpha0[k][1] = 0; 01291 } else { 01292 float temp_real, temp_im; 01293 temp_real = phi[0][0][0] + alpha1[k][0] * phi[1][1][0] + 01294 alpha1[k][1] * phi[1][1][1]; 01295 temp_im = phi[0][0][1] + alpha1[k][1] * phi[1][1][0] - 01296 alpha1[k][0] * phi[1][1][1]; 01297 01298 alpha0[k][0] = -temp_real / phi[1][0][0]; 01299 alpha0[k][1] = -temp_im / phi[1][0][0]; 01300 } 01301 01302 if (alpha1[k][0] * alpha1[k][0] + alpha1[k][1] * alpha1[k][1] >= 16.0f || 01303 alpha0[k][0] * alpha0[k][0] + alpha0[k][1] * alpha0[k][1] >= 16.0f) { 01304 alpha1[k][0] = 0; 01305 alpha1[k][1] = 0; 01306 alpha0[k][0] = 0; 01307 alpha0[k][1] = 0; 01308 } 01309 } 01310 } 01311 01313 static void sbr_chirp(SpectralBandReplication *sbr, SBRData *ch_data) 01314 { 01315 int i; 01316 float new_bw; 01317 static const float bw_tab[] = { 0.0f, 0.75f, 0.9f, 0.98f }; 01318 01319 for (i = 0; i < sbr->n_q; i++) { 01320 if (ch_data->bs_invf_mode[0][i] + ch_data->bs_invf_mode[1][i] == 1) { 01321 new_bw = 0.6f; 01322 } else 01323 new_bw = bw_tab[ch_data->bs_invf_mode[0][i]]; 01324 01325 if (new_bw < ch_data->bw_array[i]) { 01326 new_bw = 0.75f * new_bw + 0.25f * ch_data->bw_array[i]; 01327 } else 01328 new_bw = 0.90625f * new_bw + 0.09375f * ch_data->bw_array[i]; 01329 ch_data->bw_array[i] = new_bw < 0.015625f ? 0.0f : new_bw; 01330 } 01331 } 01332 01334 static int sbr_lf_gen(AACContext *ac, SpectralBandReplication *sbr, 01335 float X_low[32][40][2], const float W[2][32][32][2]) 01336 { 01337 int i, k; 01338 const int t_HFGen = 8; 01339 const int i_f = 32; 01340 memset(X_low, 0, 32*sizeof(*X_low)); 01341 for (k = 0; k < sbr->kx[1]; k++) { 01342 for (i = t_HFGen; i < i_f + t_HFGen; i++) { 01343 X_low[k][i][0] = W[1][i - t_HFGen][k][0]; 01344 X_low[k][i][1] = W[1][i - t_HFGen][k][1]; 01345 } 01346 } 01347 for (k = 0; k < sbr->kx[0]; k++) { 01348 for (i = 0; i < t_HFGen; i++) { 01349 X_low[k][i][0] = W[0][i + i_f - t_HFGen][k][0]; 01350 X_low[k][i][1] = W[0][i + i_f - t_HFGen][k][1]; 01351 } 01352 } 01353 return 0; 01354 } 01355 01357 static int sbr_hf_gen(AACContext *ac, SpectralBandReplication *sbr, 01358 float X_high[64][40][2], const float X_low[32][40][2], 01359 const float (*alpha0)[2], const float (*alpha1)[2], 01360 const float bw_array[5], const uint8_t *t_env, 01361 int bs_num_env) 01362 { 01363 int i, j, x; 01364 int g = 0; 01365 int k = sbr->kx[1]; 01366 for (j = 0; j < sbr->num_patches; j++) { 01367 for (x = 0; x < sbr->patch_num_subbands[j]; x++, k++) { 01368 float alpha[4]; 01369 const int p = sbr->patch_start_subband[j] + x; 01370 while (g <= sbr->n_q && k >= sbr->f_tablenoise[g]) 01371 g++; 01372 g--; 01373 01374 if (g < 0) { 01375 av_log(ac->avctx, AV_LOG_ERROR, 01376 "ERROR : no subband found for frequency %d\n", k); 01377 return -1; 