Libav 0.7.1
|
00001 /* 00002 * VC3/DNxHD encoder 00003 * Copyright (c) 2007 Baptiste Coudurier <baptiste dot coudurier at smartjog dot com> 00004 * 00005 * VC-3 encoder funded by the British Broadcasting Corporation 00006 * 00007 * This file is part of Libav. 00008 * 00009 * Libav is free software; you can redistribute it and/or 00010 * modify it under the terms of the GNU Lesser General Public 00011 * License as published by the Free Software Foundation; either 00012 * version 2.1 of the License, or (at your option) any later version. 00013 * 00014 * Libav is distributed in the hope that it will be useful, 00015 * but WITHOUT ANY WARRANTY; without even the implied warranty of 00016 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 00017 * Lesser General Public License for more details. 00018 * 00019 * You should have received a copy of the GNU Lesser General Public 00020 * License along with Libav; if not, write to the Free Software 00021 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA 00022 */ 00023 00024 //#define DEBUG 00025 #define RC_VARIANCE 1 // use variance or ssd for fast rc 00026 00027 #include "libavutil/opt.h" 00028 #include "avcodec.h" 00029 #include "dsputil.h" 00030 #include "mpegvideo.h" 00031 #include "dnxhdenc.h" 00032 00033 #define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM 00034 00035 static const AVOption options[]={ 00036 {"nitris_compat", "encode with Avid Nitris compatibility", offsetof(DNXHDEncContext, nitris_compat), FF_OPT_TYPE_INT, {.dbl = 0}, 0, 1, VE}, 00037 {NULL} 00038 }; 00039 static const AVClass class = { "dnxhd", av_default_item_name, options, LIBAVUTIL_VERSION_INT }; 00040 00041 int dct_quantize_c(MpegEncContext *s, DCTELEM *block, int n, int qscale, int *overflow); 00042 00043 #define LAMBDA_FRAC_BITS 10 00044 00045 static av_always_inline void dnxhd_get_pixels_8x4(DCTELEM *restrict block, const uint8_t *pixels, int line_size) 00046 { 00047 int i; 00048 for (i = 0; i < 4; i++) { 00049 block[0] = pixels[0]; block[1] = pixels[1]; 00050 block[2] = pixels[2]; block[3] = pixels[3]; 00051 block[4] = pixels[4]; block[5] = pixels[5]; 00052 block[6] = pixels[6]; block[7] = pixels[7]; 00053 pixels += line_size; 00054 block += 8; 00055 } 00056 memcpy(block , block- 8, sizeof(*block)*8); 00057 memcpy(block+ 8, block-16, sizeof(*block)*8); 00058 memcpy(block+16, block-24, sizeof(*block)*8); 00059 memcpy(block+24, block-32, sizeof(*block)*8); 00060 } 00061 00062 static int dnxhd_init_vlc(DNXHDEncContext *ctx) 00063 { 00064 int i, j, level, run; 00065 int max_level = 1<<(ctx->cid_table->bit_depth+2); 00066 00067 FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->vlc_codes, max_level*4*sizeof(*ctx->vlc_codes), fail); 00068 FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->vlc_bits , max_level*4*sizeof(*ctx->vlc_bits ), fail); 00069 FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->run_codes, 63*2 , fail); 00070 FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->run_bits , 63 , fail); 00071 00072 ctx->vlc_codes += max_level*2; 00073 ctx->vlc_bits += max_level*2; 00074 for (level = -max_level; level < max_level; level++) { 00075 for (run = 0; run < 2; run++) { 00076 int index = (level<<1)|run; 00077 int sign, offset = 0, alevel = level; 00078 00079 MASK_ABS(sign, alevel); 00080 if (alevel > 64) { 00081 offset = (alevel-1)>>6; 00082 alevel -= offset<<6; 00083 } 00084 for (j = 0; j < 257; j++) { 00085 if (ctx->cid_table->ac_level[j] == alevel && 00086 (!offset || (ctx->cid_table->ac_index_flag[j] && offset)) && 00087 (!run || (ctx->cid_table->ac_run_flag [j] && run))) { 00088 assert(!ctx->vlc_codes[index]); 00089 if (alevel) { 00090 ctx->vlc_codes[index] = (ctx->cid_table->ac_codes[j]<<1)|(sign&1); 00091 ctx->vlc_bits [index] = ctx->cid_table->ac_bits[j]+1; 00092 } else { 00093 