ekg2
|
00001 /* orginal version of SHA-1 in C by Steve Reid <steve@edmweb.com> */ 00002 00003 #define rol(value, bits) (((value) << (bits)) | ((value) >> (32 - (bits)))) 00004 00005 /* blk0() and blk() perform the initial expand. */ 00006 /* I got the idea of expanding during the round function from SSLeay */ 00007 #define blk0(i) (block->l[i] = (rol(block->l[i],24)&0xFF00FF00) \ 00008 |(rol(block->l[i],8)&0x00FF00FF)) 00009 #define blk(i) (block->l[i&15] = rol(block->l[(i+13)&15]^block->l[(i+8)&15] \ 00010 ^block->l[(i+2)&15]^block->l[i&15],1)) 00011 00012 /* (R0+R1), R2, R3, R4 are the different operations used in SHA1 */ 00013 #define R0(v,w,x,y,z,i) z+=((w&(x^y))^y)+blk0(i)+0x5A827999+rol(v,5);w=rol(w,30); 00014 #define R1(v,w,x,y,z,i) z+=((w&(x^y))^y)+blk(i)+0x5A827999+rol(v,5);w=rol(w,30); 00015 #define R2(v,w,x,y,z,i) z+=(w^x^y)+blk(i)+0x6ED9EBA1+rol(v,5);w=rol(w,30); 00016 #define R3(v,w,x,y,z,i) z+=(((w|x)&y)|(w&x))+blk(i)+0x8F1BBCDC+rol(v,5);w=rol(w,30); 00017 #define R4(v,w,x,y,z,i) z+=(w^x^y)+blk(i)+0xCA62C1D6+rol(v,5);w=rol(w,30); 00018 00019 /* S* is like R* but it don't get block values (we assume there're 00's) */ 00020 #define S0(v,w,x,y,z,i) z+=((w&(x^y))^y)+0x5A827999+rol(v,5);w=rol(w,30); 00021 #define S1(v,w,x,y,z,i) z+=((w&(x^y))^y)+0x5A827999+rol(v,5);w=rol(w,30); 00022 #define S2(v,w,x,y,z,i) z+=(w^x^y)+0x6ED9EBA1+rol(v,5);w=rol(w,30); 00023 #define S3(v,w,x,y,z,i) z+=(((w|x)&y)|(w&x))+0x8F1BBCDC+rol(v,5);w=rol(w,30); 00024 #define S4(v,w,x,y,z,i) z+=(w^x^y)+0xCA62C1D6+rol(v,5);w=rol(w,30); 00025 00026 /* XXX, ?SHA-1 Broken?, XXX */ 00027 static inline int gg_login_sha1hash(const unsigned char *password, const size_t passlen, const uint32_t seed, const uint32_t *dig) { 00028 #define SHA_STATE0 0x67452301 00029 #define SHA_STATE1 0xEFCDAB89 00030 #define SHA_STATE2 0x98BADCFE 00031 #define SHA_STATE3 0x10325476 00032 #define SHA_STATE4 0xC3D2E1F0 00033 int i; 00034 00035 unsigned char buffer[64]; 00036 00037 /* SHA1Init() */ 00038 /* SHA1 initialization constants */ 00039 uint32_t a = SHA_STATE0; 00040 uint32_t b = SHA_STATE1; 00041 uint32_t c = SHA_STATE2; 00042 uint32_t d = SHA_STATE3; 00043 uint32_t e = SHA_STATE4; 00044 00045 /* XXX, it's optimized but it'll work only for short passwords, shorter than 63-4-7 */ 00046 { 00047 for (i = 0; i < passlen; i++) 00048 buffer[i] = digit[password[i]]; 00049 00050 memcpy(&buffer[passlen], &seed, 4); 00051 } 00052 00053 /* SHA1Final() */ 00054 /* Add padding and return the message digest. */ 00055 { 00056 /* pad */ 00057 buffer[passlen+4] = '\200'; 00058 for (i = passlen+5; i < 63-7; i++) 00059 buffer[i] = '\0'; 