Libav 0.7.1
libavcodec/rv40.c
Go to the documentation of this file.
00001 /*
00002  * RV40 decoder
00003  * Copyright (c) 2007 Konstantin Shishkov
00004  *
00005  * This file is part of Libav.
00006  *
00007  * Libav is free software; you can redistribute it and/or
00008  * modify it under the terms of the GNU Lesser General Public
00009  * License as published by the Free Software Foundation; either
00010  * version 2.1 of the License, or (at your option) any later version.
00011  *
00012  * Libav is distributed in the hope that it will be useful,
00013  * but WITHOUT ANY WARRANTY; without even the implied warranty of
00014  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
00015  * Lesser General Public License for more details.
00016  *
00017  * You should have received a copy of the GNU Lesser General Public
00018  * License along with Libav; if not, write to the Free Software
00019  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
00020  */
00021 
00027 #include "libavutil/imgutils.h"
00028 
00029 #include "avcodec.h"
00030 #include "dsputil.h"
00031 #include "mpegvideo.h"
00032 #include "golomb.h"
00033 
00034 #include "rv34.h"
00035 #include "rv40vlc2.h"
00036 #include "rv40data.h"
00037 
00038 static VLC aic_top_vlc;
00039 static VLC aic_mode1_vlc[AIC_MODE1_NUM], aic_mode2_vlc[AIC_MODE2_NUM];
00040 static VLC ptype_vlc[NUM_PTYPE_VLCS], btype_vlc[NUM_BTYPE_VLCS];
00041 
00042 static const int16_t mode2_offs[] = {
00043        0,  614, 1222, 1794, 2410,  3014,  3586,  4202,  4792, 5382, 5966, 6542,
00044     7138, 7716, 8292, 8864, 9444, 10030, 10642, 11212, 11814
00045 };
00046 
00050 static av_cold void rv40_init_tables(void)
00051 {
00052     int i;
00053     static VLC_TYPE aic_table[1 << AIC_TOP_BITS][2];
00054     static VLC_TYPE aic_mode1_table[AIC_MODE1_NUM << AIC_MODE1_BITS][2];
00055     static VLC_TYPE aic_mode2_table[11814][2];
00056     static VLC_TYPE ptype_table[NUM_PTYPE_VLCS << PTYPE_VLC_BITS][2];
00057     static VLC_TYPE btype_table[NUM_BTYPE_VLCS << BTYPE_VLC_BITS][2];
00058 
00059     aic_top_vlc.table = aic_table;
00060     aic_top_vlc.table_allocated = 1 << AIC_TOP_BITS;
00061     init_vlc(&aic_top_vlc, AIC_TOP_BITS, AIC_TOP_SIZE,
00062              rv40_aic_top_vlc_bits,  1, 1,
00063              rv40_aic_top_vlc_codes, 1, 1, INIT_VLC_USE_NEW_STATIC);
00064     for(i = 0; i < AIC_MODE1_NUM; i++){
00065         // Every tenth VLC table is empty
00066         if((i % 10) == 9) continue;
00067         aic_mode1_vlc[i].table = &aic_mode1_table[i << AIC_MODE1_BITS];
00068         aic_mode1_vlc[i].table_allocated = 1 << AIC_MODE1_BITS;
00069         init_vlc(&aic_mode1_vlc[i], AIC_MODE1_BITS, AIC_MODE1_SIZE,
00070                  aic_mode1_vlc_bits[i],  1, 1,
00071                  aic_mode1_vlc_codes[i], 1, 1, INIT_VLC_USE_NEW_STATIC);
00072     }
00073     for(i = 0; i < AIC_MODE2_NUM; i++){
00074         aic_mode2_vlc[i].table = &aic_mode2_table[mode2_offs[i]];
00075         aic_mode2_vlc[i].table_allocated = mode2_offs[i + 1] - mode2_offs[i];
00076         init_vlc(&aic_mode2_vlc[i], AIC_MODE2_BITS, AIC_MODE2_SIZE,
00077                  aic_mode2_vlc_bits[i],  1, 1,
00078                  aic_mode2_vlc_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
00079     }
00080     for(i = 0; i < NUM_PTYPE_VLCS; i++){
00081         ptype_vlc[i].table = &ptype_table[i << PTYPE_VLC_BITS];
00082         ptype_vlc[i].table_allocated = 1 << PTYPE_VLC_BITS;