01378 } 01379 01380 alpha[0] = alpha1[p][0] * bw_array[g] * bw_array[g]; 01381 alpha[1] = alpha1[p][1] * bw_array[g] * bw_array[g]; 01382 alpha[2] = alpha0[p][0] * bw_array[g]; 01383 alpha[3] = alpha0[p][1] * bw_array[g]; 01384 01385 for (i = 2 * t_env[0]; i < 2 * t_env[bs_num_env]; i++) { 01386 const int idx = i + ENVELOPE_ADJUSTMENT_OFFSET; 01387 X_high[k][idx][0] = 01388 X_low[p][idx - 2][0] * alpha[0] - 01389 X_low[p][idx - 2][1] * alpha[1] + 01390 X_low[p][idx - 1][0] * alpha[2] - 01391 X_low[p][idx - 1][1] * alpha[3] + 01392 X_low[p][idx][0]; 01393 X_high[k][idx][1] = 01394 X_low[p][idx - 2][1] * alpha[0] + 01395 X_low[p][idx - 2][0] * alpha[1] + 01396 X_low[p][idx - 1][1] * alpha[2] + 01397 X_low[p][idx - 1][0] * alpha[3] + 01398 X_low[p][idx][1]; 01399 } 01400 } 01401 } 01402 if (k < sbr->m[1] + sbr->kx[1]) 01403 memset(X_high + k, 0, (sbr->m[1] + sbr->kx[1] - k) * sizeof(*X_high)); 01404 01405 return 0; 01406 } 01407 01409 static int sbr_x_gen(SpectralBandReplication *sbr, float X[2][38][64], 01410 const float X_low[32][40][2], const float Y[2][38][64][2], 01411 int ch) 01412 { 01413 int k, i; 01414 const int i_f = 32; 01415 const int i_Temp = FFMAX(2*sbr->data[ch].t_env_num_env_old - i_f, 0); 01416 memset(X, 0, 2*sizeof(*X)); 01417 for (k = 0; k < sbr->kx[0]; k++) { 01418 for (i = 0; i < i_Temp; i++) { 01419 X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0]; 01420 X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1]; 01421 } 01422 } 01423 for (; k < sbr->kx[0] + sbr->m[0]; k++) { 01424 for (i = 0; i < i_Temp; i++) { 01425 X[0][i][k] = Y[0][i + i_f][k][0]; 01426 X[1][i][k] = Y[0][i + i_f][k][1]; 01427 } 01428 } 01429 01430 for (k = 0; k < sbr->kx[1]; k++) { 01431 for (i = i_Temp; i < 38; i++) { 01432 X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0]; 01433 X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1]; 01434 } 01435 } 01436 for (; k < sbr->kx[1] + sbr->m[1]; k++) { 01437 for (i = i_Temp; i < i_f; i++) { 01438 X[0][i][k] = Y[1][i][k][0]; 01439 X[1][i][k] = Y[1][i][k][1]; 01440 } 01441 } 01442 return 0; 01443 } 01444 01448 static void sbr_mapping(AACContext *ac, SpectralBandReplication *sbr, 01449 SBRData *ch_data, int e_a[2]) 01450 { 01451 int e, i, m; 01452 01453 memset(ch_data->s_indexmapped[1], 0, 7*sizeof(ch_data->s_indexmapped[1])); 01454 for (e = 0; e < ch_data->bs_num_env; e++) { 01455 const unsigned int ilim = sbr->n[ch_data->bs_freq_res[e + 1]]; 01456 uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehigh : sbr->f_tablelow; 01457 int k; 01458 01459 for (i = 0; i < ilim; i++) 01460 for (m = table[i]; m < table[i + 1]; m++) 01461 sbr->e_origmapped[e][m - sbr->kx[1]] = ch_data->env_facs[e+1][i]; 01462 01463 // ch_data->bs_num_noise > 1 => 2 noise floors 