Objective-C Language

and GNUstep Base Library

Programming Manual

Francis Botto (Brainstorm)

Richard Frith-Macdonald (Brainstorm)
Nicola Pero (Brainstorm)

Adrian Robert

Copyright (©) 2001-2004 Free Software Foundation

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the
conditions for verbatim copying, provided also that the entire resulting derived work is
distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions.

Table of Contents

1 Introduction............. 3
1.1 What is Object-Oriented Programming?........................ 3
1.1.1 Some Basic OO Terminologyccooiiiiiiiiia.n. 3
1.2 What is Objective-C? ... e 5)
1.3 HistOry oot 5
1.4 What is GNUStep? . ..o 6
1.4.1 GNUstep Base Library 6
1.4.2 GNUstep Make Utility ..., 7
1.4.3 A Word on the Graphical Environment 7
1.4.4 The GNUstep Directory Layout 7
1.5 Building Your First Objective-C Program 8
2 The Objective-C Language 11
2.1 Non OO AdditionSouueeirtii e 11
2.2 ODbBJeCtS . oot 11
221 Idand nil.... ..o 12
2.2.2 MESSAZES . . oot 12
2.2.3 Polymorphism...... 13

2.3 ClaSSES . - vttt 13
2.3.1 Inheritance........... ..o 13
2.3.2 Inheritance of Methods.............. i .., 14
2.3.3 Overriding Methods....... ..., 14
2.3.4 Abstract Classesouieniii 14
2.3.5 Class CIUSters. ...ttt 15
2.4 NSObject: The Root Class........covviiiiiiiiiiiiniana.. 15
2.4.1 The NSObject Protocol, 16
2.5 Static TypIng . oot 16
2.5.1 Type Introspection...........ccooiiiiiiiiiiiiiiii .., 16
2.5.2 Referring to Instance Variables.................. 17
2.6 Working with Class ObjectS.......coovviiiiiiiiii i, 17
2.6.1 Locating Classes Dynamically 18
2.7 Naming Constraints and Conventions.......................... 18
2.8 Strings in GNUStepot 19
2.8.1 Creating NSString Static Instances....................... 19
2.8.2 NSString +stringWithFormat:............................ 19
2.8.3 C String Conversion............ccuueiiiiniiinienineann.. 20
2.8.4 NSMutableString. ... 20

2.8.5 Loading and Saving Strings.............ccooiiiiiiiiia.. 21

ii Objective-C GNUstep Base Programming Manual

3 Working with Objects......................... 23
3.1 [Initializing and Allocating Objects, 23
3.1.1 Initialization with Arguments............................. 23
3.1.2 Memory Allocation and Zones............................ 24
3.1.3 Memory Deallocation............. ... o i 25
3.2 Memory Management ..., 25
3.2.1 Explicit Memory Management............................ 25
3.2.2 OpenStep-Style (Retain/Release) Memory Management. .. 26
3.2.2.1 Autorelease Pools L. 27
3.2.2.2 Avoiding Retain Cycles............ 28
3.2.2.3 SUIMIMATY ...ttt et e e 29
3.2.3 Garbage Collection Based Memory Management 29
3.2.4 Current Recommendations L. 30
4 Writing New Classes 31
4.1 Interface....... ..o 31
4.1.1 Interface Capabilities.........., 31
4.1.2 Including Interfaceso, 33
4.1.3 Referring to Classes - @class ..., 33
4.2 TImplementationc.oouiiiiiiiii 34
4.2.1 Writing an Implementation................ 35
4.2.2 Super and Self 35
4.2.3 Instance Initialization L 36
4.2.4 Flexible Initialization...........o i il 39
4.2.5 Instance Deallocation i 40
4.3 Protocols 41
4.3.1 Declaring a Formal Protocol.............................. 41
4.3.2 Implementing a Formal Protocol.......................... 42
4.3.3 Using a Formal Protocol, 42
4.4 Categoriest 43
4.4.1 Category Overrides.o.ooviiiiiiiiiiiii .. 44
4.4.2 Categories as an Implementation Tool 44
4.4.3 Categories and Protocols........... i 45
4.5 Simulating Private and Protected Methods 45
4.6 Simulating Class Variableso i ., 46
5 Advanced Messaging 49
5.1 How Messaging Workso it 49
5.2 SeleCtorsS . ..o 50
5.2.1 The Target-Action Paradigm 50
5.2.2 Obtaining Selectorso, 51
5.2.3 Avoiding Messaging Errors when an Implementation is Not
Found.o 51
5.3 Forwardingooiii 52

5.4 TImplementationso 53

6 Exception Handling, Logging, and Assertions

.. 5%}

6.1 EXCePtionS.ot 55
6.1.1 Catching and Handling Exceptions 55
6.1.2 Passing Exceptions Up the Call Stack 57
6.1.3 Where do Exceptions Originate?.......................... 57
6.1.4 Creating Exceptions........... oo, 57
6.1.5 When to Use Exceptions 58
6.2 Logging. 59
6.2.1 NSLOZ ..ttt 59
6.2.2 NSDebuglog, NSWarnlLogt 59
6.2.3 Last Resorts: GSPrintf and fprintf........................ 61
6.2.4 Profiling Facilities......... .o 61
6.3 ASSEItioNSttt e 61
6.3.1 Assertions and their Handling 61
6.3.2 Custom Assertion Handling 62
6.4 Comparison with Java i i 62
Distributed Objects........................... 65
7.1 Object Interactiono, 65
7.2 The GNUstep Solution........... ..., 65
7.2.1 Code at the Server, 66
7.2.2 Code at the Client o i i 67
7.2.3 Using a Protocol o i 69
7.2.4 Complete Code for Telephone Directory Application 70
7.2.5 GNUstep Distributed Objects Name Server............... 71
7.2.6 Look Ma, No Stubs!........... ... i 72
7.3 A More Involved Example. ..., 72
7.3.1 Protocol Adopted at Client............................... 73
7.3.2 Protocol Adopted at Server............................... 73
7.3.3 Code at the Client i 73
7.3.4 Code at the Server, 76
7.4 Language Support for Distributed Objects..................... 81
7.4.1 Protocol Type Qualifiers 81
7.4.2 Message Forwarding............... ... i 83
7.5 Error Checking ... 84
7.5.1 Vending the Server Object..........o i 84
7.5.2 Catching Exceptions ..., 84

7.5.3 The Connection Fails. ... 84

iii

iv Objective-C GNUstep Base Programming Manual

8 Base Library................ 85
8.1 Copying, Comparing, Hashing Objects......................... 85
8.2 Object Containers.ouuuiiiiiiii i 86
8.3 Data and Number Containers, 87

8.3.1 NSData ... 87
8.3.2 NSValue ... 88
8.3.3 NSNumber.ot 88
8.3.4 NSRange, NSPoint, NSSize, NSRect 89
8.4 Date/Time Facilitiesol 89
8.5 String Manipulation and Text Processing...................... 89
8.5.1 NSScanner and Character Sets 89
8.5.2 Attributed Strings......... ... 89
8.5.3 Formatters..........coo 89
8.6 File Handlingo i 89
8.7 Persistence and Serialization 90
8.7.1 Property List Serialization................. ... 90
8.7.2 Archives ... 91
8.8 Uity « oo 94
8.9 Notificationsc.oiii 94
8.10 Networking and RPC i 95
8.10.1 Basic Networking ...l 95
8.10.2 Remote Process Communications........................ 96
8.11 Threads and Run Control................ 96
8.11.1 Run Loops and Timers..................oiiiiiiiinna.... 96
8.11.2 Tasks and Pipes...........oii i 97
8.11.3 Threads and Locks.............co ... 97
8.11.4 Using NSConnection to Communicate Between Threads.. 99
8.12 GNUstep Additions., 100

Appendix A The GNUstep Documentation

System......... ... 101
Al Quick Start ... 101
A.2 Cross-Referencingo i 102
A.3 Comment the Interface or the Implementation? 102
A.4 Comparison with OS X Header Doc and Java JavaDoc....... 103

Appendix B Application Resources: Bundles
and Frameworks 105

Appendix C Differences and Similarities
Between Objective-C, Java, and C++ 107

C.l General 107
C.2 Language.t 107
C.3 Source Differences............c.coouiiiiiiiiiiin, 108
C.4 Compiler Differences, 108
C.5 Developer’s Workbench............ 108
C.6 Longevity .o vet it 108
C.7 Databases.o 108
C.8 MEIMNOTY ettt ettt e 108
C.9 Class Librarieso 109

Appendix D Programming GNUstep in Java and
Guile.... ... 111

Appendix E GNUstep Compliance to Standards

... 113
E.1 Conditional Compilation.......... i, 113
E.2 User Defaults. ... 113

... 115

F.1 Makefile Contents, 115
F.1.1 Makefile Example.........o, 115
F.1.2 Makefile Structure......... ..o 116
F.1.3 Debug and Profile Information.......................... 117
F.1.4 Static, Shared and DLLs............. ... iiiii, 117
F.2 Project Typeso 117

Concept Index............. 119

The aim of this document is to provide a GNUstep/Objective-C programming manual
(primarily tutorial in style) for the language, the GNUstep Base library, and the GNUstep
Make package. While to focus is on Objective-C, the GNUstep libraries can also be used
from Java and Guile, and some information on this usage is also included.

The manual does not cover installation instructions as these vary from system to system,
and are documented fairly well in the GNUstep HOWTO.