ctx->vlc_codes[index] = ctx->cid_table->ac_codes[j]; 00094 ctx->vlc_bits [index] = ctx->cid_table->ac_bits [j]; 00095 } 00096 break; 00097 } 00098 } 00099 assert(!alevel || j < 257); 00100 if (offset) { 00101 ctx->vlc_codes[index] = (ctx->vlc_codes[index]<<ctx->cid_table->index_bits)|offset; 00102 ctx->vlc_bits [index]+= ctx->cid_table->index_bits; 00103 } 00104 } 00105 } 00106 for (i = 0; i < 62; i++) { 00107 int run = ctx->cid_table->run[i]; 00108 assert(run < 63); 00109 ctx->run_codes[run] = ctx->cid_table->run_codes[i]; 00110 ctx->run_bits [run] = ctx->cid_table->run_bits[i]; 00111 } 00112 return 0; 00113 fail: 00114 return -1; 00115 } 00116 00117 static int dnxhd_init_qmat(DNXHDEncContext *ctx, int lbias, int cbias) 00118 { 00119 // init first elem to 1 to avoid div by 0 in convert_matrix 00120 uint16_t weight_matrix[64] = {1,}; // convert_matrix needs uint16_t* 00121 int qscale, i; 00122 00123 FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_l, (ctx->m.avctx->qmax+1) * 64 * sizeof(int) , fail); 00124 FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_c, (ctx->m.avctx->qmax+1) * 64 * sizeof(int) , fail); 00125 FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_l16, (ctx->m.avctx->qmax+1) * 64 * 2 * sizeof(uint16_t), fail); 00126 FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_c16, (ctx->m.avctx->qmax+1) * 64 * 2 * sizeof(uint16_t), fail); 00127 00128 for (i = 1; i < 64; i++) { 00129 int j = ctx->m.dsp.idct_permutation[ff_zigzag_direct[i]]; 00130 weight_matrix[j] = ctx->cid_table->luma_weight[i]; 00131 } 00132 ff_convert_matrix(&ctx->m.dsp, ctx->qmatrix_l, ctx->qmatrix_l16, weight_matrix, 00133 ctx->m.intra_quant_bias, 1, ctx->m.avctx->qmax, 1); 00134 for (i = 1; i < 64; i++) { 00135 int j = ctx->m.dsp.idct_permutation[ff_zigzag_direct[i]]; 00136 weight_matrix[j] = ctx->cid_table->chroma_weight[i]; 00137 } 00138 ff_convert_matrix(&ctx->m.dsp, ctx->qmatrix_c, ctx->qmatrix_c16, weight_matrix, 00139 ctx->m.intra_quant_bias, 1, ctx->m.avctx->qmax, 1); 00140 for (qscale = 1; qscale <= ctx->m.avctx->qmax; qscale++) { 00141 for (i = 0; i < 64; i++) { 00142 ctx->qmatrix_l [qscale] [i] <<= 2; ctx->qmatrix_c [qscale] [i] <<= 2; 00143 ctx->qmatrix_l16[qscale][0][i] <<= 2; ctx->qmatrix_l16[qscale][1][i] <<= 2; 00144 ctx->qmatrix_c16[qscale][0][i] <<= 2; ctx->qmatrix_c16[qscale][1][i] <<= 2; 00145 } 00146 } 00147 return 0; 00148 fail: 00149 return -1; 00150 } 00151 00152 static int dnxhd_init_rc(DNXHDEncContext *ctx) 00153 { 00154 FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_rc, 8160*ctx->m.avctx->qmax*sizeof(RCEntry), fail); 00155 if (ctx->m.avctx->mb_decision != FF_MB_DECISION_RD) 00156 FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_cmp, ctx->m.mb_num*sizeof(RCCMPEntry), fail); 00157 00158 ctx->frame_bits = (ctx->cid_table->coding_unit_size - 640 - 4 - ctx->min_padding) * 8; 00159 ctx->qscale = 1; 00160 ctx->lambda = 2<<LAMBDA_FRAC_BITS; // qscale 2 00161 return 0; 00162 fail: 00163 return -1; 00164 } 00165 00166 static int dnxhd_encode_init(AVCodecContext *avctx) 00167 { 00168 DNXHDEncContext *ctx = avctx->priv_data; 00169 int i, index; 00170 00171 ctx->cid = ff_dnxhd_find_cid(avctx); 00172 if (!ctx->cid || avctx->pix_fmt != PIX_FMT_YUV422P) { 00173 av_log(avctx, AV_LOG_ERROR, "video parameters incompatible with DNxHD\n"); 00174 return -1; 00175 } 00176 av_log(avctx, AV_LOG_DEBUG, "cid %d\n", ctx->cid); 00177 00178 index = ff_dnxhd_get_cid_table(ctx->cid); 00179 ctx->cid_table = &ff_dnxhd_cid_table[index]; 00180 00181 ctx->m.avctx = avctx; 00182 ctx->m.mb_intra = 1; 00183 ctx->m.h263_aic = 1; 00184 00185 ctx->get_pixels_8x4_sym = dnxhd_get_pixels_8x4; 00186 00187 dsputil_init(&ctx->m.dsp, avctx); 00188 ff_dct_common_init(&ctx->m); 00189 #if HAVE_MMX 00190 ff_dnxhd_init_mmx(ctx); 00191 #endif 00192 if (!ctx->m.dct_quantize) 00193 ctx->m.dct_quantize = dct_quantize_c; 00194 00195 ctx->m.mb_height = (avctx->height + 15) / 16; 00196 ctx->m.mb_width = (avctx->width + 15) / 16; 00197 00198 if (avctx->flags & CODEC_FLAG_INTERLACED_DCT) { 00199 ctx->interlaced = 1; 00200 ctx->m.mb_height /= 2; 00201 } 00202 00203 ctx->m.mb_num = ctx->m.mb_height * ctx->m.mb_width; 00204 00205 if (avctx->intra_quant_bias != FF_DEFAULT_QUANT_BIAS) 00206 ctx->m.intra_quant_bias = avctx->intra_quant_bias; 00207 if (dnxhd_init_qmat(ctx, ctx->m.intra_quant_bias, 0) < 0) // XXX tune lbias/cbias 00208 return -1; 00209 00210 // Avid Nitris hardware decoder requires a minimum amount of padding in the coding unit payload 00211 if (ctx->nitris_compat) 00212 ctx->min_padding = 1600; 00213 00214 if (dnxhd_init_vlc(ctx) < 0) 00215 return -1; 00216 if (dnxhd_init_rc(ctx) < 0) 00217 return -1; 00218 00219 FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->slice_size, ctx->m.mb_height*sizeof(uint32_t), fail); 00220 FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->slice_offs, ctx->m.mb_height*sizeof(uint32_t), fail); 00221 FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_bits, ctx->m.mb_num *sizeof(uint16_t), fail); 00222 FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_qscale, ctx->m.mb_num *sizeof(uint8_t) , fail); 00223 00224 ctx->frame.key_frame = 1; 00225 ctx->frame.pict_type = AV_PICTURE_TYPE_I; 00226 ctx->m.avctx->coded_frame = &ctx->frame; 00227 00228 if (avctx->thread_count > MAX_THREADS) { 00229 av_log(avctx, AV_LOG_ERROR, "too many threads\n"); 00230 return -1; 00231 } 00232 00233 ctx->thread[0] = ctx; 00234 for (i = 1; i < avctx->thread_count; i++) { 00235 ctx->thread[i] = av_malloc(sizeof(DNXHDEncContext)); 00236 memcpy(ctx->thread[i], ctx, sizeof(DNXHDEncContext)); 00237 } 00238 00239 return 0; 00240 fail: //for FF_ALLOCZ_OR_GOTO 00241 return -1; 00242 } 00243 00244 static int dnxhd_write_header(AVCodecContext *avctx, uint8_t *buf) 00245 { 00246 DNXHDEncContext *ctx = avctx->priv_data; 00247 const uint8_t header_prefix[5] = { 0x00,0x00,0x02,0x80,0x01 }; 00248 00249 memset(buf, 0, 640); 00250 00251 memcpy(buf, header_prefix, 5); 00252 buf[5] = ctx->interlaced ? ctx->cur_field+2 : 0x01; 00253 buf[6] = 0x80; // crc flag off 00254 buf[7] = 0xa0; // reserved 00255 AV_WB16(buf + 0x18, avctx->height>>ctx->interlaced); // ALPF 00256 AV_WB16(buf + 0x1a, avctx->width); // SPL 00257 AV_WB16(buf + 0x1d, avctx->height>>ctx->interlaced); // NAL 00258 00259 buf[0x21] = 0x38; // FIXME 8 bit per comp 00260 buf[0x22] = 0x88 + (ctx->interlaced<<2); 00261 AV_WB32(buf + 0x28, ctx->cid); // CID 00262 buf[0x2c] = ctx->interlaced ? 0 : 0x80; 00263 00264 buf[0x5f] = 0x01; // UDL 00265 00266 buf[0x167] = 0x02; // reserved 00267 AV_WB16(buf + 0x16a, ctx->m.mb_height * 4 + 4); // MSIPS 00268 buf[0x16d] = ctx->m.mb_height; // Ns 00269 buf[0x16f] = 0x10; // reserved 00270 00271 ctx->msip = buf + 0x170; 00272 return 0; 00273 } 00274 00275 static av_always_inline void dnxhd_encode_dc(DNXHDEncContext *ctx, int diff) 00276 { 00277 int nbits; 00278 if (diff < 0) { 00279 nbits = av_log2_16bit(-2*diff); 00280 diff--; 00281 } else { 00282 nbits = av_log2_16bit(2*diff); 00283 } 00284 put_bits(&ctx->m.pb, ctx->cid_table->dc_bits[nbits] + nbits, 00285 (ctx->cid_table->dc_codes[nbits]<<nbits) + (diff & ((1 << nbits) - 1))); 00286 } 00287 00288 static av_always_inline void dnxhd_encode_block(DNXHDEncContext *ctx, DCTELEM *block, int last_index, int n) 00289 { 00290 int last_non_zero = 0; 00291 int slevel, i, j; 00292 00293 dnxhd_encode_dc(ctx, block[0] - ctx->m.last_dc[n]); 00294 ctx->m.last_dc[n] = block[0]; 00295 00296 for (i = 1; i <= last_index; i++) { 00297 j = ctx->m.intra_scantable.permutated[i]; 00298 slevel = block[j]; 00299 if (slevel) { 00300 int run_level = i - last_non_zero - 1; 00301 int rlevel = (slevel<<1)|!!run_level; 00302 