00060 00061 /* finalcount */ 00062 for (i = 63-7; i < 63; i++) 00063 buffer[i] = '\0'; 00064 00065 buffer[63] = (unsigned char) (((passlen+4) << 3) & 0xff); 00066 } 00067 /* SHA1Transform() */ 00068 /* Hash a single 512-bit block. This is the core of the algorithm. */ 00069 { 00070 typedef union { 00071 unsigned char c[64]; 00072 uint32_t l[16]; 00073 } CHAR64LONG16; 00074 00075 CHAR64LONG16* block = (CHAR64LONG16*) buffer; 00076 /* We assume here you don't need more than 2 blocks for password (2*4=8 chars) + 1 block for seed */ 00077 /* if you need more replace S0()'s with R0()'s */ 00078 00079 /* 4 rounds of 20 operations each. Loop unrolled. */ 00080 R0(a,b,c,d,e, 0); R0(e,a,b,c,d, 1); R0(d,e,a,b,c, 2); S0(c,d,e,a,b, 3); 00081 S0(b,c,d,e,a, 4); S0(a,b,c,d,e, 5); S0(e,a,b,c,d, 6); S0(d,e,a,b,c, 7); 00082 S0(c,d,e,a,b, 8); S0(b,c,d,e,a, 9); S0(a,b,c,d,e,10); S0(e,a,b,c,d,11); 00083 S0(d,e,a,b,c,12); S0(c,d,e,a,b,13); S0(b,c,d,e,a,14); R0(a,b,c,d,e,15); 00084 00085 R1(e,a,b,c,d,16); R1(d,e,a,b,c,17); R1(c,d,e,a,b,18); R1(b,c,d,e,a,19); 00086 00087 R2(a,b,c,d,e,20); R2(e,a,b,c,d,21); R2(d,e,a,b,c,22); R2(c,d,e,a,b,23); 00088 R2(b,c,d,e,a,24); R2(a,b,c,d,e,25); R2(e,a,b,c,d,26); R2(d,e,a,b,c,27); 00089 R2(c,d,e,a,b,28); R2(b,c,d,e,a,29); R2(a,b,c,d,e,30); R2(e,a,b,c,d,31); 00090 R2(d,e,a,b,c,32); R2(c,d,e,a,b,33); R2(b,c,d,e,a,34); R2(a,b,c,d,e,35); 00091 R2(e,a,b,c,d,36); R2(d,e,a,b,c,37); R2(c,d,e,a,b,38); R2(b,c,d,e,a,39); 00092 00093 R3(a,b,c,d,e,40); R3(e,a,b,c,d,41); R3(d,e,a,b,c,42); R3(c,d,e,a,b,43); 00094 R3(b,c,d,e,a,44); R3(a,b,c,d,e,45); R3(e,a,b,c,d,46); R3(d,e,a,b,c,47); 00095 R3(c,d,e,a,b,48); R3(b,c,d,e,a,49); R3(a,b,c,d,e,50); R3(e,a,b,c,d,51); 00096 R3(d,e,a,b,c,52); R3(c,d,e,a,b,53); R3(b,c,d,e,a,54); R3(a,b,c,d,e,55); 00097 R3(e,a,b,c,d,56); R3(d,e,a,b,c,57); R3(c,d,e,a,b,58); R3(b,c,d,e,a,59); 00098 00099 R4(a,b,c,d,e,60); R4(e,a,b,c,d,61); R4(d,e,a,b,c,62); R4(c,d,e,a,b,63); 00100 R4(b,c,d,e,a,64); R4(a,b,c,d,e,65); R4(e,a,b,c,d,66); R4(d,e,a,b,c,67); 00101 R4(c,d,e,a,b,68); R4(b,c,d,e,a,69); R4(a,b,c,d,e,70); R4(e,a,b,c,d,71); 00102 R4(d,e,a,b,c,72); R4(c,d,e,a,b,73); R4(b,c,d,e,a,74); R4(a,b,c,d,e,75); 00103 R4(e,a,b,c,d,76); R4(d,e,a,b,c,77); R4(c,d,e,a,b,78); R4(b,c,d,e,a,79); 00104 } 00105 00106 #if ULTRA_DEBUG 00107 printf("%s -> %.8x%.8x%.8x%.8x%.8x\n", realpass, a, b, c, d, e); 00108 #endif 00109 00110 /* it returns 0 if digest match, 1 if not */ 00111 if (dig[0] != a) return 1; 00112 if (dig[1] != b) return 1; 00113 if (dig[2] != c) return 1; 00114 if (dig[3] != d) return 1; 00115 if (dig[4] != e) return 1; 00116 00117 return 0; 00118 } 00119