00083         init_vlc_sparse(&ptype_vlc[i], PTYPE_VLC_BITS, PTYPE_VLC_SIZE,
00084                          ptype_vlc_bits[i],  1, 1,
00085                          ptype_vlc_codes[i], 1, 1,
00086                          ptype_vlc_syms,     1, 1, INIT_VLC_USE_NEW_STATIC);
00087     }
00088     for(i = 0; i < NUM_BTYPE_VLCS; i++){
00089         btype_vlc[i].table = &btype_table[i << BTYPE_VLC_BITS];
00090         btype_vlc[i].table_allocated = 1 << BTYPE_VLC_BITS;
00091         init_vlc_sparse(&btype_vlc[i], BTYPE_VLC_BITS, BTYPE_VLC_SIZE,
00092                          btype_vlc_bits[i],  1, 1,
00093                          btype_vlc_codes[i], 1, 1,
00094                          btype_vlc_syms,     1, 1, INIT_VLC_USE_NEW_STATIC);
00095     }
00096 }
00097 
00104 static int get_dimension(GetBitContext *gb, const int *dim)
00105 {
00106     int t   = get_bits(gb, 3);
00107     int val = dim[t];
00108     if(val < 0)
00109         val = dim[get_bits1(gb) - val];
00110     if(!val){
00111         do{
00112             t = get_bits(gb, 8);
00113             val += t << 2;
00114         }while(t == 0xFF);
00115     }
00116     return val;
00117 }
00118 
00122 static void rv40_parse_picture_size(GetBitContext *gb, int *w, int *h)
00123 {
00124     *w = get_dimension(gb, rv40_standard_widths);
00125     *h = get_dimension(gb, rv40_standard_heights);
00126 }
00127 
00128 static int rv40_parse_slice_header(RV34DecContext *r, GetBitContext *gb, SliceInfo *si)
00129 {
00130     int mb_bits;
00131     int w = r->s.width, h = r->s.height;
00132     int mb_size;
00133 
00134     memset(si, 0, sizeof(SliceInfo));
00135     if(get_bits1(gb))
00136         return -1;
00137     si->type = get_bits(gb, 2);
00138     if(si->type == 1) si->type = 0;
00139     si->quant = get_bits(gb, 5);
00140     if(get_bits(gb, 2))
00141         return -1;
00142     si->vlc_set = get_bits(gb, 2);
00143     skip_bits1(gb);
00144     si->pts = get_bits(gb, 13);
00145     if(!si->type || !get_bits1(gb))
00146         rv40_parse_picture_size(gb, &w, &h);
00147     if(av_image_check_size(w, h, 0, r->s.avctx) < 0)
00148         return -1;
00149     si->width  = w;
00150     si->height = h;
00151     mb_size = ((w + 15) >> 4) * ((h + 15) >> 4);
00152     mb_bits = ff_rv34_get_start_offset(gb, mb_size);
00153     si->start = get_bits(gb, mb_bits);
00154 
00155     return 0;
00156 }
00157 
00161 static int rv40_decode_intra_types(RV34DecContext *r, GetBitContext *gb, int8_t *dst)
00162 {
00163     MpegEncContext *s = &r->s;
00164     int i, j, k, v;
00165     int A, B, C;
00166     int pattern;
00167     int8_t *ptr;
00168 
00169     for(i = 0; i < 4; i++, dst += r->intra_types_stride){
00170         if(!i && s->first_slice_line){
00171             pattern = get_vlc2(gb, aic_top_vlc.table, AIC_TOP_BITS, 1);
00172             dst[0] = (pattern >> 2) & 2;
00173             dst[1] = (pattern >> 1) & 2;
00174             dst[2] =  pattern       & 2;
00175             dst[3] = (pattern << 1) & 2;
00176             continue;
00177         }
00178         ptr = dst;
00179         for(j = 0; j < 4; j++){
00180             /* Coefficients are read using VLC chosen by the prediction pattern
00181              * The first one (used for retrieving a pair of coefficients) is
00182              * constructed from the top, top right and left coefficients
00183              * The second one (used for retrieving only one coefficient) is
00184              * top + 10 * left.