01464 k = (ch_data->bs_num_noise > 1) && (ch_data->t_env[e] >= ch_data->t_q[1]); 01465 for (i = 0; i < sbr->n_q; i++) 01466 for (m = sbr->f_tablenoise[i]; m < sbr->f_tablenoise[i + 1]; m++) 01467 sbr->q_mapped[e][m - sbr->kx[1]] = ch_data->noise_facs[k+1][i]; 01468 01469 for (i = 0; i < sbr->n[1]; i++) { 01470 if (ch_data->bs_add_harmonic_flag) { 01471 const unsigned int m_midpoint = 01472 (sbr->f_tablehigh[i] + sbr->f_tablehigh[i + 1]) >> 1; 01473 01474 ch_data->s_indexmapped[e + 1][m_midpoint - sbr->kx[1]] = ch_data->bs_add_harmonic[i] * 01475 (e >= e_a[1] || (ch_data->s_indexmapped[0][m_midpoint - sbr->kx[1]] == 1)); 01476 } 01477 } 01478 01479 for (i = 0; i < ilim; i++) { 01480 int additional_sinusoid_present = 0; 01481 for (m = table[i]; m < table[i + 1]; m++) { 01482 if (ch_data->s_indexmapped[e + 1][m - sbr->kx[1]]) { 01483 additional_sinusoid_present = 1; 01484 break; 01485 } 01486 } 01487 memset(&sbr->s_mapped[e][table[i] - sbr->kx[1]], additional_sinusoid_present, 01488 (table[i + 1] - table[i]) * sizeof(sbr->s_mapped[e][0])); 01489 } 01490 } 01491 01492 memcpy(ch_data->s_indexmapped[0], ch_data->s_indexmapped[ch_data->bs_num_env], sizeof(ch_data->s_indexmapped[0])); 01493 } 01494 01496 static void sbr_env_estimate(float (*e_curr)[48], float X_high[64][40][2], 01497 SpectralBandReplication *sbr, SBRData *ch_data) 01498 { 01499 int e, i, m; 01500 01501 if (sbr->bs_interpol_freq) { 01502 for (e = 0; e < ch_data->bs_num_env; e++) { 01503 const float recip_env_size = 0.5f / (ch_data->t_env[e + 1] - ch_data->t_env[e]); 01504 int ilb = ch_data->t_env[e] * 2 + ENVELOPE_ADJUSTMENT_OFFSET; 01505 int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET; 01506 01507 for (m = 0; m < sbr->m[1]; m++) { 01508 float sum = 0.0f; 01509 01510 for (i = ilb; i < iub; i++) { 01511 sum += X_high[m + sbr->kx[1]][i][0] * X_high[m + sbr->kx[1]][i][0] + 01512 X_high[m + sbr->kx[1]][i][1] * X_high[m + sbr->kx[1]][i][1]; 01513 } 01514 e_curr[e][m] = sum * recip_env_size; 01515 } 01516 } 01517 } else { 01518 int k, p; 01519 01520 for (e = 0; e < ch_data->bs_num_env; e++) { 01521 const int env_size = 2 * (ch_data->t_env[e + 1] - ch_data->t_env[e]); 01522 int ilb = ch_data->t_env[e] * 2 + ENVELOPE_ADJUSTMENT_OFFSET; 01523 int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET; 01524 const uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehigh : sbr->f_tablelow; 01525 01526 for (p = 0; p < sbr->n[ch_data->bs_freq_res[e + 1]]; p++) { 01527 float sum = 0.0f; 01528 const int den = env_size * (table[p + 1] - table[p]); 01529 01530 for (k = table[p]; k < table[p + 1]; k++) { 01531 for (i = ilb; i < iub; i++) { 01532 sum += X_high[k][i][0] * X_high[k][i][0] + 01533 X_high[k][i][1] * X_high[k][i][1]; 01534 } 01535 } 01536 