put_bits(&ctx->m.pb, ctx->vlc_bits[rlevel], ctx->vlc_codes[rlevel]); 00303 if (run_level) 00304 put_bits(&ctx->m.pb, ctx->run_bits[run_level], ctx->run_codes[run_level]); 00305 last_non_zero = i; 00306 } 00307 } 00308 put_bits(&ctx->m.pb, ctx->vlc_bits[0], ctx->vlc_codes[0]); // EOB 00309 } 00310 00311 static av_always_inline void dnxhd_unquantize_c(DNXHDEncContext *ctx, DCTELEM *block, int n, int qscale, int last_index) 00312 { 00313 const uint8_t *weight_matrix; 00314 int level; 00315 int i; 00316 00317 weight_matrix = (n&2) ? ctx->cid_table->chroma_weight : ctx->cid_table->luma_weight; 00318 00319 for (i = 1; i <= last_index; i++) { 00320 int j = ctx->m.intra_scantable.permutated[i]; 00321 level = block[j]; 00322 if (level) { 00323 if (level < 0) { 00324 level = (1-2*level) * qscale * weight_matrix[i]; 00325 if (weight_matrix[i] != 32) 00326 level += 32; 00327 level >>= 6; 00328 level = -level; 00329 } else { 00330 level = (2*level+1) * qscale * weight_matrix[i]; 00331 if (weight_matrix[i] != 32) 00332 level += 32; 00333 level >>= 6; 00334 } 00335 block[j] = level; 00336 } 00337 } 00338 } 00339 00340 static av_always_inline int dnxhd_ssd_block(DCTELEM *qblock, DCTELEM *block) 00341 { 00342 int score = 0; 00343 int i; 00344 for (i = 0; i < 64; i++) 00345 score += (block[i]-qblock[i])*(block[i]-qblock[i]); 00346 return score; 00347 } 00348 00349 static av_always_inline int dnxhd_calc_ac_bits(DNXHDEncContext *ctx, DCTELEM *block, int last_index) 00350 { 00351 int last_non_zero = 0; 00352 int bits = 0; 00353 int i, j, level; 00354 for (i = 1; i <= last_index; i++) { 00355 j = ctx->m.intra_scantable.permutated[i]; 00356 level = block[j]; 00357 if (level) { 00358 int run_level = i - last_non_zero - 1; 00359 bits += ctx->vlc_bits[(level<<1)|!!run_level]+ctx->run_bits[run_level]; 00360 last_non_zero = i; 00361 } 00362 } 00363 return bits; 00364 } 00365 00366 static av_always_inline void dnxhd_get_blocks(DNXHDEncContext *ctx, int mb_x, int mb_y) 00367 { 00368 const uint8_t *ptr_y = ctx->thread[0]->src[0] + ((mb_y << 4) * ctx->m.linesize) + (mb_x << 4); 00369 const uint8_t *ptr_u = ctx->thread[0]->src[1] + ((mb_y << 4) * ctx->m.uvlinesize) + (mb_x << 3); 00370 const uint8_t *ptr_v = ctx->thread[0]->src[2] + ((mb_y << 4) * ctx->m.uvlinesize) + (mb_x << 3); 00371 DSPContext *dsp = &ctx->m.dsp; 00372 00373 dsp->get_pixels(ctx->blocks[0], ptr_y , ctx->m.linesize); 00374 dsp->get_pixels(ctx->blocks[1], ptr_y + 8, ctx->m.linesize); 00375 dsp->get_pixels(ctx->blocks[2], ptr_u , ctx->m.uvlinesize); 00376 dsp->get_pixels(ctx->blocks[3], ptr_v , ctx->m.uvlinesize); 00377 00378 if (mb_y+1 == ctx->m.mb_height && ctx->m.avctx->height == 1080) { 00379 if (ctx->interlaced) { 00380 ctx->get_pixels_8x4_sym(ctx->blocks[4], ptr_y + ctx->dct_y_offset , ctx->m.linesize); 00381 ctx->get_pixels_8x4_sym(ctx->blocks[5], ptr_y + ctx->dct_y_offset + 8, ctx->m.linesize); 00382 ctx->get_pixels_8x4_sym(ctx->blocks[6], ptr_u + ctx->dct_uv_offset , ctx->m.uvlinesize); 00383 ctx->get_pixels_8x4_sym(ctx->blocks[7], ptr_v + ctx->dct_uv_offset , ctx->m.uvlinesize); 00384 } else { 00385 dsp->clear_block(ctx->blocks[4]); dsp->clear_block(ctx->blocks[5]); 00386 dsp->clear_block(ctx->blocks[6]); dsp->clear_block(ctx->blocks[7]); 00387 } 00388 } else { 00389 dsp->get_pixels(ctx->blocks[4], ptr_y + ctx->dct_y_offset , ctx->m.linesize); 00390 dsp->get_pixels(ctx->blocks[5], ptr_y + ctx->dct_y_offset + 8, ctx->m.linesize); 00391 dsp->get_pixels(ctx->blocks[6], ptr_u + ctx->dct_uv_offset , ctx->m.uvlinesize); 00392 dsp->get_pixels(ctx->blocks[7], ptr_v + ctx->dct_uv_offset , ctx->m.uvlinesize); 00393 } 00394 } 00395 00396 static av_always_inline int dnxhd_switch_matrix(DNXHDEncContext *ctx, int i) 00397 { 00398 if (i&2) { 00399 ctx->m.q_intra_matrix16 = ctx->qmatrix_c16; 00400 ctx->m.q_intra_matrix = ctx->qmatrix_c; 