The target audience for this manual is the C, C++, or Java programmer that wishes to
learn to use Objective-C effectively. We assume that, while the reader is able to understand
English, it is quite possibly not their native language.

For detailed class reference documentation the reader is directed to the GNUstep Base
Library documentation, and to the Apple Cocoa Objective-C Foundation documentation
(available through http://www.apple.com).

../../../User/GNUstep/gnustep-howto_toc.html
../Reference/index.html
http://www.apple.com

Chapter 1: Introduction 3

1 Introduction

The aim of this manual is to introduce you to the Objective-C language and the GNUstep
development environment, in particular the Base library. The manual is organised to give
you a tutorial introduction to the language and APIs, by using examples whenever possible,
rather than providing a lengthy abstract description.

While Objective-C is not a difficult language to learn or use, some of the terms may be unfa-
miliar, especially to those that have not programmed using an object-oriented programming
language before. Whenever possible, concepts will be explained in simple terms rather than
in more advanced programming terms, and comparisons to other languages will be used to
aid in illustration.

1.1 What is Object-Oriented Programming?

There are several object-oriented (OO) programming languages in common use today and
you have probably heard of some of them: C++ and Java for example, and of course
Objective-C. OO languages all have one thing in common: they allow you to design and
write programs in a different way than if you used a traditional procedural language like C
or Pascal.

Procedural languages provide the programmer with basic building blocks that consist of
data types, (integers, characters, float etc) and functions that act on that data. This forces
the program designer to design the program using these same building blocks. Quite often
this requires quite a leap in imagination between what the program must do and how it can
be implemented.

Object-oriented languages allow the program designer to think in terms of building blocks
that are closer to what the program will actually do. Rather than think in terms of data
and functions that act on that data, OO languages provide you with objects and the ability
to send messages to those objects. Objects are, in a sense, like mini programs that can
function on their own when requested by the program or even another object.

For example, an object may exist that can draw a rectangle in a window; all you need to do
as a programmer is send the appropriate messages to that object. The messages could tell
the object the size of the rectangle and position in the window, and of course tell the object
to draw itself. Program design and implementation is now reduced to sending messages to
the appropriate objects rather than calling functions to manipulate data.

1.1.1 Some Basic OO Terminology

0O languages add to the vocabulary of more traditional programming languages, and it
may help if you become familiar with some of the basic terms before jumping in to the
language itself.

Objects

As stated previously, an object is one of the basic building blocks in OO programming.
An object can receive messages and then act on these messages to alter the state of itself
(the size and position of a rectangle object for example). In software an object consists
of instance variables (data) that represent the state of the object, and methods (like C
functions) that act on these variables in response to messages.

4 Objective-C GNUstep Base Programming Manual

Rather than ’calling’ one of its methods, an object is said to 'perform’ one of its methods
in response to a message. (A method is known as a 'member function’ in C++.)

Classes

All objects of the same type are said to be members of the same class. To continue with
the rectangle example, every rectangle could belong to a rectangle class, where the class
defines the instance variables and the methods of all rectangles.

A class definition by itself does not create an object but instead acts like a template for
each object in that class. When an object is created an ’instance’ of that class is said to
exist. An instance of a class (an object) has the same data structure (instance variables)
and methods as every other object in that class.

Inheritance

When you define a new class you can base it on an existing class. The new class would then
‘inherit’ the data structure and methods of the class that you based it on. You are then
free to add instance variables and methods, or even modify inherited methods, to change
the behavior of the new class (how it reacts to messages).

The base class is known as the ’superclass’ and the new class as the ’subclass’ of this
superclass. As an example, there could be a superclass called 'shapes’ with a data structure
and methods to size, position and draw itself, on which you could base the rectangle class.

Polymorphism

Unlike functions in a procedural program such as C, where every function must have a
unique name, a method (or instance variable) in one class can have the same name as that
in another class.

This means that two objects could respond to the same message in completely different ways,
since identically named methods may do completely different things. A draw message sent
to a rectangle object would not produce the same shape as a draw message sent to a circle
object.

Encapsulation

An object hides its instance variables and method implementations from other parts of the
program. This encapsulation allows the programmer that uses an object to concentrate on
what the object does rather than how it is implemented.

Also, providing the interface to an object does not change (the methods of an object and how
they respond to received messages) then the implementation of an object can be improved
without affecting any programs that use it.

Dynamic Typing and Binding

Due to polymorhism, the method performed in response to a message depends on the class
(type) of the receiving object. In an OO program the type, or class, of an object can be
determined at run time (dynamic typing) rather than at compile time (static typing).

The method performed (what happens as a result of this message) can then be determined
during program execution and could, for example, be determined by user action or some
other external event. Binding a message to a particular method at run time is known as
dynamic binding.

Chapter 1: Introduction 5)

1.2 What is Objective-C?

Objective-C is a powerful object-oriented (OO) language that extends the procedural lan-
guage ANSI C with the addition of a few keywords and compiler directives, plus one syn-
tactical addition (for sending messages to objects). This simple extension of ANSI C is
made possible by an Objective-C runtime library (libobjc) that is generally transparent to
the Objective-C programmer.
During compilation of Objective-C source code, OO extensions in the language compile to
C function calls to the runtime library. It is the runtime library that makes dynamic typing
and binding possible, and that makes Objective-C a true object-oriented language.
Since Objective-C extends ANSI C with a few additional language constructs (the compiler
directives and syntactical addition), you may freely include C code in your Objective-C
programs. In fact an Objective-C program may look familiar to the C programmer since it
is constructed using the traditional main function.

#include <stdio.h>

#include <objc/objc.h>

int main (void)

{
/* Objective C and C code */

return(0) ;
}

Objective-C source files are compiled using the standard GNU gcc compiler. The compiler
recognises Objective-C source files by the .m file extension, C files by the .c extension and
header files by the .h extension.

As an example, the command $gcc -o testfile testfile.m -lobjc would compile the Objective-
C source file testfile.m to an executable named testfile. The -lobjc compiler option
is required for linking an Objective-C program to the runtime library. (On GNU /Linux
systems you may also need the -1pthreads option.)

The GNUstep make utility provides an alternative (and simple) way to compile large
projects, and this useful utility is discussed in the next section.

Relative to other languages, Objective-C is more dynamic than C++ or Java in that it binds
all method calls at runtime. Java gets around some of the limitations of static binding with
explicit runtime “reflection” mechanisms. Objective-C has these too, but you do not need
them as often as in Java, even though Objective-C is compiled while Java is interpreted.
More information can be found in Appendix Appendix C [Objective-C Java and C++],
page 107.

1.3 History

Objective-C was specified and first implemented by Brad Cox and his company Stepstone
Corporation during the early 1980’s. They aimed to minimally incorporate the object-
oriented features of Smalltalk-80 into C. Steve Jobs’s NeXT licensed Objective-C from
StepStone in 1988 to serve as the foundation of the new NeXTstep development and oper-
ating environment. NeXT implemented its own compiler by building on the gcc compiler,

6 Objective-C GNUstep Base Programming Manual

modifications that were later contributed back to gec in 1991. No less than three runtime
libraries were subsequently written to serve as the GNU runtime; the one currently in use
was developed by Danish university student Kresten Krab Thorup.

Smalltalk-80 also included a class library, and Stepstone’s Objective-C implementation con-
tained its own library based loosely on it. This in turn influenced the design of the NeXTstep
class libraries, which are what GNUstep itself is ultimately based on.

After NeXT exited the hardware business in the early 1990s, its Objective-C class library
and development environment, NeXTstep, was renamed OpenStep and ported to run on
several different platforms. Apple acquired NeXT in 1996, and after several years figuring
out how to smooth the transition from their current OS, they released a modified, enhanced
version of the NeXTstep operating system as Mac OS X, or “10” in 1999. The class libraries
in OS X contain additions related to new multimedia capabilities and integration with Java,
but their core is still essentially the OpenStep API.

This API consists of two parts: the Foundation, a collection of non-graphical classes for
data management, network and file interaction, date and time handling, and more, and
the AppKit, a collection of user interface widgets and windowing machinery for developing
full-fledged graphical applications. GNUstep provides implementations of both parts of
this API, together with a graphical engine for rendering AppKit components on various
platforms.

1.4 What is GNUstep?

GNUstep is an object-oriented development environment that provides the Objective-C pro-
grammer with a range of utilities and libraries for building large, cross-platform, applications
and tools. It is split into three components: Base, non-graphical classes corresponding to
the NeXTstep Foundation API, GUI, consisting of graphical classes corresponding to the
NeXTstep AppKit API, and Back, a modular framework for rendering instance of the GUI
classes on multiple platforms.

GNUstep is generally compatible with the OpenStep specification and with recent devel-
opments of the MacOS (Cocoa) API. Where MacOS deviates from the OpenStep API,
GNUstep generally attempts to support both versions. See Appendix Appendix E [Com-
pliance to Standards|, page 113 for more detailed information.

This manual does not discuss the full functionality of GNUstep but concentrates on us-
ing the GNUstep Base library to create non-graphical programs, and the GNUstep make
utility to compile these programs. Further information about GNUstep can be found at
http://gnustep.org.

