libstdc++
|
![]() |
Classes | |
struct | std::complex< _Tp > |
Functions | |
template<typename _Tp > | |
_Tp | std::__complex_abs (const complex< _Tp > &__z) |
template<typename _Tp > | |
std::complex< _Tp > | std::__complex_acos (const std::complex< _Tp > &__z) |
template<typename _Tp > | |
std::complex< _Tp > | std::__complex_acosh (const std::complex< _Tp > &__z) |
template<typename _Tp > | |
_Tp | std::__complex_arg (const complex< _Tp > &__z) |
template<typename _Tp > | |
std::complex< _Tp > | std::__complex_asin (const std::complex< _Tp > &__z) |
template<typename _Tp > | |
std::complex< _Tp > | std::__complex_asinh (const std::complex< _Tp > &__z) |
template<typename _Tp > | |
std::complex< _Tp > | std::__complex_atan (const std::complex< _Tp > &__z) |
template<typename _Tp > | |
std::complex< _Tp > | std::__complex_atanh (const std::complex< _Tp > &__z) |
template<typename _Tp > | |
complex< _Tp > | std::__complex_cos (const complex< _Tp > &__z) |
template<typename _Tp > | |
complex< _Tp > | std::__complex_cosh (const complex< _Tp > &__z) |
template<typename _Tp > | |
complex< _Tp > | std::__complex_exp (const complex< _Tp > &__z) |
template<typename _Tp > | |
complex< _Tp > | std::__complex_log (const complex< _Tp > &__z) |
template<typename _Tp > | |
complex< _Tp > | std::__complex_pow (const complex< _Tp > &__x, const complex< _Tp > &__y) |
template<typename _Tp > | |
complex< _Tp > | std::__complex_sin (const complex< _Tp > &__z) |
template<typename _Tp > | |
complex< _Tp > | std::__complex_sinh (const complex< _Tp > &__z) |
template<typename _Tp > | |
complex< _Tp > | std::__complex_sqrt (const complex< _Tp > &__z) |
template<typename _Tp > | |
complex< _Tp > | std::__complex_tan (const complex< _Tp > &__z) |
template<typename _Tp > | |
complex< _Tp > | std::__complex_tanh (const complex< _Tp > &__z) |
template<typename _Tp > | |
_Tp | std::abs (const complex< _Tp > &) |
template<typename _Tp > | |
std::complex< _Tp > | std::acos (const std::complex< _Tp > &__z) |
template<typename _Tp > | |
std::complex< _Tp > | std::acosh (const std::complex< _Tp > &__z) |
template<typename _Tp > | |
_Tp | std::arg (const complex< _Tp > &) |
template<typename _Tp > | |
__gnu_cxx::__promote< _Tp >::__type | std::arg (_Tp __x) |
template<typename _Tp > | |
std::complex< _Tp > | std::asin (const std::complex< _Tp > &__z) |
template<typename _Tp > | |
std::complex< _Tp > | std::asinh (const std::complex< _Tp > &__z) |
template<typename _Tp > | |
std::complex< _Tp > | std::atan (const std::complex< _Tp > &__z) |
template<typename _Tp > | |
std::complex< _Tp > | std::atanh (const std::complex< _Tp > &__z) |
std::complex< float >::complex (const complex< double > &) | |
std::complex< float >::complex (const complex< long double > &) | |
std::complex< double >::complex (const complex< long double > &) | |
template<typename _Tp > | |
complex< _Tp > | std::conj (const complex< _Tp > &) |
template<typename _Tp > | |
std::complex< typename __gnu_cxx::__promote< _Tp > ::__type > | std::conj (_Tp __x) |
template<typename _Tp > | |
complex< _Tp > | std::cos (const complex< _Tp > &) |
template<typename _Tp > | |
complex< _Tp > | std::cosh (const complex< _Tp > &) |
template<typename _Tp > | |
complex< _Tp > | std::exp (const complex< _Tp > &) |
template<typename _Tp > | |
_Tp | std::fabs (const std::complex< _Tp > &__z) |
template<typename _Tp > | |
__gnu_cxx::__promote< _Tp >::__type | std::imag (_Tp) |
template<typename _Tp > | |
_Tp | std::imag (const complex< _Tp > &__z) |