00185              */
00186             A = ptr[-r->intra_types_stride + 1]; // it won't be used for the last coefficient in a row
00187             B = ptr[-r->intra_types_stride];
00188             C = ptr[-1];
00189             pattern = A + (B << 4) + (C << 8);
00190             for(k = 0; k < MODE2_PATTERNS_NUM; k++)
00191                 if(pattern == rv40_aic_table_index[k])
00192                     break;
00193             if(j < 3 && k < MODE2_PATTERNS_NUM){ //pattern is found, decoding 2 coefficients
00194                 v = get_vlc2(gb, aic_mode2_vlc[k].table, AIC_MODE2_BITS, 2);
00195                 *ptr++ = v/9;
00196                 *ptr++ = v%9;
00197                 j++;
00198             }else{
00199                 if(B != -1 && C != -1)
00200                     v = get_vlc2(gb, aic_mode1_vlc[B + C*10].table, AIC_MODE1_BITS, 1);
00201                 else{ // tricky decoding
00202                     v = 0;
00203                     switch(C){
00204                     case -1: // code 0 -> 1, 1 -> 0
00205                         if(B < 2)
00206                             v = get_bits1(gb) ^ 1;
00207                         break;
00208                     case  0:
00209                     case  2: // code 0 -> 2, 1 -> 0
00210                         v = (get_bits1(gb) ^ 1) << 1;
00211                         break;
00212                     }
00213                 }
00214                 *ptr++ = v;
00215             }
00216         }
00217     }
00218     return 0;
00219 }
00220 
00224 static int rv40_decode_mb_info(RV34DecContext *r)
00225 {
00226     MpegEncContext *s = &r->s;
00227     GetBitContext *gb = &s->gb;
00228     int q, i;
00229     int prev_type = 0;
00230     int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
00231     int blocks[RV34_MB_TYPES] = {0};
00232     int count = 0;
00233 
00234     if(!r->s.mb_skip_run)
00235         r->s.mb_skip_run = svq3_get_ue_golomb(gb) + 1;
00236 
00237     if(--r->s.mb_skip_run)
00238          return RV34_MB_SKIP;
00239 
00240     if(r->avail_cache[6-1])
00241         blocks[r->mb_type[mb_pos - 1]]++;
00242     if(r->avail_cache[6-4]){
00243         blocks[r->mb_type[mb_pos - s->mb_stride]]++;
00244         if(r->avail_cache[6-2])
00245             blocks[r->mb_type[mb_pos - s->mb_stride + 1]]++;
00246         if(r->avail_cache[6-5])
00247             blocks[r->mb_type[mb_pos - s->mb_stride - 1]]++;
00248     }
00249 
00250     for(i = 0; i < RV34_MB_TYPES; i++){
00251         if(blocks[i] > count){
00252             count = blocks[i];
00253             prev_type = i;
00254         }
00255     }
00256     if(s->pict_type == AV_PICTURE_TYPE_P){
00257         prev_type = block_num_to_ptype_vlc_num[prev_type];
00258         q = get_vlc2(gb, ptype_vlc[prev_type].table, PTYPE_VLC_BITS, 1);
00259         if(q < PBTYPE_ESCAPE)
00260             return q;
00261         q = get_vlc2(gb, ptype_vlc[prev_type].table, PTYPE_VLC_BITS, 1);
00262         av_log(s->avctx, AV_LOG_ERROR, "Dquant for P-frame\n");
00263     }else{
00264         prev_type = block_num_to_btype_vlc_num[prev_type];
00265         q = get_vlc2(gb, btype_vlc[prev_type].table, BTYPE_VLC_BITS, 1);
00266         if(q < PBTYPE_ESCAPE)
00267             return q;
00268         q = get_vlc2(gb, btype_vlc[prev_type].table, BTYPE_VLC_BITS, 1);
00269         av_log(s->avctx, AV_LOG_ERROR, "Dquant for B-frame\n");
00270     }
00271     return 0;
00272 }
00273 
00274 #define CLIP_SYMM(a, b) av_clip(a, -(b), b)
00275 
00278 static inline void rv40_weak_loop_filter(uint8_t *src, const int step,
