Library Coq.Numbers.Integer.BigZ.ZMake



Require Import ZArith.
Require Import BigNumPrelude.
Require Import NSig.
Require Import ZSig.

Open Scope Z_scope.

ZMake



A generic transformation from a structure of natural numbers NSig.NType to a structure of integers ZSig.ZType.

Module Make (N:NType) <: ZType.

 Inductive t_ :=
  | Pos : N.t -> t_
  | Neg : N.t -> t_.

 Definition t := t_.

 Definition zero := Pos N.zero.
 Definition one := Pos N.one.
 Definition minus_one := Neg N.one.

 Definition of_Z x :=
  match x with
  | Zpos x => Pos (N.of_N (Npos x))
  | Z0 => zero
  | Zneg x => Neg (N.of_N (Npos x))
  end.

 Definition to_Z x :=
  match x with
  | Pos nx => N.to_Z nx
  | Neg nx => Zopp (N.to_Z nx)
  end.

 Theorem spec_of_Z: forall x, to_Z (of_Z x) = x.

 Definition eq x y := (to_Z x = to_Z y).

 Theorem spec_0: to_Z zero = 0.

 Theorem spec_1: to_Z one = 1.

 Theorem spec_m1: to_Z minus_one = -1.

 Definition compare x y :=
  match x, y with
  | Pos nx, Pos ny => N.compare nx ny
  | Pos nx, Neg ny =>
    match N.compare nx N.zero with
    | Gt => Gt
    | _ => N.compare ny N.zero
    end
  | Neg nx, Pos ny =>
    match N.compare N.zero nx with
    | Lt => Lt
    | _ => N.compare N.zero ny
    end
  | Neg nx, Neg ny => N.compare ny nx
  end.

 Theorem spec_compare :
  forall x y, compare x y = Zcompare (to_Z x) (to_Z y).

 Definition eq_bool x y :=
  match compare x y with
  | Eq => true
  | _ => false
  end.

 Theorem spec_eq_bool:
  forall x y, eq_bool x y = Zeq_bool (to_Z x) (to_Z y).

 Definition lt n m := to_Z n < to_Z m.
 Definition le n m := to_Z n <= to_Z m.

 Definition min n m := match compare n m with Gt => m | _ => n end.
 Definition max n m := match compare n m with Lt => m | _ => n end.

 Theorem spec_min : forall n m, to_Z (min n m) = Zmin (to_Z n) (to_Z m).

 Theorem spec_max : forall n m, to_Z (max n m) = Zmax (to_Z n) (to_Z m).

 Definition to_N x :=
  match x with
  | Pos nx => nx
  | Neg nx => nx
  end.

 Definition abs x := Pos (to_N x).

 Theorem spec_abs: forall x, to_Z (abs x) = Zabs (to_Z x).

 Definition opp x :=
  match x with
  | Pos nx => Neg nx
  | Neg nx => Pos nx
  end.

 Theorem spec_opp: forall x, to_Z (opp x) = - to_Z x.

 Definition succ x :=
  match x with
  | Pos n => Pos (N.succ n)
  | Neg n =>
    match N.compare N.zero n with
    | Lt => Neg (N.pred n)
    | _ => one
    end
  end.

 Theorem spec_succ: forall n, to_Z (succ n) = to_Z n + 1.

 Definition add x y :=
  match x, y with
  | Pos nx, Pos ny => Pos (N.add nx ny)
  | Pos nx, Neg ny =>
    match N.compare nx ny with
    | Gt => Pos (N.sub nx ny)
    | Eq => zero
    | Lt => Neg (N.sub ny nx)
    end
  | Neg nx, Pos ny =>
    match N.compare nx ny with
    | Gt => Neg (N.sub nx ny)
    | Eq => zero
    | Lt => Pos (N.sub ny nx)
    end
  | Neg nx, Neg ny => Neg (N.add nx ny)
  end.

 Theorem spec_add: forall x y, to_Z (add x y) = to_Z x + to_Z y.

 Definition pred x :=
  match x with
  | Pos nx =>
    match N.compare N.zero nx with
    | Lt => Pos (N.pred nx)
    | _ => minus_one
    end
  | Neg nx => Neg (N.succ nx)
  end.

 Theorem spec_pred: forall x, to_Z (pred x) = to_Z x - 1.