template<typename _Tp > | |
complex< _Tp > | std::log (const complex< _Tp > &) |
template<typename _Tp > | |
complex< _Tp > | std::log10 (const complex< _Tp > &) |
template<typename _Tp > | |
_Tp | std::norm (const complex< _Tp > &) |
template<typename _Tp > | |
__gnu_cxx::__promote< _Tp >::__type | std::norm (_Tp __x) |
complex< _Tp > & | std::complex< _Tp >::operator*= (const _Tp &) |
template<typename _Up > | |
complex< _Tp > & | std::complex< _Tp >::operator*= (const complex< _Up > &) |
template<typename _Tp > | |
complex< _Tp > | std::operator+ (const complex< _Tp > &__x) |
template<typename _Up > | |
complex< _Tp > & | std::complex< _Tp >::operator+= (const complex< _Up > &) |
template<typename _Tp > | |
complex< _Tp > | std::operator- (const complex< _Tp > &__x) |
template<typename _Up > | |
complex< _Tp > & | std::complex< _Tp >::operator-= (const complex< _Up > &) |
complex< _Tp > & | std::complex< _Tp >::operator/= (const _Tp &) |
template<typename _Up > | |
complex< _Tp > & | std::complex< _Tp >::operator/= (const complex< _Up > &) |
template<typename _Tp , typename _CharT , class _Traits > | |
basic_ostream< _CharT, _Traits > & | std::operator<< (basic_ostream< _CharT, _Traits > &__os, const complex< _Tp > &__x) |
complex< _Tp > & | std::complex< _Tp >::operator= (const _Tp &) |
template<typename _Up > | |
complex< _Tp > & | std::complex< _Tp >::operator= (const complex< _Up > &) |
template<typename _Tp , typename _CharT , class _Traits > | |
basic_istream< _CharT, _Traits > & | std::operator>> (basic_istream< _CharT, _Traits > &__is, complex< _Tp > &__x) |
template<typename _Tp > | |
complex< _Tp > | std::polar (const _Tp &, const _Tp &=0) |
template<typename _Tp > | |
complex< _Tp > | std::pow (const complex< _Tp > &, const _Tp &) |
template<typename _Tp > | |
complex< _Tp > | std::pow (const complex< _Tp > &, const complex< _Tp > &) |
template<typename _Tp > | |
complex< _Tp > | std::pow (const _Tp &, const complex< _Tp > &) |
template<typename _Tp , typename _Up > | |
std::complex< typename __gnu_cxx::__promote_2< _Tp, _Up >::__type > | std::pow (const std::complex< _Tp > &__x, const _Up &__y) |
template<typename _Tp , typename _Up > | |
std::complex< typename __gnu_cxx::__promote_2< _Tp, _Up >::__type > | std::pow (const _Tp &__x, const std::complex< _Up > &__y) |
template<typename _Tp , typename _Up > | |
std::complex< typename __gnu_cxx::__promote_2< _Tp, _Up >::__type > | std::pow (const std::complex< _Tp > &__x, const std::complex< _Up > &__y) |
template<typename _Tp > | |
__gnu_cxx::__promote< _Tp >::__type | std::real (_Tp __x) |
template<typename _Tp > | |
_Tp | std::real (const complex< _Tp > &__z) |
template<typename _Tp > | |
complex< _Tp > | std::sin (const complex< _Tp > &) |
template<typename _Tp > | |
complex< _Tp > | std::sinh (const complex< _Tp > &) |
template<typename _Tp > | |
complex< _Tp > | std::sqrt (const complex< _Tp > &) |
template<typename _Tp > | |
complex< _Tp > | std::tan (const complex< _Tp > &) |
template<typename _Tp > | |
complex< _Tp > | std::tanh (const complex< _Tp > &) |
template<typename _Tp > | |
complex< _Tp > | std::operator+ (const complex< _Tp > &__x, const complex< _Tp > &__y) |
template<typename _Tp > | |
complex< _Tp > | std::operator+ (const complex< _Tp > &__x, const _Tp &__y) |
template<typename _Tp > | |
complex< _Tp > | std::operator+ (const _Tp &__x, const complex< _Tp > &__y) |
template<typename _Tp > | |
complex< _Tp > | std::operator- (const complex< _Tp > &__x, const complex< _Tp > &__y) |
template<typename _Tp > | |