sum /= den; 01537 for (k = table[p]; k < table[p + 1]; k++) { 01538 e_curr[e][k - sbr->kx[1]] = sum; 01539 } 01540 } 01541 } 01542 } 01543 } 01544 01549 static void sbr_gain_calc(AACContext *ac, SpectralBandReplication *sbr, 01550 SBRData *ch_data, const int e_a[2]) 01551 { 01552 int e, k, m; 01553 // max gain limits : -3dB, 0dB, 3dB, inf dB (limiter off) 01554 static const float limgain[4] = { 0.70795, 1.0, 1.41254, 10000000000 }; 01555 01556 for (e = 0; e < ch_data->bs_num_env; e++) { 01557 int delta = !((e == e_a[1]) || (e == e_a[0])); 01558 for (k = 0; k < sbr->n_lim; k++) { 01559 float gain_boost, gain_max; 01560 float sum[2] = { 0.0f, 0.0f }; 01561 for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) { 01562 const float temp = sbr->e_origmapped[e][m] / (1.0f + sbr->q_mapped[e][m]); 01563 sbr->q_m[e][m] = sqrtf(temp * sbr->q_mapped[e][m]); 01564 sbr->s_m[e][m] = sqrtf(temp * ch_data->s_indexmapped[e + 1][m]); 01565 if (!sbr->s_mapped[e][m]) { 01566 sbr->gain[e][m] = sqrtf(sbr->e_origmapped[e][m] / 01567 ((1.0f + sbr->e_curr[e][m]) * 01568 (1.0f + sbr->q_mapped[e][m] * delta))); 01569 } else { 01570 sbr->gain[e][m] = sqrtf(sbr->e_origmapped[e][m] * sbr->q_mapped[e][m] / 01571 ((1.0f + sbr->e_curr[e][m]) * 01572 (1.0f + sbr->q_mapped[e][m]))); 01573 } 01574 } 01575 for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) { 01576 sum[0] += sbr->e_origmapped[e][m]; 01577 sum[1] += sbr->e_curr[e][m]; 01578 } 01579 gain_max = limgain[sbr->bs_limiter_gains] * sqrtf((FLT_EPSILON + sum[0]) / (FLT_EPSILON + sum[1])); 01580 gain_max = FFMIN(100000.f, gain_max); 01581 for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) { 01582 float q_m_max = sbr->q_m[e][m] * gain_max / sbr->gain[e][m]; 01583 sbr->q_m[e][m] = FFMIN(sbr->q_m[e][m], q_m_max); 01584 sbr->gain[e][m] = FFMIN(sbr->gain[e][m], gain_max); 01585 } 01586 sum[0] = sum[1] = 0.0f; 01587 for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) { 01588 sum[0] += sbr->e_origmapped[e][m]; 01589 sum[1] += sbr->e_curr[e][m] * sbr->gain[e][m] * sbr->gain[e][m] 01590 + sbr->s_m[e][m] * sbr->s_m[e][m] 01591 + (delta && !sbr->s_m[e][m]) * sbr->q_m[e][m] * sbr->q_m[e][m]; 01592 } 01593 gain_boost = sqrtf((FLT_EPSILON + sum[0]) / (FLT_EPSILON + sum[1])); 01594 gain_boost = FFMIN(1.584893192f, gain_boost); 01595 for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) { 01596 sbr->gain[e][m] *= gain_boost; 01597 sbr->q_m[e][m] *= gain_boost; 01598 sbr->s_m[e][m] *= gain_boost; 01599 } 01600 } 01601 } 01602 } 01603 01605 static void sbr_hf_assemble(float Y[2][38][64][2], const float X_high[64][40][2], 01606 SpectralBandReplication *sbr, SBRData *ch_data, 01607 const int e_a[2]) 01608 { 01609 int e, i, j, m; 01610 const int h_SL = 4 * !sbr->bs_smoothing_mode; 