00279                                          const int filter_p1, const int filter_q1,
00280                                          const int alpha, const int beta,
00281                                          const int lim_p0q0,
00282                                          const int lim_q1, const int lim_p1,
00283                                          const int diff_p1p0, const int diff_q1q0,
00284                                          const int diff_p1p2, const int diff_q1q2)
00285 {
00286     uint8_t *cm = ff_cropTbl + MAX_NEG_CROP;
00287     int t, u, diff;
00288 
00289     t = src[0*step] - src[-1*step];
00290     if(!t)
00291         return;
00292     u = (alpha * FFABS(t)) >> 7;
00293     if(u > 3 - (filter_p1 && filter_q1))
00294         return;
00295 
00296     t <<= 2;
00297     if(filter_p1 && filter_q1)
00298         t += src[-2*step] - src[1*step];
00299     diff = CLIP_SYMM((t + 4) >> 3, lim_p0q0);
00300     src[-1*step] = cm[src[-1*step] + diff];
00301     src[ 0*step] = cm[src[ 0*step] - diff];
00302     if(FFABS(diff_p1p2) <= beta && filter_p1){
00303         t = (diff_p1p0 + diff_p1p2 - diff) >> 1;
00304         src[-2*step] = cm[src[-2*step] - CLIP_SYMM(t, lim_p1)];
00305     }
00306     if(FFABS(diff_q1q2) <= beta && filter_q1){
00307         t = (diff_q1q0 + diff_q1q2 + diff) >> 1;
00308         src[ 1*step] = cm[src[ 1*step] - CLIP_SYMM(t, lim_q1)];
00309     }
00310 }
00311 
00312 static av_always_inline void rv40_adaptive_loop_filter(uint8_t *src, const int step,
00313                                              const int stride, const int dmode,
00314                                              const int lim_q1, const int lim_p1,
00315                                              const int alpha,
00316                                              const int beta, const int beta2,
00317                                              const int chroma, const int edge)
00318 {
00319     int diff_p1p0[4], diff_q1q0[4], diff_p1p2[4], diff_q1q2[4];
00320     int sum_p1p0 = 0, sum_q1q0 = 0, sum_p1p2 = 0, sum_q1q2 = 0;
00321     uint8_t *ptr;
00322     int flag_strong0 = 1, flag_strong1 = 1;
00323     int filter_p1, filter_q1;
00324     int i;
00325     int lims;
00326 
00327     for(i = 0, ptr = src; i < 4; i++, ptr += stride){
00328         diff_p1p0[i] = ptr[-2*step] - ptr[-1*step];
00329         diff_q1q0[i] = ptr[ 1*step] - ptr[ 0*step];
00330         sum_p1p0 += diff_p1p0[i];
00331         sum_q1q0 += diff_q1q0[i];
00332     }
00333     filter_p1 = FFABS(sum_p1p0) < (beta<<2);
00334     filter_q1 = FFABS(sum_q1q0) < (beta<<2);
00335     if(!filter_p1 && !filter_q1)
00336         return;
00337 
00338     for(i = 0, ptr = src; i < 4; i++, ptr += stride){
00339         diff_p1p2[i] = ptr[-2*step] - ptr[-3*step];
00340         diff_q1q2[i] = ptr[ 1*step] - ptr[ 2*step];
00341         sum_p1p2 += diff_p1p2[i];
00342         sum_q1q2 += diff_q1q2[i];
00343     }
00344 
00345     if(edge){
00346         flag_strong0 = filter_p1 && (FFABS(sum_p1p2) < beta2);
00347         flag_strong1 = filter_q1 && (FFABS(sum_q1q2) < beta2);
00348     }else{
00349         flag_strong0 = flag_strong1 = 0;
00350     }
00351 
00352     lims = filter_p1 + filter_q1 + ((lim_q1 + lim_p1) >> 1) + 1;
00353     if(flag_strong0 && flag_strong1){ /* strong filtering */
00354         for(i = 0; i < 4; i++, src += stride){
00355             int sflag, p0, q0, p1, q1;
00356             int t = src[0*step] - src[-1*step];
00357 
00358             if(!t) continue;
00359             sflag = (alpha * FFABS(t)) >> 7;
00360             if(sflag > 1) continue;
00361 
00362             p0 = (25*src[-3*step] + 26*src[-2*step]