complex< _Tp > | std::operator- (const complex< _Tp > &__x, const _Tp &__y) |
template<typename _Tp > | |
complex< _Tp > | std::operator- (const _Tp &__x, const complex< _Tp > &__y) |
template<typename _Tp > | |
complex< _Tp > | std::operator* (const complex< _Tp > &__x, const complex< _Tp > &__y) |
template<typename _Tp > | |
complex< _Tp > | std::operator* (const complex< _Tp > &__x, const _Tp &__y) |
template<typename _Tp > | |
complex< _Tp > | std::operator* (const _Tp &__x, const complex< _Tp > &__y) |
template<typename _Tp > | |
complex< _Tp > | std::operator/ (const complex< _Tp > &__x, const complex< _Tp > &__y) |
template<typename _Tp > | |
complex< _Tp > | std::operator/ (const complex< _Tp > &__x, const _Tp &__y) |
template<typename _Tp > | |
complex< _Tp > | std::operator/ (const _Tp &__x, const complex< _Tp > &__y) |
template<typename _Tp > | |
bool | std::operator== (const complex< _Tp > &__x, const complex< _Tp > &__y) |
template<typename _Tp > | |
bool | std::operator== (const complex< _Tp > &__x, const _Tp &__y) |
template<typename _Tp > | |
bool | std::operator== (const _Tp &__x, const complex< _Tp > &__y) |
template<typename _Tp > | |
bool | std::operator!= (const complex< _Tp > &__x, const complex< _Tp > &__y) |
template<typename _Tp > | |
bool | std::operator!= (const complex< _Tp > &__x, const _Tp &__y) |
template<typename _Tp > | |
bool | std::operator!= (const _Tp &__x, const complex< _Tp > &__y) |
Classes and functions for complex numbers.
|
inline |
Return magnitude of z.
Definition at line 594 of file complex.
Referenced by std::tr1::__detail::__airy(), std::tr1::__detail::__bessel_ik(), std::tr1::__detail::__bessel_jn(), std::tr1::__detail::__comp_ellint_1(), std::tr1::__detail::__comp_ellint_2(), std::tr1::__detail::__comp_ellint_3(), std::tr1::__detail::__conf_hyperg_luke(), std::tr1::__detail::__conf_hyperg_series(), std::tr1::__detail::__cyl_bessel_ij_series(), std::tr1::__detail::__ellint_1(), std::tr1::__detail::__ellint_2(), std::tr1::__detail::__ellint_3(), std::tr1::__detail::__ellint_rc(), std::tr1::__detail::__ellint_rd(), std::tr1::__detail::__ellint_rf(), std::tr1::__detail::__ellint_rj(), std::tr1::__detail::__expint_asymp(), std::tr1::__detail::__expint_E1_asymp(), std::tr1::__detail::__expint_E1_series(), std::tr1::__detail::__expint_En_cont_frac(), std::tr1::__detail::__expint_En_series(), std::tr1::__detail::__expint_large_n(), std::tr1::__detail::__gamma_temme(), std::tr1::__detail::__hurwitz_zeta_glob(), std::tr1::__detail::__hyperg(), std::tr1::__detail::__hyperg_luke(), std::tr1::__detail::__hyperg_reflect(), std::tr1::__detail::__hyperg_series(), std::tr1::__detail::__log_gamma(), std::tr1::__detail::__poly_laguerre_hyperg(), std::tr1::__detail::__psi(), std::tr1::__detail::__psi_asymp(), std::tr1::__detail::__psi_series(), std::tr1::__detail::__riemann_zeta_alt(), std::tr1::__detail::__riemann_zeta_glob(), std::fabs(), std::poisson_distribution< _IntType, _RealType >::operator()(), and std::binomial_distribution< _IntType, _RealType >::operator()().
|
inline |
acos(__z) [8.1.2].
Definition at line 86 of file tr1_impl/complex.
|
inline |
acosh(__z) [8.1.5].
Definition at line 205 of file tr1_impl/complex.
|
inline |
|
inline |
Additional overloads [8.1.9].
Definition at line 311 of file tr1_impl/complex.
References std::arg().
|
inline |
asin(__z) [8.1.3].
Definition at line 122 of file tr1_impl/complex.
|
inline |
asinh(__z) [8.1.6].
Definition at line 244 of file tr1_impl/complex.
|
inline |
atan(__z) [8.1.4].