 Definition sub x y :=
  match x, y with
  | Pos nx, Pos ny =>
    match N.compare nx ny with
    | Gt => Pos (N.sub nx ny)
    | Eq => zero
    | Lt => Neg (N.sub ny nx)
    end
  | Pos nx, Neg ny => Pos (N.add nx ny)
  | Neg nx, Pos ny => Neg (N.add nx ny)
  | Neg nx, Neg ny =>
    match N.compare nx ny with
    | Gt => Neg (N.sub nx ny)
    | Eq => zero
    | Lt => Pos (N.sub ny nx)
    end
  end.

 Theorem spec_sub: forall x y, to_Z (sub x y) = to_Z x - to_Z y.

 Definition mul x y :=
  match x, y with
  | Pos nx, Pos ny => Pos (N.mul nx ny)
  | Pos nx, Neg ny => Neg (N.mul nx ny)
  | Neg nx, Pos ny => Neg (N.mul nx ny)
  | Neg nx, Neg ny => Pos (N.mul nx ny)
  end.

 Theorem spec_mul: forall x y, to_Z (mul x y) = to_Z x * to_Z y.

 Definition square x :=
  match x with
  | Pos nx => Pos (N.square nx)
  | Neg nx => Pos (N.square nx)
  end.

 Theorem spec_square: forall x, to_Z (square x) = to_Z x * to_Z x.

 Definition power_pos x p :=
  match x with
  | Pos nx => Pos (N.power_pos nx p)
  | Neg nx =>
    match p with
    | xH => x
    | xO _ => Pos (N.power_pos nx p)
    | xI _ => Neg (N.power_pos nx p)
    end
  end.

 Theorem spec_power_pos: forall x n, to_Z (power_pos x n) = to_Z x ^ Zpos n.

 Definition power x n :=
  match n with
  | N0 => one
  | Npos p => power_pos x p
  end.

 Theorem spec_power: forall x n, to_Z (power x n) = to_Z x ^ Z_of_N n.

 Definition sqrt x :=
  match x with
  | Pos nx => Pos (N.sqrt nx)
  | Neg nx => Neg N.zero
  end.

 Theorem spec_sqrt: forall x, 0 <= to_Z x ->
   to_Z (sqrt x) ^ 2 <= to_Z x < (to_Z (sqrt x) + 1) ^ 2.

 Definition div_eucl x y :=
  match x, y with
  | Pos nx, Pos ny =>
    let (q, r) := N.div_eucl nx ny in
    (Pos q, Pos r)
  | Pos nx, Neg ny =>
    let (q, r) := N.div_eucl nx ny in
    if N.eq_bool N.zero r
    then (Neg q, zero)
    else (Neg (N.succ q), Neg (N.sub ny r))
  | Neg nx, Pos ny =>
    let (q, r) := N.div_eucl nx ny in
    if N.eq_bool N.zero r
    then (Neg q, zero)
    else (Neg (N.succ q), Pos (N.sub ny r))
  | Neg nx, Neg ny =>
    let (q, r) := N.div_eucl nx ny in
    (Pos q, Neg r)
  end.

 Ltac break_nonneg x px EQx :=
  let H := fresh "H" in
  assert (H:=N.spec_pos x);
  destruct (N.to_Z x) as [|px|px]_eqn:EQx;
   [clear H|clear H|elim H; reflexivity].

 Theorem spec_div_eucl: forall x y,
   let (q,r) := div_eucl x y in
   (to_Z q, to_Z r) = Zdiv_eucl (to_Z x) (to_Z y).

 Definition div x y := fst (div_eucl x y).

 Definition spec_div: forall x y,
     to_Z (div x y) = to_Z x / to_Z y.

 Definition modulo x y := snd (div_eucl x y).

 Theorem spec_modulo:
   forall x y, to_Z (modulo x y) = to_Z x mod to_Z y.

 Definition gcd x y :=
  match x, y with
  | Pos nx, Pos ny => Pos (N.gcd nx ny)
  | Pos nx, Neg ny => Pos (N.gcd nx ny)
  | Neg nx, Pos ny => Pos (N.gcd nx ny)
  | Neg nx, Neg ny => Pos (N.gcd nx ny)
  end.

 Theorem spec_gcd: forall a b, to_Z (gcd a b) = Zgcd (to_Z a) (to_Z b).

 Definition sgn x :=
  match compare zero x with
   | Lt => one
   | Eq => zero
   | Gt => minus_one
  end.

 Lemma spec_sgn : forall x, to_Z (sgn x) = Zsgn (to_Z x).

End Make.