00363                 + 26*src[-1*step]
00364                 + 26*src[ 0*step] + 25*src[ 1*step] + rv40_dither_l[dmode + i]) >> 7;
00365             q0 = (25*src[-2*step] + 26*src[-1*step]
00366                 + 26*src[ 0*step]
00367                 + 26*src[ 1*step] + 25*src[ 2*step] + rv40_dither_r[dmode + i]) >> 7;
00368             if(sflag){
00369                 p0 = av_clip(p0, src[-1*step] - lims, src[-1*step] + lims);
00370                 q0 = av_clip(q0, src[ 0*step] - lims, src[ 0*step] + lims);
00371             }
00372             p1 = (25*src[-4*step] + 26*src[-3*step]
00373                 + 26*src[-2*step]
00374                 + 26*p0           + 25*src[ 0*step] + rv40_dither_l[dmode + i]) >> 7;
00375             q1 = (25*src[-1*step] + 26*q0
00376                 + 26*src[ 1*step]
00377                 + 26*src[ 2*step] + 25*src[ 3*step] + rv40_dither_r[dmode + i]) >> 7;
00378             if(sflag){
00379                 p1 = av_clip(p1, src[-2*step] - lims, src[-2*step] + lims);
00380                 q1 = av_clip(q1, src[ 1*step] - lims, src[ 1*step] + lims);
00381             }
00382             src[-2*step] = p1;
00383             src[-1*step] = p0;
00384             src[ 0*step] = q0;
00385             src[ 1*step] = q1;
00386             if(!chroma){
00387                 src[-3*step] = (25*src[-1*step] + 26*src[-2*step] + 51*src[-3*step] + 26*src[-4*step] + 64) >> 7;
00388                 src[ 2*step] = (25*src[ 0*step] + 26*src[ 1*step] + 51*src[ 2*step] + 26*src[ 3*step] + 64) >> 7;
00389             }
00390         }
00391     }else if(filter_p1 && filter_q1){
00392         for(i = 0; i < 4; i++, src += stride)
00393             rv40_weak_loop_filter(src, step, 1, 1, alpha, beta, lims, lim_q1, lim_p1,
00394                                   diff_p1p0[i], diff_q1q0[i], diff_p1p2[i], diff_q1q2[i]);
00395     }else{
00396         for(i = 0; i < 4; i++, src += stride)
00397             rv40_weak_loop_filter(src, step, filter_p1, filter_q1,
00398                                   alpha, beta, lims>>1, lim_q1>>1, lim_p1>>1,
00399                                   diff_p1p0[i], diff_q1q0[i], diff_p1p2[i], diff_q1q2[i]);
00400     }
00401 }
00402 
00403 static void rv40_v_loop_filter(uint8_t *src, int stride, int dmode,
00404                                int lim_q1, int lim_p1,
00405                                int alpha, int beta, int beta2, int chroma, int edge){
00406     rv40_adaptive_loop_filter(src, 1, stride, dmode, lim_q1, lim_p1,
00407                               alpha, beta, beta2, chroma, edge);
00408 }
00409 static void rv40_h_loop_filter(uint8_t *src, int stride, int dmode,
00410                                int lim_q1, int lim_p1,
00411                                int alpha, int beta, int beta2, int chroma, int edge){
00412     rv40_adaptive_loop_filter(src, stride, 1, dmode, lim_q1, lim_p1,
00413                               alpha, beta, beta2, chroma, edge);
00414 }
00415 
00416 enum RV40BlockPos{
00417     POS_CUR,
00418     POS_TOP,
00419     POS_LEFT,
00420     POS_BOTTOM,
00421 };
00422 
00423 #define MASK_CUR          0x0001
00424 #define MASK_RIGHT        0x0008
00425 #define MASK_BOTTOM       0x0010
00426 #define MASK_TOP          0x1000
00427 #define MASK_Y_TOP_ROW    0x000F
00428 #define MASK_Y_LAST_ROW   0xF000
00429 #define MASK_Y_LEFT_COL   0x1111
00430 #define MASK_Y_RIGHT_COL  0x8888
00431 #define MASK_C_TOP_ROW    0x0003
00432 #define MASK_C_LAST_ROW   0x000C
00433 #define MASK_C_LEFT_COL   0x0005
00434 #define MASK_C_RIGHT_COL  0x000A
00435 