Definition at line 166 of file tr1_impl/complex.
|
inline |
atanh(__z) [8.1.7].
Definition at line 288 of file tr1_impl/complex.
|
inline |
|
inline |
Return complex cosine of z.
Definition at line 699 of file complex.
Referenced by std::tr1::__detail::__cyl_bessel_jn_asymp(), std::tr1::__detail::__ellint_1(), std::tr1::__detail::__ellint_2(), std::tr1::__detail::__ellint_3(), std::tr1::__detail::__psi(), std::tr1::__detail::__sph_legendre(), and std::polar().
|
inline |
Return complex hyperbolic cosine of z.
Definition at line 729 of file complex.
Referenced by std::tr1::__detail::__bessel_ik(), and std::tr1::__detail::__bessel_jn().
|
inline |
Return complex base e exponential of z.
Definition at line 755 of file complex.
Referenced by std::tr1::__detail::__bessel_ik(), std::tr1::__detail::__bessel_jn(), std::tr1::__detail::__beta_lgamma(), std::tr1::__detail::__bincoef(), std::tr1::__detail::__conf_hyperg(), std::tr1::__detail::__cyl_bessel_ij_series(), std::tr1::__detail::__expint(), std::tr1::__detail::__expint_asymp(), std::tr1::__detail::__expint_E1_asymp(), std::tr1::__detail::__expint_Ei_asymp(), std::tr1::__detail::__expint_En_cont_frac(), std::tr1::__detail::__expint_En_recursion(), std::tr1::__detail::__expint_large_n(), std::tr1::__detail::__gamma(), std::tr1::__detail::__hurwitz_zeta_glob(), std::tr1::__detail::__hyperg_reflect(), std::tr1::__detail::__poly_laguerre_large_n(), std::tr1::__detail::__psi(), std::tr1::__detail::__riemann_zeta(), std::tr1::__detail::__riemann_zeta_glob(), std::tr1::__detail::__sph_legendre(), std::gamma_distribution< _RealType >::operator()(), and std::pow().
|
inline |
|
inline |
Return complex natural logarithm of z.
Definition at line 782 of file complex.
Referenced by std::tr1::__detail::__bessel_ik(), std::tr1::__detail::__bessel_jn(), std::tr1::__detail::__bincoef(), std::tr1::__detail::__cyl_bessel_ij_series(), std::tr1::__detail::__expint_E1_series(), std::tr1::__detail::__expint_Ei(), std::tr1::__detail::__expint_Ei_series(), std::tr1::__detail::__expint_En_series(), std::tr1::__detail::__hurwitz_zeta_glob(), std::tr1::__detail::__hyperg_reflect(), std::tr1::__detail::__log_bincoef(), std::tr1::__detail::__log_gamma(), std::tr1::__detail::__log_gamma_bernoulli(), std::tr1::__detail::__log_gamma_lanczos(), std::tr1::__detail::__poly_laguerre_large_n(), std::tr1::__detail::__psi_asymp(), std::tr1::__detail::__riemann_zeta_glob(), std::tr1::__detail::__sph_legendre(), std::log10(), std::poisson_distribution< _IntType, _RealType >::operator()(), std::binomial_distribution< _IntType, _RealType >::operator()(), std::normal_distribution< _RealType >::operator()(), std::gamma_distribution< _RealType >::operator()(), and std::pow().
|
inline |
Return complex base 10 logarithm of z.
Definition at line 787 of file complex.
References std::log().
|
inline |
Return z magnitude squared.
Definition at line 654 of file complex.
Referenced by std::complex< _Tp >::operator/=().
|
inline |
|
inline |
|
inline |
|
inline |
|
inline |
|
inline |
complex< _Tp > & std::complex< _Tp >::operator*= | ( | const _Tp & | __t | ) |
complex< _Tp > & std::complex< _Tp >::operator*= | ( | const complex< _Up > & | __z | ) |
|
inline |
|
inline |
|
inline |
|
inline |
complex< _Tp > & std::complex< _Tp >::operator+= | ( | const complex< _Up > & | __z | ) |
|
inline |
|
inline |
|
inline |
|
inline |
complex< _Tp > & std::complex< _Tp >::operator-= | ( | const complex< _Up > & | __z | ) |
|
inline |
|
inline |
|
inline |
complex< _Tp > & std::complex< _Tp >::operator/= | ( | const _Tp & | __t | ) |
complex< _Tp > & std::complex< _Tp >::operator/= | ( | const complex< _Up > & | __z | ) |
basic_ostream<_CharT, _Traits>& std::operator<< | ( | basic_ostream< _CharT, _Traits > & | __os, |
const complex< _Tp > & | __x | ||
) |
Insertion operator for complex values.