01611 const int kx = sbr->kx[1]; 01612 const int m_max = sbr->m[1]; 01613 static const float h_smooth[5] = { 01614 0.33333333333333, 01615 0.30150283239582, 01616 0.21816949906249, 01617 0.11516383427084, 01618 0.03183050093751, 01619 }; 01620 static const int8_t phi[2][4] = { 01621 { 1, 0, -1, 0}, // real 01622 { 0, 1, 0, -1}, // imaginary 01623 }; 01624 float (*g_temp)[48] = ch_data->g_temp, (*q_temp)[48] = ch_data->q_temp; 01625 int indexnoise = ch_data->f_indexnoise; 01626 int indexsine = ch_data->f_indexsine; 01627 memcpy(Y[0], Y[1], sizeof(Y[0])); 01628 01629 if (sbr->reset) { 01630 for (i = 0; i < h_SL; i++) { 01631 memcpy(g_temp[i + 2*ch_data->t_env[0]], sbr->gain[0], m_max * sizeof(sbr->gain[0][0])); 01632 memcpy(q_temp[i + 2*ch_data->t_env[0]], sbr->q_m[0], m_max * sizeof(sbr->q_m[0][0])); 01633 } 01634 } else if (h_SL) { 01635 memcpy(g_temp[2*ch_data->t_env[0]], g_temp[2*ch_data->t_env_num_env_old], 4*sizeof(g_temp[0])); 01636 memcpy(q_temp[2*ch_data->t_env[0]], q_temp[2*ch_data->t_env_num_env_old], 4*sizeof(q_temp[0])); 01637 } 01638 01639 for (e = 0; e < ch_data->bs_num_env; e++) { 01640 for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) { 01641 memcpy(g_temp[h_SL + i], sbr->gain[e], m_max * sizeof(sbr->gain[0][0])); 01642 memcpy(q_temp[h_SL + i], sbr->q_m[e], m_max * sizeof(sbr->q_m[0][0])); 01643 } 01644 } 01645 01646 for (e = 0; e < ch_data->bs_num_env; e++) { 01647 for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) { 01648 int phi_sign = (1 - 2*(kx & 1)); 01649 01650 if (h_SL && e != e_a[0] && e != e_a[1]) { 01651 for (m = 0; m < m_max; m++) { 01652 const int idx1 = i + h_SL; 01653 float g_filt = 0.0f; 01654 for (j = 0; j <= h_SL; j++) 01655 g_filt += g_temp[idx1 - j][m] * h_smooth[j]; 01656 Y[1][i][m + kx][0] = 01657 X_high[m + kx][i + ENVELOPE_ADJUSTMENT_OFFSET][0] * g_filt; 01658 Y[1][i][m + kx][1] = 01659 X_high[m + kx][i + ENVELOPE_ADJUSTMENT_OFFSET][1] * g_filt; 01660 } 01661 } else { 01662 for (m = 0; m < m_max; m++) { 01663 const float g_filt = g_temp[i + h_SL][m]; 01664 Y[1][i][m + kx][0] = 01665 X_high[m + kx][i + ENVELOPE_ADJUSTMENT_OFFSET][0] * g_filt; 01666 Y[1][i][m + kx][1] = 01667 X_high[m + kx][i + ENVELOPE_ADJUSTMENT_OFFSET][1] * g_filt; 01668 } 01669 } 01670 01671 if (e != e_a[0] && e != e_a[1]) { 01672 for (m = 0; m < m_max; m++) { 01673 indexnoise = (indexnoise + 1) & 0x1ff; 01674 if (sbr->s_m[e][m]) { 01675 Y[1][i][m + kx][0] += 01676 sbr->s_m[e][m] * phi[0][indexsine]; 01677 Y[1][i][m + kx][1] += 01678 sbr->s_m[e][m] * (phi[1][indexsine] * phi_sign); 01679 } else { 01680 float q_filt; 01681 if (h_SL) { 01682 const int idx1 = i + h_SL; 01683 q_filt = 0.0f; 01684 for (j = 0; j <= h_SL; j++) 01685 q_filt += q_temp[idx1 - j][m] * h_smooth[j]; 01686 } else { 01687 q_filt = q_temp[i][m]; 01688 } 01689 Y[1][i][m + kx][0] += 01690 q_filt * sbr_noise_table[indexnoise][0]; 01691 Y[1][i][m + kx][1] += 01692 q_filt * sbr_noise_table[indexnoise][1]; 01693 } 01694 phi_sign = -phi_sign; 01695 } 01696 } else { 01697 indexnoise = (indexnoise + m_max) & 0x1ff; 01698 for (m = 0; m < m_max; m++) { 01699 Y[1][i][m + kx][0] += 01700 sbr->s_m[e][m] * phi[0][indexsine]; 01701 Y[1][i][m + kx][1] += 01702 sbr->s_m[e][m] * (phi[1][indexsine] * phi_sign); 01703 phi_sign = -phi_sign; 01704 } 01705 } 01706 indexsine = (indexsine + 1) & 3; 01707 } 01708 } 01709 ch_data->f_indexnoise = indexnoise; 01710 ch_data->f_indexsine = indexsine; 01711 } 01712 01713 void ff_sbr_apply(AACContext *ac, SpectralBandReplication *sbr, int id_aac, 01714 float* L, float* R) 01715 { 01716 int downsampled = ac->m4ac.ext_sample_rate < sbr->sample_rate; 01717 int ch; 01718 int nch = (id_aac == TYPE_CPE) ? 2 : 1; 01719 01720 if (sbr->start) { 01721 sbr_dequant(sbr, id_aac); 01722 } 01723 for (ch = 0; ch < nch; ch++) { 01724 /* decode channel */ 01725 sbr_qmf_analysis(&ac->dsp, &sbr->mdct_ana, ch ? R : L, sbr->data[ch].analysis_filterbank_samples, 01726 (float*)sbr->qmf_filter_scratch, 01727 sbr->data[ch].W); 01728 sbr_lf_gen(ac, sbr, sbr->X_low, sbr->data[ch].W); 01729 if (sbr->start) { 01730 sbr_hf_inverse_filter(sbr->alpha0, sbr->alpha1, sbr->X_low, sbr->k[0]); 01731 sbr_chirp(sbr, &sbr->data[ch]); 01732 sbr_hf_gen(ac, sbr, sbr->X_high, sbr->X_low, sbr->alpha0, sbr->alpha1, 01733 sbr->data[ch].bw_array, sbr->data[ch].t_env, 01734 sbr->data[ch].bs_num_env); 01735 01736 // hf_adj 01737 sbr_mapping(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a); 01738 sbr_env_estimate(sbr->e_curr, sbr->X_high, sbr, &sbr->data[ch]); 01739 sbr_gain_calc(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a); 01740 sbr_hf_assemble(sbr->data[ch].Y, sbr->X_high, sbr, &sbr->data[ch], 01741 sbr->data[ch].e_a); 01742 } 01743 01744 /* synthesis */ 01745 sbr_x_gen(sbr, sbr->X[ch], sbr->X_low, sbr->data[ch].Y, ch); 01746 } 01747 01748 if (ac->m4ac.ps == 1) { 01749 if (sbr->ps.start) { 01750 ff_ps_apply(ac->avctx, &sbr->ps, sbr->X[0], sbr->X[1], sbr->kx[1] + sbr->m[1]); 01751 } else { 01752 memcpy(sbr->X[1], sbr->X[0], sizeof(sbr->X[0])); 01753 } 01754 nch = 2; 01755 } 01756 01757 sbr_qmf_synthesis(&ac->dsp, &sbr->mdct, L, sbr->X[0], sbr->qmf_filter_scratch, 01758 sbr->data[0].synthesis_filterbank_samples, 01759 &sbr->data[0].synthesis_filterbank_samples_offset, 01760 downsampled); 01761 if (nch == 2) 01762 sbr_qmf_synthesis(&ac->dsp, &sbr->mdct, R, sbr->X[1], sbr->qmf_filter_scratch, 01763 sbr->data[1].synthesis_filterbank_samples, 01764 &sbr->data[1].synthesis_filterbank_samples_offset, 01765 downsampled); 01766 }