00401 return 1 + (i&1); 00402 } else { 00403 ctx->m.q_intra_matrix16 = ctx->qmatrix_l16; 00404 ctx->m.q_intra_matrix = ctx->qmatrix_l; 00405 return 0; 00406 } 00407 } 00408 00409 static int dnxhd_calc_bits_thread(AVCodecContext *avctx, void *arg, int jobnr, int threadnr) 00410 { 00411 DNXHDEncContext *ctx = avctx->priv_data; 00412 int mb_y = jobnr, mb_x; 00413 int qscale = ctx->qscale; 00414 LOCAL_ALIGNED_16(DCTELEM, block, [64]); 00415 ctx = ctx->thread[threadnr]; 00416 00417 ctx->m.last_dc[0] = 00418 ctx->m.last_dc[1] = 00419 ctx->m.last_dc[2] = 1024; 00420 00421 for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) { 00422 unsigned mb = mb_y * ctx->m.mb_width + mb_x; 00423 int ssd = 0; 00424 int ac_bits = 0; 00425 int dc_bits = 0; 00426 int i; 00427 00428 dnxhd_get_blocks(ctx, mb_x, mb_y); 00429 00430 for (i = 0; i < 8; i++) { 00431 DCTELEM *src_block = ctx->blocks[i]; 00432 int overflow, nbits, diff, last_index; 00433 int n = dnxhd_switch_matrix(ctx, i); 00434 00435 memcpy(block, src_block, 64*sizeof(*block)); 00436 last_index = ctx->m.dct_quantize(&ctx->m, block, i, qscale, &overflow); 00437 ac_bits += dnxhd_calc_ac_bits(ctx, block, last_index); 00438 00439 diff = block[0] - ctx->m.last_dc[n]; 00440 if (diff < 0) nbits = av_log2_16bit(-2*diff); 00441 else nbits = av_log2_16bit( 2*diff); 00442 dc_bits += ctx->cid_table->dc_bits[nbits] + nbits; 00443 00444 ctx->m.last_dc[n] = block[0]; 00445 00446 if (avctx->mb_decision == FF_MB_DECISION_RD || !RC_VARIANCE) { 00447 dnxhd_unquantize_c(ctx, block, i, qscale, last_index); 00448 ctx->m.dsp.idct(block); 00449 ssd += dnxhd_ssd_block(block, src_block); 00450 } 00451 } 00452 ctx->mb_rc[qscale][mb].ssd = ssd; 00453 ctx->mb_rc[qscale][mb].bits = ac_bits+dc_bits+12+8*ctx->vlc_bits[0]; 00454 } 00455 return 0; 00456 } 00457 00458 static int dnxhd_encode_thread(AVCodecContext *avctx, void *arg, int jobnr, int threadnr) 00459 { 00460 DNXHDEncContext *ctx = avctx->priv_data; 00461 int mb_y = jobnr, mb_x; 00462 ctx = ctx->thread[threadnr]; 00463 init_put_bits(&ctx->m.pb, (uint8_t *)arg + 640 + ctx->slice_offs[jobnr], ctx->slice_size[jobnr]); 00464 00465 ctx->m.last_dc[0] = 00466 ctx->m.last_dc[1] = 00467 ctx->m.last_dc[2] = 1024; 00468 for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) { 00469 unsigned mb = mb_y * ctx->m.mb_width + mb_x; 00470 int qscale = ctx->mb_qscale[mb]; 00471 int i; 00472 00473 put_bits(&ctx->m.pb, 12, qscale<<1); 00474 00475 dnxhd_get_blocks(ctx, mb_x, mb_y); 00476 00477 for (i = 0; i < 8; i++) { 00478 DCTELEM *block = ctx->blocks[i]; 00479 int last_index, overflow; 00480 int n = dnxhd_switch_matrix(ctx, i); 00481 last_index = ctx->m.dct_quantize(&ctx->m, block, i, qscale, &overflow); 00482 //START_TIMER; 00483 dnxhd_encode_block(ctx, block, last_index, n); 00484 //STOP_TIMER("encode_block"); 00485 } 00486 } 00487 if (put_bits_count(&ctx->m.pb)&31) 00488 put_bits(&ctx->m.pb, 32-(put_bits_count(&ctx->m.pb)&31), 0); 00489 flush_put_bits(&ctx->m.pb); 00490 return 0; 00491 } 00492 00493 static void dnxhd_setup_threads_slices(DNXHDEncContext *ctx) 00494 { 00495 int mb_y, mb_x; 00496 int offset = 0; 00497 for (mb_y = 0; mb_y < ctx->m.mb_height; mb_y++) { 00498 int thread_size; 00499 ctx->slice_offs[mb_y] = offset; 00500 ctx->slice_size[mb_y] = 0; 00501 for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) { 00502 unsigned mb = mb_y * ctx->m.mb_width + mb_x; 00503 ctx->slice_size[mb_y] += ctx->mb_bits[mb]; 00504 } 00505 ctx->slice_size[mb_y] = (ctx->slice_size[mb_y]+31)&~31; 00506 ctx->slice_size[mb_y] >>= 3; 00507 thread_size = ctx->slice_size[mb_y]; 00508 offset += thread_size; 00509 } 00510 } 00511 00512 static int dnxhd_mb_var_thread(AVCodecContext *avctx, void *arg, int jobnr, int threadnr) 00513 { 00514 DNXHDEncContext *ctx = avctx->priv_data; 00515 int mb_y = jobnr, mb_x; 00516 