00436 static const int neighbour_offs_x[4] = { 0,  0, -1, 0 };
00437 static const int neighbour_offs_y[4] = { 0, -1,  0, 1 };
00438 
00442 static void rv40_loop_filter(RV34DecContext *r, int row)
00443 {
00444     MpegEncContext *s = &r->s;
00445     int mb_pos, mb_x;
00446     int i, j, k;
00447     uint8_t *Y, *C;
00448     int alpha, beta, betaY, betaC;
00449     int q;
00450     int mbtype[4];   
00451 
00455     int mb_strong[4];
00456     int clip[4];     
00457 
00463     int cbp[4];
00468     int uvcbp[4][2];
00474     int mvmasks[4];
00475 
00476     mb_pos = row * s->mb_stride;
00477     for(mb_x = 0; mb_x < s->mb_width; mb_x++, mb_pos++){
00478         int mbtype = s->current_picture_ptr->mb_type[mb_pos];
00479         if(IS_INTRA(mbtype) || IS_SEPARATE_DC(mbtype))
00480             r->cbp_luma  [mb_pos] = r->deblock_coefs[mb_pos] = 0xFFFF;
00481         if(IS_INTRA(mbtype))
00482             r->cbp_chroma[mb_pos] = 0xFF;
00483     }
00484     mb_pos = row * s->mb_stride;
00485     for(mb_x = 0; mb_x < s->mb_width; mb_x++, mb_pos++){
00486         int y_h_deblock, y_v_deblock;
00487         int c_v_deblock[2], c_h_deblock[2];
00488         int clip_left;
00489         int avail[4];
00490         int y_to_deblock, c_to_deblock[2];
00491 
00492         q = s->current_picture_ptr->qscale_table[mb_pos];
00493         alpha = rv40_alpha_tab[q];
00494         beta  = rv40_beta_tab [q];
00495         betaY = betaC = beta * 3;
00496         if(s->width * s->height <= 176*144)
00497             betaY += beta;
00498 
00499         avail[0] = 1;
00500         avail[1] = row;
00501         avail[2] = mb_x;
00502         avail[3] = row < s->mb_height - 1;
00503         for(i = 0; i < 4; i++){
00504             if(avail[i]){
00505                 int pos = mb_pos + neighbour_offs_x[i] + neighbour_offs_y[i]*s->mb_stride;
00506                 mvmasks[i] = r->deblock_coefs[pos];
00507                 mbtype [i] = s->current_picture_ptr->mb_type[pos];
00508                 cbp    [i] = r->cbp_luma[pos];
00509                 uvcbp[i][0] = r->cbp_chroma[pos] & 0xF;
00510                 uvcbp[i][1] = r->cbp_chroma[pos] >> 4;
00511             }else{
00512                 mvmasks[i] = 0;
00513                 mbtype [i] = mbtype[0];
00514                 cbp    [i] = 0;
00515                 uvcbp[i][0] = uvcbp[i][1] = 0;
00516             }
00517             mb_strong[i] = IS_INTRA(mbtype[i]) || IS_SEPARATE_DC(mbtype[i]);
00518             clip[i] = rv40_filter_clip_tbl[mb_strong[i] + 1][q];
00519         }
00520         y_to_deblock =  mvmasks[POS_CUR]
00521                      | (mvmasks[POS_BOTTOM] << 16);
00522         /* This pattern contains bits signalling that horizontal edges of
00523          * the current block can be filtered.
00524          * That happens when either of adjacent subblocks is coded or lies on
00525          * the edge of 8x8 blocks with motion vectors differing by more than
00526          * 3/4 pel in any component (any edge orientation for some reason).
00527          */
00528         y_h_deblock =   y_to_deblock
00529                     | ((cbp[POS_CUR]                           <<  4) & ~MASK_Y_TOP_ROW)
00530                     | ((cbp[POS_TOP]        & MASK_Y_LAST_ROW) >> 12);
00531         /* This pattern contains bits signalling that vertical edges of
00532          * the current block can be filtered.
00533          * That happens when either of adjacent subblocks is coded or lies on
00534          * the edge of 8x8 blocks with motion vectors differing by more than
00535          * 3/4 pel in any component (any edge orientation for some reason).