Definition at line 519 of file complex.
References std::ios_base::flags(), std::basic_ios< _CharT, _Traits >::imbue(), std::ios_base::precision(), and std::basic_ostringstream< _CharT, _Traits, _Alloc >::str().
complex< _Tp > & std::complex< _Tp >::operator= | ( | const _Tp & | __t | ) |
complex< _Tp > & std::complex< _Tp >::operator= | ( | const complex< _Up > & | __z | ) |
|
inline |
|
inline |
|
inline |
basic_istream<_CharT, _Traits>& std::operator>> | ( | basic_istream< _CharT, _Traits > & | __is, |
complex< _Tp > & | __x | ||
) |
Extraction operator for complex values.
Definition at line 486 of file complex.
References std::basic_istream< _CharT, _Traits >::putback(), and std::basic_ios< _CharT, _Traits >::setstate().
|
inline |
Return complex with magnitude rho and angle theta.
Definition at line 662 of file complex.
References std::cos(), and std::sin().
Referenced by std::pow().
complex< _Tp > std::pow | ( | const complex< _Tp > & | __x, |
const _Tp & | __y | ||
) |
Return x to the y'th power.
Definition at line 964 of file complex.
References std::exp(), std::log(), and std::polar().
Referenced by std::tr1::__detail::__bernoulli_series(), std::tr1::__detail::__conf_hyperg_luke(), std::tr1::__detail::__ellint_rc(), std::tr1::__detail::__ellint_rd(), std::tr1::__detail::__ellint_rf(), std::tr1::__detail::__ellint_rj(), std::tr1::__detail::__hurwitz_zeta_glob(), std::tr1::__detail::__hyperg(), std::tr1::__detail::__hyperg_luke(), std::tr1::__detail::__riemann_zeta(), std::tr1::__detail::__riemann_zeta_alt(), std::tr1::__detail::__riemann_zeta_glob(), std::tr1::__detail::__riemann_zeta_product(), std::tr1::__detail::__riemann_zeta_sum(), std::gamma_distribution< _RealType >::operator()(), and std::pow().
|
inline |
|
inline |
Return x to the y'th power.
Definition at line 1009 of file complex.
References std::log(), std::polar(), and std::pow().
|
inline |
Return complex sine of z.
Definition at line 817 of file complex.
Referenced by std::tr1::__detail::__bessel_ik(), std::tr1::__detail::__bessel_jn(), std::tr1::__detail::__cyl_bessel_jn_asymp(), std::tr1::__detail::__ellint_1(), std::tr1::__detail::__ellint_2(), std::tr1::__detail::__ellint_3(), std::tr1::__detail::__log_gamma(), std::tr1::__detail::__log_gamma_sign(), std::tr1::__detail::__poly_laguerre_large_n(), std::tr1::__detail::__psi(), std::tr1::__detail::__riemann_zeta(), std::tr1::__detail::__riemann_zeta_glob(), and std::polar().
|
inline |
Return complex hyperbolic sine of z.
Definition at line 847 of file complex.
Referenced by std::tr1::__detail::__bessel_ik(), and std::tr1::__detail::__bessel_jn().
|
inline |
Return complex square root of z.
Definition at line 891 of file complex.
Referenced by std::tr1::__detail::__airy(), std::tr1::__detail::__assoc_legendre_p(), std::tr1::__detail::__bessel_ik(), std::tr1::__detail::__bessel_jn(), std::tr1::__detail::__cyl_bessel_jn_asymp(), std::tr1::__detail::__ellint_rc(), std::tr1::__detail::__ellint_rd(), std::tr1::__detail::__ellint_rf(), std::tr1::__detail::__ellint_rj(), std::tr1::__detail::__poly_laguerre_large_n(), std::tr1::__detail::__sph_bessel_ik(), std::tr1::__detail::__sph_bessel_jn(), std::tr1::__detail::__sph_legendre(), and std::normal_distribution< _RealType >::operator()().
|
inline |