ctx = ctx->thread[threadnr]; 00517 for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) { 00518 unsigned mb = mb_y * ctx->m.mb_width + mb_x; 00519 uint8_t *pix = ctx->thread[0]->src[0] + ((mb_y<<4) * ctx->m.linesize) + (mb_x<<4); 00520 int sum = ctx->m.dsp.pix_sum(pix, ctx->m.linesize); 00521 int varc = (ctx->m.dsp.pix_norm1(pix, ctx->m.linesize) - (((unsigned)(sum*sum))>>8)+128)>>8; 00522 ctx->mb_cmp[mb].value = varc; 00523 ctx->mb_cmp[mb].mb = mb; 00524 } 00525 return 0; 00526 } 00527 00528 static int dnxhd_encode_rdo(AVCodecContext *avctx, DNXHDEncContext *ctx) 00529 { 00530 int lambda, up_step, down_step; 00531 int last_lower = INT_MAX, last_higher = 0; 00532 int x, y, q; 00533 00534 for (q = 1; q < avctx->qmax; q++) { 00535 ctx->qscale = q; 00536 avctx->execute2(avctx, dnxhd_calc_bits_thread, NULL, NULL, ctx->m.mb_height); 00537 } 00538 up_step = down_step = 2<<LAMBDA_FRAC_BITS; 00539 lambda = ctx->lambda; 00540 00541 for (;;) { 00542 int bits = 0; 00543 int end = 0; 00544 if (lambda == last_higher) { 00545 lambda++; 00546 end = 1; // need to set final qscales/bits 00547 } 00548 for (y = 0; y < ctx->m.mb_height; y++) { 00549 for (x = 0; x < ctx->m.mb_width; x++) { 00550 unsigned min = UINT_MAX; 00551 int qscale = 1; 00552 int mb = y*ctx->m.mb_width+x; 00553 for (q = 1; q < avctx->qmax; q++) { 00554 unsigned score = ctx->mb_rc[q][mb].bits*lambda+(ctx->mb_rc[q][mb].ssd<<LAMBDA_FRAC_BITS); 00555 if (score < min) { 00556 min = score; 00557 qscale = q; 00558 } 00559 } 00560 bits += ctx->mb_rc[qscale][mb].bits; 00561 ctx->mb_qscale[mb] = qscale; 00562 ctx->mb_bits[mb] = ctx->mb_rc[qscale][mb].bits; 00563 } 00564 bits = (bits+31)&~31; // padding 00565 if (bits > ctx->frame_bits) 00566 break; 00567 } 00568 //av_dlog(ctx->m.avctx, "lambda %d, up %u, down %u, bits %d, frame %d\n", 00569 // lambda, last_higher, last_lower, bits, ctx->frame_bits); 00570 if (end) { 00571 if (bits > ctx->frame_bits) 00572 return -1; 00573 break; 00574 } 00575 if (bits < ctx->frame_bits) { 00576 last_lower = FFMIN(lambda, last_lower); 00577 if (last_higher != 0) 00578 lambda = (lambda+last_higher)>>1; 00579 else 00580 lambda -= down_step; 00581 down_step *= 5; // XXX tune ? 00582 up_step = 1<<LAMBDA_FRAC_BITS; 00583 lambda = FFMAX(1, lambda); 00584 if (lambda == last_lower) 00585 break; 00586 } else { 00587 last_higher = FFMAX(lambda, last_higher); 00588 if (last_lower != INT_MAX) 00589 lambda = (lambda+last_lower)>>1; 00590 else if ((int64_t)lambda + up_step > INT_MAX) 00591 return -1; 00592 else 00593 lambda += up_step; 00594 up_step = FFMIN((int64_t)up_step*5, INT_MAX); 00595 down_step = 1<<LAMBDA_FRAC_BITS; 00596 } 00597 } 00598 //av_dlog(ctx->m.avctx, "out lambda %d\n", lambda); 00599 ctx->lambda = lambda; 00600 return 0; 00601 } 00602 00603 static int dnxhd_find_qscale(DNXHDEncContext *ctx) 00604 { 00605 int bits = 0; 00606 int up_step = 1; 00607 int down_step = 1; 00608 int last_higher = 0; 00609 int last_lower = INT_MAX; 00610 int qscale; 00611 int x, y; 00612 00613 qscale = ctx->qscale; 00614 for (;;) { 00615 bits = 0; 00616 ctx->qscale = qscale; 00617 // XXX avoid recalculating bits 00618 ctx->m.avctx->execute2(ctx->m.avctx, dnxhd_calc_bits_thread, NULL, NULL, ctx->m.mb_height); 00619 for (y = 0; y < ctx->m.mb_height; y++) { 00620 for (x = 0; x < ctx->m.mb_width; x++) 00621 bits += ctx->mb_rc[qscale][y*ctx->m.mb_width+x].bits; 00622 bits = (bits+31)&~31; // padding 00623 if (bits > ctx->frame_bits) 00624 break; 00625 } 00626 //av_dlog(ctx->m.avctx, "%d, qscale %d, bits %d, frame %d, higher %d, lower %d\n", 00627 // ctx->m.avctx->frame_number, qscale, bits, ctx->frame_bits, last_higher, last_lower); 00628 if (bits < ctx->frame_bits) { 00629 if (qscale == 1) 00630 return 1; 00631 if (last_higher == qscale - 1) { 00632 qscale = last_higher; 00633 break; 00634 } 00635 last_lower = FFMIN(qscale, last_lower); 00636 if (last_higher != 0) 00637 qscale = (qscale+last_higher)>>1; 00638 else 00639 qscale -= down_step++; 00640 if (qscale < 1) 00641 qscale = 1; 00642 up_step = 1; 00643 } else { 00644 if (last_lower == qscale + 1) 00645 break; 00646 last_higher = FFMAX(qscale, last_higher); 00647 if (last_lower != INT_MAX) 00648 qscale = (qscale+last_lower)>>1; 00649 else 00650 qscale += up_step++; 00651 down_step = 1; 00652 if (qscale >= ctx->m.avctx->qmax) 00653 return -1; 00654 } 00655 } 00656 //av_dlog(ctx->m.avctx, "out qscale %d\n", qscale); 00657 ctx->qscale = qscale; 00658 return 0; 00659 } 00660 00661 #define BUCKET_BITS 8 00662 #define RADIX_PASSES 4 00663 #define NBUCKETS (1 << BUCKET_BITS) 00664 00665 static inline int get_bucket(int value, int shift) 00666 { 00667 value >>= shift; 00668 value &= NBUCKETS - 1; 00669 return NBUCKETS - 1 - value; 00670 } 00671 00672 static void radix_count(const RCCMPEntry *data, int size, int buckets[RADIX_PASSES][NBUCKETS]) 00673 { 00674 int i, j; 00675 memset(buckets, 0, sizeof(buckets[0][0]) * RADIX_PASSES * NBUCKETS); 00676 for (i = 0; i < size; i++) { 00677 int v = data[i].value; 00678 for (j = 0; j < RADIX_PASSES; j++) { 00679 buckets[j][get_bucket(v, 0)]++; 00680 v >>= BUCKET_BITS; 00681 } 00682 assert(!v); 00683 } 00684 for (j = 0; j < RADIX_PASSES; j++) { 00685 int offset = size; 00686 for (i = NBUCKETS - 1; i >= 0; i--) 00687 buckets[j][i] = offset -= buckets[j][i]; 00688 assert(!buckets[j][0]); 00689 } 00690 } 00691 00692 static void radix_sort_pass(RCCMPEntry *dst, const RCCMPEntry *data, int size, int buckets[NBUCKETS], int pass) 00693 { 00694 int shift = pass * BUCKET_BITS; 00695 int i; 00696 for (i = 0; i < size; i++) { 00697 int v = get_bucket(data[i].value, shift); 00698 int pos = buckets[v]++; 00699 dst[pos] = data[i]; 00700 } 00701 } 00702 00703 static void radix_sort(RCCMPEntry *data, int size) 00704 { 00705 int buckets[RADIX_PASSES][NBUCKETS]; 00706 RCCMPEntry *tmp = av_malloc(sizeof(*tmp) * size); 00707 radix_count(data, size, buckets); 00708 radix_sort_pass(tmp, data, size, buckets[0], 0); 00709 radix_sort_pass(data, tmp, size, buckets[1], 1); 00710 if (buckets[2][NBUCKETS - 1] || buckets[3][NBUCKETS - 1]) { 00711 radix_sort_pass(tmp, data, size, buckets[2], 2); 00712 radix_sort_pass(data, tmp, size, buckets[3], 3); 00713 } 00714 av_free(tmp); 00715 } 00716 00717 static int dnxhd_encode_fast(AVCodecContext *avctx, DNXHDEncContext *ctx) 00718 { 00719 int max_bits = 0; 00720 int ret, x, y; 00721 if ((ret = dnxhd_find_qscale(ctx)) < 0) 00722 return -1; 00723 for (y = 0; y < ctx->m.mb_height; y++) { 00724 for (x = 0; x < ctx->m.mb_width; x++) { 00725 int mb = y*ctx->m.mb_width+x; 00726 int delta_bits; 00727 ctx->mb_qscale[mb] = ctx->qscale; 00728 ctx->mb_bits[mb] = ctx->mb_rc[ctx->qscale][mb].bits; 00729 max_bits += ctx->mb_rc[ctx->qscale][mb].bits; 00730 if (!RC_VARIANCE) { 00731 delta_bits = ctx->mb_rc[ctx->qscale][mb].bits-ctx->mb_rc[ctx->qscale+1][mb].bits; 00732 ctx->mb_cmp[mb].mb = mb; 00733 ctx->mb_cmp[mb].value = delta_bits ? 00734 ((ctx->mb_rc[ctx->qscale][mb].ssd-ctx->mb_rc[ctx->qscale+1][mb].ssd)*100)/delta_bits 00735 : INT_MIN; //avoid increasing qscale 00736 } 00737 } 00738 max_bits += 31; //worst padding 00739 } 00740 if (!ret) { 00741 if (RC_VARIANCE) 00742 avctx->execute2(avctx, dnxhd_mb_var_thread, NULL, NULL, ctx->m.mb_height); 00743 radix_sort(ctx->mb_cmp, ctx->m.mb_num); 00744 for (x = 0; x < ctx->m.mb_num && max_bits > ctx->frame_bits; x++) { 00745 int mb = ctx->mb_cmp[x].mb; 00746 max_bits -= ctx->mb_rc[ctx->qscale][mb].bits - ctx->mb_rc[ctx->qscale+1][mb].bits; 00747 ctx->mb_qscale[mb] = ctx->qscale+1; 00748 ctx->mb_bits[mb] = ctx->mb_rc[ctx->qscale+1][mb].bits; 00749 } 00750 } 00751 return 0; 00752 } 00753 00754 static void dnxhd_load_picture(DNXHDEncContext *ctx, const AVFrame *frame) 00755 { 00756 int i; 00757 00758 for (i = 0; i < 3; i++) { 00759 ctx->frame.data[i] = frame->data[i]; 00760 ctx->frame.linesize[i] = frame->linesize[i]; 00761 } 00762 00763 for (i = 0; i < ctx->m.avctx->thread_count; i++) { 00764 ctx->thread[i]->m.linesize = ctx->frame.linesize[0]<<ctx->interlaced; 00765 ctx->thread[i]->m.uvlinesize = ctx->frame.linesize[1]<<ctx->interlaced; 00766 ctx->thread[i]->dct_y_offset = ctx->m.linesize *8; 00767 ctx->thread[i]->dct_uv_offset = ctx->m.uvlinesize*8; 00768 } 00769 00770 ctx->frame.interlaced_frame = frame->interlaced_frame; 00771 ctx->cur_field = frame->interlaced_frame && !frame->top_field_first; 00772 } 00773 00774 static int dnxhd_encode_picture(AVCodecContext *avctx, unsigned char *buf, int buf_size, void *data) 00775 { 00776 DNXHDEncContext *ctx = avctx->priv_data; 00777 int first_field = 1; 00778 int offset, i, ret; 00779 00780 if (buf_size < ctx->cid_table->frame_size) { 00781 av_log(avctx, AV_LOG_ERROR, "output buffer is too small to compress picture\n"); 00782 return -1; 00783 } 00784 00785 dnxhd_load_picture(ctx, data); 00786 00787 encode_coding_unit: 00788 for (i = 0; i < 3; i++) { 00789 ctx->src[i] = ctx->frame.data[i]; 00790 if (ctx->interlaced && ctx->cur_field) 00791 ctx->src[i] += ctx->frame.linesize[i]; 00792 } 00793 00794 dnxhd_write_header(avctx, buf); 00795 00796 if (avctx->mb_decision == FF_MB_DECISION_RD) 00797 ret = dnxhd_encode_rdo(avctx, ctx); 00798 else 00799 ret = dnxhd_encode_fast(avctx, ctx); 00800 if (ret < 0) { 00801 av_log(avctx, AV_LOG_ERROR, 00802 "picture could not fit ratecontrol constraints, increase qmax\n"); 00803 return -1; 00804 } 00805 00806 dnxhd_setup_threads_slices(ctx); 00807 00808 offset = 0; 00809 for (i = 0; i < ctx->m.mb_height; i++) { 00810 AV_WB32(ctx->msip + i * 4, offset); 00811 offset += ctx->slice_size[i]; 00812 assert(!(ctx->slice_size[i] & 3)); 00813 } 00814 00815 avctx->execute2(avctx, dnxhd_encode_thread, buf, NULL, ctx->m.mb_height); 00816 00817 assert(640 + offset + 4 <= ctx->cid_table->coding_unit_size); 00818 memset(buf + 640 + offset, 0, ctx->cid_table->coding_unit_size - 4 - offset - 640); 00819 00820 AV_WB32(buf + ctx->cid_table->coding_unit_size - 4, 0x600DC0DE); // EOF 00821 00822 if (ctx->interlaced && first_field) { 00823 first_field = 0; 00824 ctx->cur_field ^= 1; 00825 buf += ctx->cid_table->coding_unit_size; 00826 buf_size -= ctx->cid_table->coding_unit_size; 00827 goto encode_coding_unit; 00828 } 00829 00830 ctx->frame.quality = ctx->qscale*FF_QP2LAMBDA; 00831 00832 return ctx->cid_table->frame_size; 00833 } 00834 00835 static int dnxhd_encode_end(AVCodecContext *avctx) 00836 { 00837 DNXHDEncContext *ctx = avctx->priv_data; 00838 int max_level = 1<<(ctx->cid_table->bit_depth+2); 00839 int i; 00840 00841 av_free(ctx->vlc_codes-max_level*2); 00842 av_free(ctx->vlc_bits -max_level*2); 00843 av_freep(&ctx->run_codes); 00844 av_freep(&ctx->run_bits); 00845 00846 av_freep(&ctx->mb_bits); 00847 av_freep(&ctx->mb_qscale); 00848 av_freep(&ctx->mb_rc); 00849 av_freep(&ctx->mb_cmp); 00850 av_freep(&ctx->slice_size); 00851 av_freep(&ctx->slice_offs); 00852 00853 av_freep(&ctx->qmatrix_c); 00854 av_freep(&ctx->qmatrix_l); 00855 av_freep(&ctx->qmatrix_c16); 00856 av_freep(&ctx->qmatrix_l16); 00857 00858 for (i = 1; i < avctx->thread_count; i++) 00859 av_freep(&ctx->thread[i]); 00860 00861 return 0; 00862 } 00863 00864 AVCodec ff_dnxhd_encoder = { 00865 "dnxhd", 00866 AVMEDIA_TYPE_VIDEO, 00867 CODEC_ID_DNXHD, 00868 sizeof(DNXHDEncContext), 00869 dnxhd_encode_init, 00870 dnxhd_encode_picture, 00871 dnxhd_encode_end, 00872 .capabilities = CODEC_CAP_SLICE_THREADS, 00873 .pix_fmts = (const enum PixelFormat[]){PIX_FMT_YUV422P, PIX_FMT_NONE}, 00874 .long_name = NULL_IF_CONFIG_SMALL("VC3/DNxHD"), 00875 .priv_class = &class, 00876 };