1.4.1 GNUstep Base Library

The GNUstep base library contains a powerful set of non-graphical Objective-C classes
that can readily be used in your programs. At present there are approximately 70 different
classes available, including classes to handle strings and arrays, dates and times, distributed
objects, URLs and file systems (to name but a few). It is similar to but more stable than the
non-graphical portion of the Java Development Kit (JDK) API (see Appendix Appendix C
[Objective-C Java and C++|, page 107 for more information).

http://gnustep.org

Chapter 1: Introduction 7

Classes in the base library are easily identified since they begin with the upper case charac-
ters NS’ as in NSString. Some examples in this manual use classes from the base library,
but for complete documentation on the base library see the API documentation.

1.4.2 GNUstep Make Utility

The GNUstep make utility is the GNU version of the UNIX make utility, plus a number of
predefined rules specialized for building GNUstep projects. So what does it do? It simplifies
the process of building (compiling and linking) a large project. You simply type make at the
command prompt and the make utility takes care of file dependencies, only re-compiling
source files that have changed, or that depend on files that have changed, since the last
'make’ (a header file for example). It also takes care of including the proper GNUstep
header and library references automatically.

Before using make you must first create a 'makefile’ that lists all the files and file dependen-
cies in your project. The easiest way to do this is to copy an existing makefile and change
it to suit your own project.

The make utility will be used to build the Objective-C examples shown in this manual,
and when an example can be compiled then the makefile will also be shown. For a full
description of the make utility see its documentation.

1.4.3 A Word on the Graphical Environment

The GNUstep GUI component is discussed elsewhere, but a brief overview is useful here.
GNUstep GUI provides a collection of classes for developing graphical applications, includ-
ing windows, controls (also known as widgets, and back-end components for event handling
and other functions. Internally, the implementation is divided into two components, the
back end and the front end. The front end provides the API to the developer, and makes
display postscript (DPS) calls to the back end to implement it. The back-end converts the
DPS calls into calls to the underlying window system. If you install GNUstep from source,
you must first compile and install the front end, then compile and install the back end.

Implementations of the back-end have been produced for both X11 (Linux/UNIX systems),
and Windows. There is also a quasi-native display postscript system similar to what was
available on the NeXT but using Ghostscript to render to X11. This implementation is
largely complete, but proved to be inefficient and difficult to optimize relative to the cur-
rent back-end framework (which converts the DPS from the front end to window drawing
commands immediately rather than relying on a postscript stack).

1.4.4 The GNUstep Directory Layout

The directories of a GNUstep installation are organized in a fashion that balances compat-
ibility with NeXTstep/OpenStep/OS X with traditional Unix filesystem conventions. The
highest level of organization consists of four domains - the System, Local, Network, and
Users. System holds the main GNUstep installation, including the Base and GUI libraries
and documentation. Local holds third party applications, custom extension libraries, etc.,
analogously to /usr/local on a Unix system. Network mounts shared files in a networked
environment. Users usually exists as $HOME/GNUstep and holds preferences files and per-
sonal application data. There is further documentation available on the complete directory
layout.

../Reference/index.html
../../Make/Manual/make_toc.html
../../Gui/ProgrammingManual/manual_toc.html
../../../User/GNUstep/filesystem_toc.html

8 Objective-C GNUstep Base Programming Manual

Usually, on a Unix-type system, the GNUstep installation will be found under
/usr/1ib/GNUstep.

1.5 Building Your First Objective-C Program

The following example will show you how to create and compile an Objective-C program.
The example simply displays a text message on the screen, and there are easier ways to to do
this, but the example does demonstrate a number of object-oriented features of Objective-C,
and also demonstrates the use of make to compile an Objective-C program.

1. Create a new project directory to hold your project.

2. Create the following Objective-C source code using your favourite text editor and save
it in the project directory with the filename source.m.

#include <stdio.h>

/*

* The next #include line is generally present in all Objective-C
* source files that use GNUstep. The Foundation.h header file

* includes all the other standard header files you need.

*/

#include <Foundation/Foundation.h>

/*
*x Declare the Test class that implements the class method (classStringValue).Jj
*/

@interface Test

+ (const char *) classStringValue;

Q@end

/*
* Define the Test class and the class method (classStringValue).
*/

@implementation Test

+ (const char *) classStringValue;

{
return "This is the string value of the Test class";

b

Q@end

/*
* The main() function: pass a message to the Test class
* and print the returned string.
*/
int main(void)
{
printf ("%s\n", [Test classStringValue]);

Chapter 1: Introduction 9

return O;

}

The text between comment markers (/* */) is ignored by the compiler but indicates
to someone reading the source file what each part of the program does. The program
is an example of a (class) method responding to a message. Can you see how it works?

A message is sent to the Test class as an argument to printf (), requesting the string
value of that class. The Test class performs its classStringValue method in response
to this message and returns a string that is finally printed. No object is created in this
program since a class method does not require an instance of a class in order to respond
to a message.

You will learn more about class methods in the next chapter.

3. Now create the makefile, again using your favourite text editor, and save it in the same
project directory with the filename GNUmakefile.

include $(GNUSTEP_MAKEFILES)/common.make

TOOL_NAME = LogTest
LogTest_0BJC_FILES = source.m

include $(GNUSTEP_MAKEFILES)/tool.make

If you look at the makefile above you will notice the two lines that tell the make utility
to build a tool with the filename LogTest from the Objective-C source file source.m.
You could copy and modify this makefile for later projects you may have: just change
the tool name and list the new source files.

The two ’include’ lines are just a way of keeping your makefile simple, by including two
'ready-made’ makefiles that someone else created.

4. Before you can execute this makefile you must first set your GNUstep environment
variables. Among other things this defines the GNUSTEP_MAKEFILES variable referenced
above. The simplest way to do this is to execute one of the following commands (you
must first locate your GNUstep installation manually):

C shell:
source <GNUstep root>/System/Library/Makefiles/GNUstep.csh

Bourne shell:
. <GNUstep root>/System/Library/Makefiles/GNUstep.sh

On most Unix systems, GNUstep is installed in /usr/1ib/GNUstep. (Directory layout
documentation.)

../../../User/GNUstep/filesystem_toc.html
../../../User/GNUstep/filesystem_toc.html

10 Objective-C GNUstep Base Programming Manual

5. You can now compile the project using make. At the system command prompt, change
to the project directory and enter the make command.

6. Run the program (on Unix enter ./obj/LogTest at the command prompt). The message
"This is the string value of the Test class" will be displayed (assuming there were no
errors).

You have now compiled and run your first Objective-C program. Hungry for more? Then
read on.

Chapter 2: The Objective-C Language 11

2 The Objective-C Language

In the previous chapter you were introduced to some basic object-oriented programming
terms. This chapter will expand on these terms, and introduce you to some new ones,
while concentrating on how they apply to the Objective-C language and the GNUstep base
library. First let us look at some non OO additions that Objective-C makes to ANSI C.

2.1 Non OO Additions

Objective-C makes a few non OO additions to the syntax of the C programming language
that include:

e A boolean data type (BOOL) capable of storing either of the values YES or NO.
A BOOL is a scalar value and can be used like the familiar int and char data types.
A BOOL value of NO is zero, while YES is non-zero.

e The use of a pair of slashes (//) to mark text up to the end of the line as a comment.

e The #import preprocessor directive was added; it directs the compiler to include a file
only if it has not previously been included for the current compilation. This directive
should only be used for Objective-C headers and not ordinary C headers, since the
latter may actually rely on being included more than once in certain cases to support
their functionality.

2.2 Objects

Object-oriented (OO) programming is based on the notion that a software system can be
composed of objects that interact with each other in a manner that parallels the interaction
of objects in the physical world.

This model makes it easier for the programmer to understand how software works since it
makes programming more intuitive. The use of objects also makes it easier during program
design: take a big problem and consider it in small pieces, the individual objects, and how
they relate to each other.

Objects are like mini programs that can function on their own when requested by the
program or even another object. An object can receive messages and then act on these
messages to alter the state of itself (the size and position of a rectangle object in a drawing
program for example).

In software an object consists of instance variables (data) that represent the state of the
object, and methods (like C functions) that act on these variables in response to messages.

As a programmer creating an application or tool, all you need do is send messages to the
appropriate objects rather than call functions that manipulate data as you would with a
procedural program.
The syntax for sending a message to an object, as shown below, is one of the additions that
Objective-C adds to ANSI C.

[objectName message];
Note the use of the square [| brackets surrounding the name of the object and message.
Rather than ’calling’ one of its methods, an object is said to 'perform’ one of its methods
in response to a message. The format that a message can take is discussed later in this
section.

12 Objective-C GNUstep Base Programming Manual

2.2.1 Id and nil

Objective-C defines a new type to identify an object: id, a type that points to an object’s
data (its instance variables). The following code declares the variable 'button’ as an object
(as opposed to button’ being declared an integer, character or some other data type).

id button;
When the button object is eventually created the variable name "button’ will point to the
object’s data, but before it is created the variable could be assigned a special value to
indicate to other code that the object does not yet exist.
Objective-C defines a new keyword nil for this assignment, where nil is of type id with
an unassigned value. In the button example, the assignment could look like this:

id button = nil;
which assigns nil in the declaration of the variable.
You can then test the value of an object to determine whether the object exists, perhaps
before sending the object a message. If the test fails, then the object does not exist and
your code can execute an alternative statement.

if (anObject !'= nil)

... /* send message */
else
. /* do something else */

The header file objc/objc.h defines id, nil, and other basic types of the Objective-C lan-
guage. It is automatically included in your source code when you use the compiler directive
#include <Foundation/Foundation.h> to include the GNUstep Base class definitions.