00536          */
00537         y_v_deblock =   y_to_deblock
00538                     | ((cbp[POS_CUR]                      << 1) & ~MASK_Y_LEFT_COL)
00539                     | ((cbp[POS_LEFT] & MASK_Y_RIGHT_COL) >> 3);
00540         if(!mb_x)
00541             y_v_deblock &= ~MASK_Y_LEFT_COL;
00542         if(!row)
00543             y_h_deblock &= ~MASK_Y_TOP_ROW;
00544         if(row == s->mb_height - 1 || (mb_strong[POS_CUR] || mb_strong[POS_BOTTOM]))
00545             y_h_deblock &= ~(MASK_Y_TOP_ROW << 16);
00546         /* Calculating chroma patterns is similar and easier since there is
00547          * no motion vector pattern for them.
00548          */
00549         for(i = 0; i < 2; i++){
00550             c_to_deblock[i] = (uvcbp[POS_BOTTOM][i] << 4) | uvcbp[POS_CUR][i];
00551             c_v_deblock[i] =   c_to_deblock[i]
00552                            | ((uvcbp[POS_CUR] [i]                       << 1) & ~MASK_C_LEFT_COL)
00553                            | ((uvcbp[POS_LEFT][i]   & MASK_C_RIGHT_COL) >> 1);
00554             c_h_deblock[i] =   c_to_deblock[i]
00555                            | ((uvcbp[POS_TOP][i]    & MASK_C_LAST_ROW)  >> 2)
00556                            |  (uvcbp[POS_CUR][i]                        << 2);
00557             if(!mb_x)
00558                 c_v_deblock[i] &= ~MASK_C_LEFT_COL;
00559             if(!row)
00560                 c_h_deblock[i] &= ~MASK_C_TOP_ROW;
00561             if(row == s->mb_height - 1 || mb_strong[POS_CUR] || mb_strong[POS_BOTTOM])
00562                 c_h_deblock[i] &= ~(MASK_C_TOP_ROW << 4);
00563         }
00564 
00565         for(j = 0; j < 16; j += 4){
00566             Y = s->current_picture_ptr->data[0] + mb_x*16 + (row*16 + j) * s->linesize;
00567             for(i = 0; i < 4; i++, Y += 4){
00568                 int ij = i + j;
00569                 int clip_cur = y_to_deblock & (MASK_CUR << ij) ? clip[POS_CUR] : 0;
00570                 int dither = j ? ij : i*4;
00571 
00572                 // if bottom block is coded then we can filter its top edge
00573                 // (or bottom edge of this block, which is the same)
00574                 if(y_h_deblock & (MASK_BOTTOM << ij)){
00575                     rv40_h_loop_filter(Y+4*s->linesize, s->linesize, dither,
00576                                        y_to_deblock & (MASK_BOTTOM << ij) ? clip[POS_CUR] : 0,
00577                                        clip_cur,
00578                                        alpha, beta, betaY, 0, 0);
00579                 }
00580                 // filter left block edge in ordinary mode (with low filtering strength)
00581                 if(y_v_deblock & (MASK_CUR << ij) && (i || !(mb_strong[POS_CUR] || mb_strong[POS_LEFT]))){
00582                     if(!i)
00583                         clip_left = mvmasks[POS_LEFT] & (MASK_RIGHT << j) ? clip[POS_LEFT] : 0;
00584                     else
00585                         clip_left = y_to_deblock & (MASK_CUR << (ij-1)) ? clip[POS_CUR] : 0;
00586                     rv40_v_loop_filter(Y, s->linesize, dither,
00587                                        clip_cur,
00588                                        clip_left,
00589                                        alpha, beta, betaY, 0, 0);
00590                 }
00591                 // filter top edge of the current macroblock when filtering strength is high
00592                 if(!j && y_h_deblock & (MASK_CUR << i) && (mb_strong[POS_CUR] || mb_strong[POS_TOP])){
00593                     rv40_h_loop_filter(Y, s->linesize, dither,
00594                                        clip_cur,
00595                                        mvmasks[POS_TOP] & (MASK_TOP << i) ? clip[POS_TOP] : 0,
00596                                        alpha, beta, betaY, 0, 1);
00597                 }
00598                 // filter left block edge in edge mode (with high filtering strength)
00599                 if(y_v_deblock & (MASK_CUR << ij) && !i && (mb_strong[POS_CUR] || mb_strong[POS_LEFT])){
00600                     clip_left = mvmasks[POS_LEFT] & (MASK_RIGHT << j) ? clip[POS_LEFT] : 0;