2.2.2 Messages

A message in Objective-C is the mechanism by which you pass instructions to objects. You
may tell the object to do something for you, tell it to change its internal state, or ask it for
information.

A message usually invokes a method, causing the receiving object to respond in some way.
Objects and data are manipulated by sending messages to them. Like C-functions they
have return types, but function specific to the object.

Objects respond to messages that make specific requests. Message expressions are enclosed
in square brackets and include the receiver or object name and the message or method name
along with any arguments.

To send a message to an object, use the syntax:

[receiver messagename] ;

where receiver is the object.

The run-time system invokes object methods that are specified by messages. For example,
to invoke the display method of the mySquare object the following message is used:

[mySquare display];

Messages may include arguments that are prefixed by colons, in which case the colons are
part of the message name, so the following message is used to invoke the setFrameOrigin: :
method:

Chapter 2: The Objective-C Language 13

[button setFrameOrigin: 10.0 : 10.0];

Labels describing arguments precede colons:
[button setWidth: 20.0 height: 122.0];
invokes the method named setWidth:height:

Messages that take a variable number of arguments are of the form:

[receiver makeList: 1list, argOne, argTwo, argThree];

A message to nil does NOT crash the application (while in Java messages to null raise
exceptions); the Objective-C application does nothing.

For example:
[nil display];
will do nothing.

If a message to nil is supposed to return an object, it will return nil. But if the method is
supposed to return a primitive type such as an int, then the return value of that method
when invoked on nil, is undefined. The programmer therefore needs to avoid using the
return value in this instance.

2.2.3 Polymorphism

Polymorphism refers to the fact that two different objects may respond differently to the
same message. For example when client objects receive an alike message from a server ob-
ject, they may respond differently. Using Dynamic Binding, the run-time system determines
which code to execute according to the object type.

2.3 Classes

A class in Objective-C is a type of object, much like a structure definition in C except that in
addition to variables, a class has code — method implementations — associated with it. When
you create an instance of a class, also known as an object, memory for each of its variables
is allocated, including a pointer to the class definition itself, which tells the Objective-C
runtime where to find the method code, among other things. Whenever an object is sent a
message, the runtime finds this code and executes it, using the variable values that are set
for this object.

2.3.1 Inheritance

Most of the programmer’s time is spent defining classes. Inheritance helps reduce coding
time by providing a convenient way of reusing code. For example, the NSButton class
defines data (or instance variables) and methods to create button objects of a certain type,
so a subclass of NSButton could be produced to create buttons of another type - which
may perhaps have a different border colour. Equally NSTextField can be used to define
a subclass that perhaps draws a different border, by reusing definitions and data in the
superclass.

Inheritance places all classes in a logical hierarchy or tree structure that may have the
NSObject class at its root. (The root object may be changed by the developer; in GNUstep

14 Objective-C GNUstep Base Programming Manual

it is NSObject, but in “plain” Objective-C it is a class called “Object” supplied with the
runtime.) All classes may have subclasses, and all except the root class do have superclasses.
When a class object creates a new instance, the new object holds the data for its class,
superclass, and superclasses extending to the root class (typically NSObject). Additional
data may be added to classes so as to provide specific functions and application logic.

When a new object is created, it is allocated memory space and its data in the form of its
instance variables are initialised. Every object has at least one instance variable (inherited
from NSObject) called isa, which is initialized to refer to the object’s class. Through this
reference, access is also afforded to classes in the object’s inheritance path.

In terms of source code, an Objective-C class definition has an:

e interface declaring instance variables, methods and the superclass name; and an

e implementation that defines the class in terms of operational code that implements the
methods.

Typically these entities are confined to separate files with .h and .m extensions for Interface
and Implementation files, respectively. However they may be merged into one file, and a
single file may implement multiple classes.

2.3.2 Inheritance of Methods

Fach new class inherits methods and instance variables from another class. This results
in a class hierarchy with the root class at the core, and every class (except the root) has
a superclass as its parent, and all classes may have numerous subclasses as their children.
Each class therefore is a refinement of its superclass(es).

2.3.3 Overriding Methods

Objects may access methods defined for their class, superclass, superclass’ superclass, ex-
tending to the root class. Classes may be defined with methods that overwrite their name-
sakes in ancestor classes. These new methods are then inherited by subclasses, but other
methods in the new class can locate the overridden methods. Additionally redefined meth-
ods may include overridden methods.

2.3.4 Abstract Classes

Abstract classes or abstract superclasses such as NSObject define methods and instance
variables used by multiple subclasses. Their purpose is to reduce the development effort
required to create subclasses and application structures. When we get technical, we make a
distinction between a pure abstract class whose methods are defined but instance variables
are not, and a semi-abstract class where instance variables are defined).

An abstract class is not expected to actually produce functional instances since crucial parts
of the code are expected to be provided by subclasses. In practice, abstract classes may
either stub out key methods with no-op implementations, or leave them unimplemented
entirely. In the latter case, the compiler will produce a warning (but not an error).

Abstract classes reduce the development effort required to create subclasses and application
structures.

Chapter 2: The Objective-C Language 15

2.3.5 Class Clusters

A class cluster is an abstract base class, and a group of private, concrete subclasses. It
is used to hide implementation details from the programmer (who is only allowed to use
the interface provided by the abstract class), so that the actual design can be modified
(probably optimised) at a later date, without breaking any code that uses the cluster.

Consider a scenario where it is necessary to create a class hierarchy to define objects holding
different types including chars, ints, shorts, longs, floats and doubles. Of course, different
types could be defined in the same class since it is possible to cast or change them from one
to the next. Their allocated storage differs, however, so it would be inefficient to bundle
them in the same class and to convert them in this way.

The solution to this problem is to use a class cluster: define an abstract superclass that
specifies and declares components for subclasses, but does not declare instance variables.
Rather this declaration is left to its subclasses, which share the programmatic interface
that is declared by the abstract superclass.

When you create an object using a cluster interface, you are given an object of another
class - from a concrete class in the cluster.

2.4 NSObject: The Root Class

In GNUstep, NSObject is a root class that provides a base implementation for all objects,
their interactions, and their integration in the run-time system. NSObject defines the isa
instance variable that connects every object with its class.

In other Objective-C environments besides GNUstep, NSObject will be replaced by a differ-
ent class. In many cases this will be a default class provided with the Objective-C runtime.
In the GNU runtime for example, the base class is called Object. Usually base classes
define a similar set of methods to what is described here for NSObject, however there are
variations.

The most basic functions associated with the NSObject class (and inherited by all sub-
classes) are the following:

e allocate instances

e connect instances to their classes

In addition, NSObject supports the following functionality:
e initialize instances
e deallocate instances
e compare self with another object
e archive self
e perform methods selected at run-time
e provide reflective information at runtime to queries about declared methods

e provide reflective information at runtime to queries about position in the inheritance
hierarchy

e forward messages to other objects.

16 Objective-C GNUstep Base Programming Manual

2.4.1 The NSObject Protocol

In fact, the NSObject class is a bit more complicated than just described. In reality, its
method declarations are split into two components: essential and ancillary. The essential
methods are those that are needed by any root class in the GNUstep/Objective-C environ-
ment. They are declared in an “NSObject protocol” which should be implemented by any
other root class you define (see Chapter 4 [Protocols], page 31). The ancillary methods are
those specific to the NSObject class itself but need not be implemented by any other root
class. It is not important to know which methods are of which type unless you actually
intend to write an alternative root class, something that is rarely done.

2.5 Static Typing

Recall that the id type may be used to refer to any class of object. While this provides
for great runtime flexibility (so that, for example, a generic List class may contain objcts
of any instance), it prevents the compiler from checking whether objects implement the
messages you send them. To allow type checking to take place, Objective-C therefore also
allows you to use class names as variable types in code. In the following example, type
checking verifies that the myString object is an appropriate type.

// compiler verifies, if anObject’s type is known, that it is an NSString:[}
NSString *myString = anObject;
// now, compiler verifies that NSString declares an int ’length’ method:|]
int len = [myString length];

Note that objects are declared as pointers, unlike when id is used. This is because the

pointer operator is implicit for id. Also, when the compiler performs type checking, a
subclass is always permissible where any ancestor class is expected, but not vice-versa.

2.5.1 Type Introspection

Static typing is not always appropriate. For example, you may wish to store objects of
multiple types within a list or other container structure. In these situations, you can still
perform type-checking manually if you need to send an untyped object a particular message.
The isMemberOfClass: method defined in the NSObject class verifies that the receiver is
of a specific class:

if ([namedObject isMemberOfClass: specificClass] == YES)
{
// code here
}

The test will return false if the object is a member of a subclass of the specific class given -
an exact match is required. If you are merely interested in whether a given object descends
from a particular class, the isKind0fClass: method can be used instead:

if ([namedObject isKindOfClass: specificClass] == YES)

{
// code here
}

There are other ways of determining whether an object responds to a particular method,
as will be discussed in Chapter 5 [Advanced Messaging], page 49.

Chapter 2: The Objective-C Language 17

2.5.2 Referring to Instance Variables

As you will see later, classes may define some or all of their instance variables to be public
if they wish. This means that any other object or code block can access them using the
standard “->” structure access operator from C. For this to work, the object must be
statically typed (not referred to by an id variable).

Bar *bar = [foo getBar];

int ¢ = bar->value * 2; // ’value’ is an instance variable
In general, direct instance variable access from outside of a class is not recommended pro-
gramming practice, aside from in exceptional cases where performance is at a premium.
Instead, you should define special methods called accessors that provide the ability to re-
trieve or set instance variables if necessary:

- (int) value

{
return value;
}
- (void) setValue: (int) newValue
{
value = newValue;
}

While it is not shown here, accessors may perform arbitrary operations before returning or
setting internal variable values, and there need not even be a direct correspondence between
the two. Using accessor methods consistently allows this to take place when necessary
for implementation reasons without external code being aware of it. This property of
encapsulation makes large code bases easier to maintain.

2.6 Working with Class Objects

Classes themselves are maintained internally as objects in their own right in Objective-C,
however they do not possess the instance variables defined by the classes they represent,
and they cannot be created or destroyed by user code. They do respond to class methods,
as in the following;:

id result = [SomeClassName doSomething];
Classes respond to the class methods their class defines, as well as those defined by their
superclasses. However, it is not allowed to override an inherited class method.

You may obtain the class object corresponding to an instance object at runtime by a method
call; the class object is an instance of the “Class” class.

// all of these assign the same value

id stringClassl = [stringObject class];

Class stringClass2 = [stringObject class];

id stringClass3 = [NSString class];
Classes may also define a version number (by overriding that defined in NSObject):
int versionNumber = [NSString version];
This facility allows developers to access the benefits of versioning for classes if they so
choose.

18 Objective-C GNUstep Base Programming Manual

2.6.1 Locating Classes Dynamically

Class names are about the only names with global visibility in Objective-C. If a class name
is unknown at compilation but is available as a string at run time, the GNUstep library
NSClassFromString function may be used to return the class object:

if ([anObject isKindOf: NSClassFromString("SomeClassName")] == YES)

{
// do something ...

}

The function returns Nil if it is passed a string holding an invalid class name. Class names,
global variables and functions (but not methods) exist in the same name space, so no two
of these entities may share the same name.

2.7 Naming Constraints and Conventions

The following lists the full uniqueness constraints on names in Objective-C.

e Neither gGlobal variables nor function names may share the same name as classes,
because all three entities are allocated the same (global) name space.

e A class may define methods using the same names as those held in other classes. (See
Chapter 2 [Overriding Methods], page 11 above.)

e A class may define instance variables using the same names as those held in other
classes.

e A class category may have the same name as another class category.
e An instance method and a class method may share the same name.
e A protocol may have the same name as a class, category, or any other entity.
e A method and an instance variable may share the same name.
There are also a number of conventions used in practice. These help to make code more

readable and also help avoid naming conflicts. Conventions are particularly important since
Objective-C does not have any namespace partitioning facilities like Java or other languages.

e C(Class, category and protocol names begin with an uppercase letter.

e Methods, instance variables, and variables holding instances begin with a lowercase
letter.

e Second and subsequent words in a name should begin with a capital letter, as in
“ThisIsALongName”, not “Thisisalongname”. As can be seen, this makes long names
more readable.

e Classes intended to be used as libraries (Frameworks, in NeXTstep parlance) should
utilize a unique two or three letter prefix. For example, the Foundation classes all begin
with 'NS’, as in “NSArray, and classes in the OmniFoundation from Omni Group (a
popular library for OpenStep) began with “OF”.

e (Classes and methods intended to be used only be the developers maintaining
them should be prefixed by an underscore, as in “_SomePrivateClass” or
“_somePrivateMethod”. Capitalization rules should still be followed.

e Functions intended for global use should beging with a capital letter, and use prefixing
conventions as for classes.

Chapter 2: The Objective-C Language 19

2.8 Strings in GNUstep

Strings in GNUstep can be handled in one of two ways. The first way is the C approach of
using an array of char. In this case you may use the “STR” type defined in Objective-C in
place of char[].

The second approach is to rely on the NSString class and associated subclasses in the
GNUstep Base library, and compiler support for them. Using this approach allows use of
the methods in the NSString API. In addition, the NSString class provides the means to
initialize strings using printf-like formats.

The NSString class defines objects holding raw Unicode character streams or strings. Uni-
code is a 16-bit worldwide standard used to define character sets for all spoken languages.
In GNUstep parlance the Unicode character is of type unichar.

2.8.1 Creating NSString Static Instances

A static instance is allocated at compile time. The creation of a static instance of NSString
is achieved using the @"..." construct and a pointer:

NSString *w = @"Brainstorm";
Here, w is a variable that refers to an NSString object representing the ASCII string "Brain-
storm".

2.8.2 NSString +stringWithFormat:

The class method stringWithFormat: may also be used to create instances of
NSString, and broadly echoes the printf() function in the C programming language.
stringWithFormat: accepts a list of arguments whose processed result is placed in an
NSString that becomes a return value as illustrated below:

int qos = 5;

NSString *gprsChannel;

gprschannel = [NSString stringWithFormat: @"The GPRS channel is %d",
qos];

The example will produce an NSString called gprsChannel holding the string "The GPRS
channel is 5".
stringWithFormat: recognises the %@ conversion specification that is used to specify an
additional NSString:

NSString *one;

NSString *two;

@"Brainstorm";
[NSString stringWithFormat: @"Our trading name is %@", onel;

one
two

The example assigns the variable two the string "Our trading name is Brainstorm." The %@
specification can be used to output an object’s description - as returned by the NSObject
-description method), which is useful when debugging, as in:

NSObject *obj = [anObject aMethod];

NSLog (@"The method returned: %@", obj);

../Reference/NSString.html

20 Objective-C GNUstep Base Programming Manual

2.8.3 C String Conversion

When a program needs to call a C library function it is useful to convert between NSStrings
and standard ASCII C strings (not fixed at compile time). To create an NSString using
the contents of the returned C string (from the above example), use the NSString class
method stringWithCString::

char *function (void);

char *result;
NSString *string;

result = function ();
string = [NSString stringWithCString: result];

To convert an NSString to a standard C ASCII string, use the cString method of the
NSString class:

char *result;
NSString *string;

string = Q"Hi!";
result [string cString];

2.8.4 NSMutableString

NSStrings are immutable objects; meaning that once they are created, they cannot be
modified. This results in optimised NSString code. To modify a string, use the subclass of
NSString, called NSMutableString. Use a NSMutableString wherever a NSString could
be used.

An NSMutableString responds to methods that modify the string directly - which is not
possible with a generic NSString. To create a NSMutableStringuse stringWithFormat::
NSString *name = Q@"Brainstorm";
NSMutableString *str;
str = [NSMutableString stringWithFormat: @"Hi!, %@", name];

While NSString’s implementation of stringWithFormat: returns a NSString,
NSMutableString’s implementation returns an NSMutableString.

Note. Static strings created with the @"..." construct are always immutable.

NSMutableStrings are rarely used because to modify a string, you normally create a new
string derived from an existing one.

A useful method of the NSMutableString class is appendString:, which takes an NSString
argument, and appends it to the receiver:

NSString *name = Q@"Brainstorm";

NSString *greeting = @"Hello";

NSMutableString *s;

s = AUTORELEASE ([NSMutableString new]);
[s appendString: greeting];
[s appendString: @", "];

Chapter 2: The Objective-C Language 21

[s appendString: name];
This code produces the same result as:

NSString *name = Q@"Brainstorm";
NSString *greeting = @"Hello";
NSMutableString *s;

s = [NSMutableString stringWithFormat: @"%@, %@", greeting, name];

2.8.5 Loading and Saving Strings

The the GNUstep Base library has numerous string manipulation features, and among
the most notable are those relating to writing/reading strings to/from files. To write the
contents of a string to a file, use the writeToFile:atomically: method:

#include <Foundation/Foundation.h>

int
main (void)
{
CREATE_AUTORELEASE_POOL (pool) ;
NSString *name = Q@"This string was created by GNUstep";

if ([name writeToFile: @"/home/nico/testing" atomically: YES])

{
NSLog (@"Success");

else
{
NSLog (@"Failure");
}
RELEASE (pool) ;
return O;

}

writeToFile:atomically: returns YES for success, and NO for failure. If the atomically
flag is YES, then the library first writes the string into a file with a temporary name, and,
when the writing has been successfully done, renames the file to the specified filename. This
prevents erasing the previous version of filename unless writing has been successful. This is
a useful feature, which should be enabled.

To read the contents of a file into a string, use stringWithContents0fFile:, as shown in
the following example that reads @"/home/Brainstorm/test":

#include <Foundation/Foundation.h>

int

main (void)

{
CREATE_AUTORELEASE_POOL (pool) ;
NSString *string;

22 Objective-C GNUstep Base Programming Manual

NSString *filename = @"/home/nico/test";

string = [NSString stringWithContentsOfFile: filename];
if (string == nil)

{
NSLog (@"Problem reading file %Q@", filename);
/*
* <missing code: do something to manage the error...>
* <exit perhaps 7>
*/
b
/*
* <missing code: do something with string...>
*/
RELEASE (pool);
return O;

¥

Chapter 3: Working with Objects 23

3 Working with Objects

Objective-C and GNUstep provide a rich object allocation and memory management frame-
work. Objective-C affords independent memory allocation and initialization steps for ob-
jects, and GNUstep supports three alternative schemes for memory management.