00601                     rv40_v_loop_filter(Y, s->linesize, dither,
00602                                        clip_cur,
00603                                        clip_left,
00604                                        alpha, beta, betaY, 0, 1);
00605                 }
00606             }
00607         }
00608         for(k = 0; k < 2; k++){
00609             for(j = 0; j < 2; j++){
00610                 C = s->current_picture_ptr->data[k+1] + mb_x*8 + (row*8 + j*4) * s->uvlinesize;
00611                 for(i = 0; i < 2; i++, C += 4){
00612                     int ij = i + j*2;
00613                     int clip_cur = c_to_deblock[k] & (MASK_CUR << ij) ? clip[POS_CUR] : 0;
00614                     if(c_h_deblock[k] & (MASK_CUR << (ij+2))){
00615                         int clip_bot = c_to_deblock[k] & (MASK_CUR << (ij+2)) ? clip[POS_CUR] : 0;
00616                         rv40_h_loop_filter(C+4*s->uvlinesize, s->uvlinesize, i*8,
00617                                            clip_bot,
00618                                            clip_cur,
00619                                            alpha, beta, betaC, 1, 0);
00620                     }
00621                     if((c_v_deblock[k] & (MASK_CUR << ij)) && (i || !(mb_strong[POS_CUR] || mb_strong[POS_LEFT]))){
00622                         if(!i)
00623                             clip_left = uvcbp[POS_LEFT][k] & (MASK_CUR << (2*j+1)) ? clip[POS_LEFT] : 0;
00624                         else
00625                             clip_left = c_to_deblock[k]    & (MASK_CUR << (ij-1))  ? clip[POS_CUR]  : 0;
00626                         rv40_v_loop_filter(C, s->uvlinesize, j*8,
00627                                            clip_cur,
00628                                            clip_left,
00629                                            alpha, beta, betaC, 1, 0);
00630                     }
00631                     if(!j && c_h_deblock[k] & (MASK_CUR << ij) && (mb_strong[POS_CUR] || mb_strong[POS_TOP])){
00632                         int clip_top = uvcbp[POS_TOP][k] & (MASK_CUR << (ij+2)) ? clip[POS_TOP] : 0;
00633                         rv40_h_loop_filter(C, s->uvlinesize, i*8,
00634                                            clip_cur,
00635                                            clip_top,
00636                                            alpha, beta, betaC, 1, 1);
00637                     }
00638                     if(c_v_deblock[k] & (MASK_CUR << ij) && !i && (mb_strong[POS_CUR] || mb_strong[POS_LEFT])){
00639                         clip_left = uvcbp[POS_LEFT][k] & (MASK_CUR << (2*j+1)) ? clip[POS_LEFT] : 0;
00640                         rv40_v_loop_filter(C, s->uvlinesize, j*8,
00641                                            clip_cur,
00642                                            clip_left,
00643                                            alpha, beta, betaC, 1, 1);
00644                     }
00645                 }
00646             }
00647         }
00648     }
00649 }
00650 
00654 static av_cold int rv40_decode_init(AVCodecContext *avctx)
00655 {
00656     RV34DecContext *r = avctx->priv_data;
00657 
00658     r->rv30 = 0;
00659     ff_rv34_decode_init(avctx);
00660     if(!aic_top_vlc.bits)
00661         rv40_init_tables();
00662     r->parse_slice_header = rv40_parse_slice_header;
00663     r->decode_intra_types = rv40_decode_intra_types;
00664     r->decode_mb_info     = rv40_decode_mb_info;
00665     r->loop_filter        = rv40_loop_filter;
00666     r->luma_dc_quant_i = rv40_luma_dc_quant[0];
00667     r->luma_dc_quant_p = rv40_luma_dc_quant[1];
00668     return 0;
00669 }
00670 
00671 AVCodec ff_rv40_decoder = {
00672     "rv40",
00673     AVMEDIA_TYPE_VIDEO,
00674     CODEC_ID_RV40,
00675     sizeof(RV34DecContext),
00676     rv40_decode_init,
00677     NULL,
00678     ff_rv34_decode_end,
00679     ff_rv34_decode_frame,
00680     CODEC_CAP_DR1 | CODEC_CAP_DELAY,
00681     .flush = ff_mpeg_flush,
00682     .long_name = NULL_IF_CONFIG_SMALL("RealVideo 4.0"),
00683     .pix_fmts= ff_pixfmt_list_420,
00684 };