3.1 Initializing and Allocating Objects

Unlike most object-oriented languages, Objective-C exposes memory allocation for objects
and initialization as two separate steps. In particular, every class provides an '+alloc’
method for creating blank new instances. However, initialization is carried out by an in-
stance method, not a class method. By convention, the default initialization method is
'-init’. The general procedure for obtaining a newly initialized object is thus:

id newObj = [[SomeClass alloc] init];

Here, the call to alloc returns an uninitialized instance, on which init is then invoked.
(Actually, alloc does set all instance variable memory to 0, and it initializes the special
isa variable mentioned earlier which points to the object’s class, allowing it to respond to
messages.) The alloc and init calls may be collapsed for convenience into a single call:

id newObj = [SomeClass new];

The default implementation of new simply calls alloc and init as above, however other
actions are possible. For example, new could be overridden to reuse an existing object
and just call init on it (skipping the alloc step). (Technically this kind of instantiation
management can be done inside init as well — it can deallocate the receiving object and
return another one in its place. However this practice is not recommended; the new method
should be used for this instead since it avoids unnecessary memory allocation for instances
that are not used.)

3.1.1 Initialization with Arguments

In many cases you want to initialize an object with some specific information. For example
a Point object might need to be given an z, y position. In this case the class may define
additional initializers, such as:

id pt = [[Point alloc] initWithX: 1.5 Y: 2.0];

Again, a new method may be defined, though sometimes the word “new” is not used in the
name:

id pt = [Point newWithX: 1.5 Y: 2.0];
// alternative
id pt = [Point pointAtX: 1.5 Y: 2.0];

In general the convention in Objective-C is to name initializers in a way that is intuitive for
their classes. Initialization is covered in more detail in Chapter 4 [Instance Initialization],
page 31. Finally, it is acceptable for an init... method to return nil at times when
insufficient memory is available or it is passed an invalid argument; for example the argument
to the NSString method initWithContents0fFile: may be an erroneous file name.

24 Objective-C GNUstep Base Programming Manual

3.1.2 Memory Allocation and Zones

Memory allocation for objects in GNUstep supports the ability to specify that memory is
to be taken from a particular region of addressable memory. In the days that computer
RAM was relatively limited, it was important to be able to ensure that parts of a large
application that needed to interact with one another could be held in working memory at
the same time, rather than swapping back and forth from disk. This could be done by
specifying that particular objects were to be allocated from a particular region of memory,
rather than scattered across all of memory at the whim of the operating system. The OS
would then keep these objects in memory at one time, and swap them out at the same
time, perhaps to make way for a separate portion of the application that operated mostly
independently. (Think of a word processor that keeps structures for postscript generation
for printing separate from those for managing widgets in the onscreen editor.)

With the growth of computer RAM and the increasing sophistication of memory manage-
ment by operating systems, it is not as important these days to control the regions where
memory is allocated from, however it may be of use in certain situations. For example, you
may wish to save time by allocating memory in large chunks, then cutting off pieces yourself
for object allocation. If you know you are going to be allocating large numbers of objects
of a certain size, it may pay to create a zone that allocates memory in multiples of this
size. The GNUstep/Objective-C mechanisms supporting memory allocation are therefore
described here.

The fundamental structure describing a region of memory in GNUstep is called a Zone, and
it is represented by the NSZone struct. All NSObject methods dealing with the allocation of
memory optionally take an NSZone argument specifying the Zone to get the memory from.
For example, in addition to the fundamental alloc method described above, there is the
allocWithZone: method:

+ (id) alloc;
+ (id) allocWithZone: (NSZone*)zone;

Both methods will allocate memory to hold an object, however the first one automatically
takes the memory from a default Zone (which is returned by the NSDefaultMallocZone ()
function). When it is necessary to group objects in the same area of memory, or allocate
in chunks - perhaps for performance reasons, you may create a Zone from where you would
allocate those objects by using the NSCreateZone function. This will minimise the paging
required by your application when accessing those objects frequently.

Low level memory allocation is performed by the NSAllocateObject() function. This
is rarely used but available when you require more advanced control or performance.
This function is called by [NSObject +allocWithZone:]. However, if you -call
NSAllocateObject () directly to create an instance of a class you did not write, you may
break some functionality of that class, such as caching of frequently used objects.

Other NSObject methods besides alloc that may optionally take Zones include -copy and
-mutableCopy. For 95% of cases you will probably not need to worry about Zones at all;
unless performance is critical, you can just use the methods without zone arguments, that
take the default zone.

Chapter 3: Working with Objects 25

3.1.3 Memory Deallocation

Objects should be deallocated from memory when they are no longer needed. While there
are several alternative schemes for managing this process (see next section), they all even-
tually resort to calling the NSObject method -dealloc, which is more or less the opposite
of —alloc. It returns the memory occupied by the object to the Zone from which it was
originally allocated. The NSObject implementation of the method deallocates only instance
variables. Additional allocated, unshared memory used by the object must be deallocated
separately. Other entities that depend solely on the deallocated receiver, including complete
objects, must also be deallocated separately. Usually this is done by subclasses overriding
-dealloc (see Chapter 4 [Instance Deallocation], page 31).

As with alloc, the underlying implementation utilizes a function (NSDeallocateObject())
that can be used by your code if you know what you are doing.

3.2 Memory Management

In an object-oriented environment, ensuring that all memory is freed when it is no longer
needed can be a challenge. To assist in this regard, there are three alternative forms of
memory management available in Objective-C:

— Explicit
You allocate objects using alloc, copy etc, and deallocate them when you have finished
with them (using dealloc). This gives you complete control over memory management,
and is highly efficient, but error prone.

— Retain count
You use the OpenStep retain/release mechanism, along with autorelease pools which
provide a degree of automated memory management. This gives a good degree of
control over memory management, but requires some care in following simple rules.
It’s pretty efficient.

— Garbage collection
You build the GNUstep base library with garbage collection, and link with the Boehm
GC library ... then never bother about releasing/deallocating memory. This requires
a slightly different approach to programming ... you need to take care about what
happens when objects are deallocated ... but don’t need to worry about deallocating
them.

The recommended approach is to use some standard macros defined in NSObject.h which
encapsulate the retain/release/autorelease mechanism, but which permit efficient use of
the garbage collection system if you build your software with that. We will justify this
recommendation after describing the three alternatives in greater detail.

3.2.1 Explicit Memory Management

This is the standard route to memory management taken in C and C++ programs. As in
standard C when using malloc, or in C++ when using new and delete, you need to keep
track of every object created through an alloc call and destroy it by use of dealloc when
it is no longer needed. You must make sure to no longer reference deallocated objects;
although messaging them will not cause a segmentation fault as in C/C++, it will still lead
to your program behaving in unintended ways.

26 Objective-C GNUstep Base Programming Manual

This approach is generally not recommended since the Retain/Release style of memory
management is significantly less leak-prone while still being quite efficient.

3.2.2 OpenStep-Style (Retain/Release) Memory Management

The standard OpenStep system of memory management employs retain counts. When an
object is created, it has a retain count of 1. When an object is retained, the retain count
is incremented. When it is released the retain count is decremented, and when the retain
count goes to zero the object gets deallocated.

Coin *c = [[Coin alloc] initWithValue: 10];

// Put coin in pouch,
[c retain]; // Calls ’retain’ method (retain count now 2)
// Remove coin from pouch
[c release]; // Calls ’release’ method (retain count now 1)
// Drop in bottomless well
[c release]; // Calls ’release’ ... (retain count 0) then ’dealloc’

One way of thinking about the initial retain count of 1 on the object is that a call to alloc
(or copy) implicitly calls retain as well. There are a couple of default conventions about
how retain and release are to be used in practice.

o If a block of code causes an object to be allocated, it “owns” this object and is responsible
for releasing it. If a block of code merely receives a created object from elsewhere, it is
not responsible for releasing it.

e More generally, the total number of retains in a block should be matched by an equal
number of releases.

Thus, a typical usage pattern is:

NSString *msg = [[NSString alloc] initWithString: @"Test message."];
NSLog (msg) ;

// we created msg with alloc -- release it
[msg releasel;

Retain and release must also be used for instance variables that are objects:

- (void)setFoo: (FooClass *newFoo)
{
// first, assert reference to newFoo
[newFoo retain];
// now release reference to foo (do second since maybe newFoo == foo)l}
[foo release];
// finally make the new assignment; old foo was released and may
// be destroyed if retain count has reached 0
foo = newFoo;

}

Because of this retain/release management, it is safest to use accessor methods to set
variables even within a class:

- (void)resetFoo

{

Chapter 3: Working with Objects 27

FooClass *foo = [[FooClass alloc] init];

[self setFoo: fool;
// since -setFoo just retained, we can and should
// undo the retain done by alloc

[foo release];

}
Exceptions

In practice, the extra method call overhead should be avoided in performance critical areas
and the instance variable should be set directly. However in all other cases it has proven
less error-prone in practice to consistently use the accessor.

There are certain situations in which the rule of having retains and releases be equal in a
block should be violated. For example, the standard implementation of a container class
retains each object that is added to it, and releases it when it is removed, in a separate
method. In general you need to be careful in these cases that retains and releases match.

3.2.2.1 Autorelease Pools

One important case where the retain/release system has difficulties is when an object needs
to be transferred or handed off to another. You don’t want to retain the transferred object
in the transferring code, but neither do you want the object to be destroyed before the
handoff can take place. The OpenStep/GNUstep solution to this is the autorelease pool.
An autorelease pool is a special mechanism that will retain objects it is given for a limited
time — always enough for a transfer to take place. This mechanism is accessed by calling
autorelease on an object instead of release. Autorelease first adds the object to the
active autorelease pool, which retains it, then sends a release to the object. At some
point later on, the pool will send the object a second release message, but by this time
the object will presumably either have been retained by some other code, or is no longer
needed and can thus be deallocated. For example:

- (NSString *) getStatus

{
NSString *status =
[[NSString alloc] initWithFormat: "Count is %d", [self getCount]];
// set to be released sometime in the future
[status autorelease];
return status;
}

Any block of code that calls ~getStatus can also forego retaining the return value if it just
needs to use it locally. If the return value is to be stored and used later on however, it
should be retained:

NSString *status = [foo getStatus];

// ’status’ is still being retained by the autorelease pool
NSLog(status) ;
return;

// status will be released automatically later

28 Objective-C GNUstep Base Programming Manual

currentStatus = [foo getStatus];
// currentStatus is an instance variable; we do not want its value
// to be destroyed when the autorelease pool cleans up, so we
// retain it ourselves

[currentStatus retain];

Convenience Constructors

A special case of object transfer occurs when a convenience constructor is called (instead of
alloc followed by init) to create an object. (Convenience constructors are class methods
that create a new instance and do not start with “new”.) In this case, since the convenience
method is the one calling alloc, it is responsible for releasing it, and it does so by calling
autorelease before returning. Thus, if you receive an object created by any convenience
method, it is autoreleased, so you don’t need to release it if you are just using it temporarily,
and you DO need to retain it if you want to hold onto it for a while.

- (NSString *) getStatus

{
NSString *status =
[NSString stringWithFormat: "Count is %d", [self getCount]];
// ’status’ has been autoreleased already
return status;
}

Pool Management

An autorelease pool is created automatically if you are using the GNUstep GUI classes,
however if you are just using the GNUstep Base classes for a nongraphical application, you
must create and release autorelease pools yourself:

NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];

Once a pool has been created, any autorelease calls will automatically find it. To close out
a pool, releasing all of its objects, simply release the pool itself:

[pool releasel];

To achieve finer control over autorelease behavior you may also create additional pools and
release them in a nested manner. Calls to autorelease will always use the most recently
created pool.

Finally, note that autorelease calls are significantly slower than plain release. Therefore
you should only use them when they are necessary.

3.2.2.2 Avoiding Retain Cycles

One difficulty that sometimes occurs with the retain/release system is that cycles can arise
in which, essentially, Object A has retained Object B, and Object B has also retained
Object A. In this situation, neither A nor B will ever be deallocated, even if they become
completely disconnected from the rest of the program. In practice this type of situation
may involve more than two objects and multiple retain links. The only way to avoid such
cycles is to be careful with your designs. If you notice a situation where a retain cycle could
arise, remove at least one of the links in the chain, but not in such a way that references to
deallocated objects might be mistakenly used.

Chapter 3: Working with Objects

3.2.2.3 Summary

29

The following summarizes the retain/release-related methods:

Method Description

-retain increases the reference count of an object by 1

-release decreases the reference count of an object by 1

-autorelease decreases the reference count of an object by 1 at some stage in
the future

+alloc and allocates memory for an object, and returns it with retain count

+allocWithZone: of 1

—-copy, —mutableCopy,

makes a copy of an object, and returns it with retain count of 1

copyWithZone: and -

mutableCopyWithZone:

initialises the receiver, returning the retain count unchanged. -
init has had no effect on the reference count.

-init and any
method whose name
begins with init

-new and any method allocates memory for an object, initialises it, and returns the

whose name begins result.

with new

-dealloc deallocates object immediately (regardless of value of retain count)
convenience allocate memory for an object, and returns it in an autoreleased
constructors state (retain=1, but will be released automatically at some stage

in the future). These constructors are class methods whose name
generally begins with the name of the class (initial letter converted
to lowercase).

The following are the main conventions you need to remember:

e If a unit of code allocates, retains, or copies an object, the same unit, loosely speaking,
is responsible for releasing or autoreleasing it at some future point. It is best to balance
retains and releases within each individual block of code.

e If you receive an autoreleased object, it will normally remain valid for the rest of the
current method call and can even be returned as the result of the method. If you need
to store it away for future use (e.g. as an instance variable), you must retain it.

e The retain counts mentioned are guidelines only ... more sophisticated classes often
perform caching and other tricks, so that +alloc methods may retain an instance from
a cache and return it, and -init methods may release their receiver and return a
different object (possibly obtained by retaining a cached object). In these cases, the
retain counts of the returned objects will obviously differ from the simple examples,
but the ownership rules (how you should use the returned values) remain the same.

3.2.3 Garbage Collection Based Memory Management

The GNUstep system can be optionally compiled with a memory sweeping garbage
collection mechanism using the Boehm conservative garbage collection library
(http://www.hpl.hp.com/personal/Hans_Boehm/gc). In this case, you need not worry
about retaining and releasing objects; the garbage collector will automatically track which
objects are still referred to at any given point within the program, and which are not.
Those that are not are automatically deallocated. The situation is largely similar to

http://www.hpl.hp.com/personal/Hans_Boehm/gc

30 Objective-C GNUstep Base Programming Manual

programming in Java, except that garbage collection will only be triggered during memory
allocation requests and will be less efficient since pointers in C are not always explicitly
marked.

Whether in Java or Objective-C, life is still not completely worry-free under garbage col-
lection however. You still must “help the garbage collector along” by explicitly dropping
references to objects when they become unneeded. Failing to do this is easier than you
might think, and leads to memory leaks.

When GNUstep was compiled with garbage collection, the macro flag GS_WITH_GC will be
defined, which you can use in programs to determine whether you need to call retain,
release, etc.. Rather than doing this manually, however, you may use special macros in
place of the retain and release method calls. These macros call the methods in question
when garbage collection is not available, but do nothing when it is.

Macro Functionality

RETAIN(foo); [foo retain];

RELEASE(foo0) ; [foo release];

AUTORELEASE (foo) ; [foo autorelease];

ASSIGN(foo, bar); [bar retain]; [foo release]; foo = bar;
ASSIGNCOPY (foo, [foo release]; foo = [bar copyl;

bar) ;

DESTROY (foo0) ; [foo release]; foo = nil;

In the latter three “convenience” macros, appropriate nil checks are made so that no
retain/release messages are sent to nil.

Some authorities recommend that you always use the RETAIN/RELEASE macros in place
of the actual method calls, in order to allow running in a non-garbage collecting GNUstep
environment yet also save unneeded method calls in the case your code runs in a garbage
collecting enviromnent. On the other hand, if you know you are always going to be running
in a non-garbage collecting environment, there is no harm in using the method calls, and if
you know you will always have garbage collection available you can save development effort
by avoiding any use of retain/release or RETAIN/RELEASE.

3.2.4 Current Recommendations

As of May 2004 the garbage collection in GNUstep was still considered beta quality (some
bugs exist). In the OS X world, Apple’s Cocoa does not employ garbage collection, and it
is not clear whether there are plans to implement it. Therefore the majority of GNUstep
programmers use the RETAIN/RELEASE approach to memory management.

Chapter 4: Writing New Classes 31

4 Writing New Classes

Objective-C class definitions are always divided into two parts: an interface and an im-
plementation. This division mirrors the common C library division into a header file with
function declarations, which is distributed to all users of a library, and a source file with the
implementations, which is only used to compile the library and is generally not distributed
to users. A class interface declares instance variables, methods and the superclass name,
while the implementation file holds the operational code that implements those methods.
Typically the interface and implementation are held in separate files, using the .h and .m
extensions, respectively. They may, however, be merged into one file, and a single file may
implement many classes.

4.1 Interface

The interface is included in the source using #include:
#include "SomeClass.h"

To ensure that a Header file is included only once, it is usual to protect it with pre-compiler
defines:

#ifndef _MY_CLASS_H_INCLUDED
#define _MY_CLASS_H_INCLUDED

/* HEADER FILE x*/
#endif

This is the standard C technique to protect header files from being included more than once.
A cleaner alternative, introduced in Objective-C, is to use the #import directive instead
of #include. The compiler will automatically include #imported files no more than once,
even if multiple import statements are encountered. Thus, you can do away with the messy
preprocessor conditionals in the header file.

You should be careful, however, to only use #import for Objective-C interface headers, and
continue using #include for standard C files. It is possible, though not likely, that regular
C headers may rely on being included multiple times in some cases. Also, you may need
to include the compiler directive -Wno-import to gcc to avoid a didactic warning to this
effect.

4.1.1 Interface Capabilities

The interface file declares new classes that can be used by source code, holding all the
information necessary to use the classes from other Objective-C code. Firstly, the file reveals
to the programmer the position of the class in the class hierarchy by defining exactly which
is the superclass. Secondly, it informs programmers of what variables are inherited when
they create subclasses. Finally, the interface file may inform other software entities of the
messages that can be sent to the class object and to the instances of the class.

Interface files use the .h extension as for ordinary C header files. (If you use emacs, put a
line “// -*-0bjC-*-" at the top of your file to use the correct mode.)

Here is an example of a class interface declaration:
#import <Foundation/NSObject.h>

32

Objective-C GNUstep Base Programming Manual

O@interface Point : NSObject
{
O@private
// instance variables only accessible to instances of this class
Oprotected

// instance variables accessible to instances of this class or subclassesll

float x;
float y;
@public
// instance variables accessible by all code ...

}

// class methods

+ (id) new;

+ (id) newWithX: (float)x0 Y: (float)yO;

+ (Point*) point;

+ (Point*) pointWithX: (float)x0 Y: (float)yO;

// instance methods

- (id) init;

- (id) initWithX: (float)x0 Y: (float)yO;
- (float) x; // (field accessor)

- (float) y;

- (void) setX: (float)newX;

- (void) setY: (float)newY;

Q@end

The interface file should import the interface of the superclass of the class it is defining.
The interface is enclosed between the compiler directives @interface and @end

@interface Point : Object names the class and links it to the superclass. If no su-
perclass is named, and the directive is without a colon, the compiler assumes that a
root class is being created. You more than likely don’t want to do this.

Braces enclose declared instance variables; each class’s instance will have all these
instance variables including instance variables inherited from the superclass, and from
the superclass of the superclass, extending to the root class.

Instance variables may be declared as private, protected, or public. An instance’s
private variables may only be accessed by instances of this class. An instance’s protected
variables may be accessed by instances of this class or instances of subclasses of this
class. Public variables may be accessed by any code. This is analogous to the usage
in C++ and Java. If you do not mark your instance variable declaration explicitly, it is
made protected by default.

Method declarations that begin with a "+" sign are class methods, and are defined
for the class object. Thus, you can call them without creating an instance, and their
implementations do not have access to any instance variables. A class object inherits
class methods from superclasses.

Chapter 4: Writing New Classes 33

Method declarations that begin with a "-" sign are instance methods, and are defined
for class instances. Class instances inherit instance methods from superclasses.

A method may share the name of an instance variable.

A method return type is declared using the C syntax for type casts:
- (float) x;

which is a method returning a float.

Argument types can be declared in the same way as method return types:
- (void) setX: (float)newX;
which is a method that returns nothing, and takes a single float as its argument.

Note. The default type for methods and messages (id) is assumed when a return
or argument type is not explicitly declared. For example, '-name’ implicitly means a
method returning id (i.e. an object). It is usually better to avoid this and use explicit
typing as in

- (NSString*) name;

4.1.2 Including Interfaces

Source code (including Objective-C implementation and interface files) may integrate inter-
faces using #import (or #include). Thereafter the source module may utilize the classes
in those interfaces so as to:

e Make instances of them.
e Send messages to invoke methods declared for them.

e Refer to instance variables in them.

With the exception of the root class, all working interfaces integrate a superclass using
either #import or #include — as was seen in the previous simplified interface file example.
As a result the vast majority of class files begin with a standard form that includes their
superclasses, and thus places them in the class hierarchy:

#import "SomeSuperclass.h"

O@interface SomeClass : SomeSuperclass

{

// instance variables ...

¥

// method declarations ...
Q@end

4.1.3 Referring to Classes - @class

It is possible for a source module to refer to classes without including their interface files.
This is useful when you just need to tell the compiler that a certain word is a class name,
but you want to avoid the overhead of including the whole interface file for that class.

For example, to inform the compiler that Border and Square are classes without including
their full interface file, the following syntax is used:

Q@class Border, Square;

34 Objective-C GNUstep Base Programming Manual

Class names may also appear in interface files at times when instance variables, return
values and arguments are statically typed:

#import "Foundation/NSObject.h"
Q@class Point

@interface Square : NSObject
{
Oprotected

Point *lowerLeft;

float sidelength;

+

(id) newWithLowerLeft: (Point *)lowerLeft sideLength: (float)sideLength;]j

(id) initWithLowerLeft: (Point *)lowerLeft sideLength: (float)sideLength;]]

(Point *) lowerLeft;

(float) sideLength;

- (void) setLowerLeft: (Point *)newLowerLeft;
- (void) setSidelLength: (float)newSideLength;
Q@end

Here, we see the Point class we declared earlier being used as a component in Square’s
definition. Because this class is only referred to here to declare variables and method
signatures, it suffices to reference it only using the @class directive. On the other hand,
the implementation file may need to send messages to Point instances and would be better
of importing the interface in this case.

The compiler will produce a warning if you don’t include it, and no type checking can
be performed (to see if class instances respond to the messages you send to them), but
compilation will succeed. It is best to take advantage of type-checking when you can,
however, and include interfaces that messages are to be sent to.

There is one situation where you must include the interface however. If you are implement-
ing a new class, you always need to include the interface of the superclass; @class cannot
be used in this case because the compiler needs to know the details of the superclass and
its instance variables etc., so as to create a fully working new class. If you try using @class
in this situation, compilation will abort.

4.2 Implementation

An interface file declares a class, while an implementation file implements it. The separa-
tion between the interface and implementation file yields a black box concept where the
programmer using the class need only be concerned with the interface and its declared
methods, superclasses, and instance variables. The implementation of classes is transparent
to the programmer who may use them without detailed knowledge of their structures.

Implementation files use the .m extension, to distinguish them from ordinary C files.

Chapter 4: Writing New Classes 35

4.2.1 Writing an Implementation

An implementation file contents are encapsulated between @implementation and @end di-
rectives:

#import "Point.h"
Oimplementation Point
// method implementations
+ (id)new
{

// statements ...

}

+ (id)newWithX: (float)x Y: (float)y
{

// statements ...

+
/...

- (void)setY: (float)newY
{

// statements ...
}

Q@end

The implementation file uses #import to include a named interface file holding all decla-
rations. Then it places method implementations for the class between @implementation
and @end directives. Each method declared in the interface must be implemented. Instance

variables may be referred to in instance methods (the ones with a “-” in front of them) but
not class methods (the ones with a “+”).
- (float) x
{
return Xx;
}
- (void) setX: (float)newX
{
X = newX;
}

4.2.2 Super and Self

To assist in writing instance methods, Objective-C provides the two reserved words self
and super. Self is used to refer to the current instance, and is useful for, among other
things, invoking other methods on the instance:

- (Foo *) foo

{

36 Objective-C GNUstep Base Programming Manual

if (![self fooIsInitialized])
[self initializeFoo];
return foo;

¥

Super is used to refer to method implementations in the superclass of the instance. It
is useful when overriding methods and when writing initializers, as discussed in the next
section.

4.2.3 Instance Initialization

Instance initialization is one of the trickier aspects of getting started in Objective-C. Recall
that instances of a class are created by use of the class alloc method (inherited from
NSObject) but are initialized by instance methods. This works a little differently than in
C++ and Java, where constructors are special methods that are neither class nor instance
methods. In particular, since initializer methods are inherited instance methods, they may
still be called even if you have not implemented them in your class. For example, it is
always valid to invoke

SomeComplexClass *c = [[SomeComplexClass alloc] init];

Even if you have not implemented init in SomeComplexClass, the superclass’s imple-
mentation will be invoked, or, ultimately, NSObject’s if no other ancestors implement it.
Obviously, this could result in some of SomeComplexClass’s internal state being left unini-
tialized. For this reason, you should always either provide an init implementation, or
document whether it should be used. We will return to this concern below.

Typically, a class will also provide one or more initWith. .. methods for initialization with
arguments, and it may optionally also provide +new methods and convenience class methods
that act like constructors. The general approach to implementing these is illustrated here
for the Point class.

+ new

{

Point *point;

// note "self" refers to the "Point" _class_ object!
point = [[self allocWithZone: NSDefaultMallocZone()] init];
return point;

}

+ newWithX: (float)x0 Y: (float)yO

{
Point *point;
point = [[self allocWithZone: NSDefaultMallocZone()] initWithX: x Y: yI;[}
return point;

}

+ point

{

Point *point;

Chapter 4: Writing New Classes 37

// note "self" refers to the "Point" _class_ object!
point = [self new];
return AUTORELEASE(point);

}
+ pointWithX: (float)x0 Y: (float)yO
{
Point *point;
point = [self newWithX: x Y: yl;
return AUTORELEASE(point);
}
- init
return [self initWithX: 0.0 Y: 0.0];
}

// this is the "designated" initializer
- initWithX: (float)x0 Y: (float)yO
{
self = [super init];
if (self != nil)
{
x = x0;
y = y0;
}

return self;

}

Notice that, first, the convenience constructors (new and newWithX:Y:) execute [self
allocWithZone:] to begin with. The “self” here refers to the class object, since it is
used inside a class method. Thus the effect is the same as if “[Point alloc]” had been ex-
ecuted in external code. Second, notice that the other convenience constructors (point and
pointWithX:Y:) autorelease the new instance before returning it. This is to follow the rules
of memory management discussed in Chapter 3 [Memory Management|, page 23. Third,
note that the new.. methods each call a corresponding init. .. method. It is not necessary
to maintain such a one to one correspondence but it is a common convention to have the
convenience implementations rely on instance init methods as shown. Fourth, note that
the use of [self allocWithZone: NSDefaultMallocZone()] rather than [self alloc] is
generally unnecessary, but provides a slight efficiency gain since +alloc is implemented by
calling +allocWithZone: on the default zone.

Designated Initializer

Finally, notice that the initWithX:Y: method is marked as the “designated” initializer.
This concept is important to ensure proper initialization for classes within a hierarchy. The
designated initializer should be the one with the most control over the nature of the new

38 Objective-C GNUstep Base Programming Manual

instance, and should be the one that all other initializers “ground out” in. In other words,
all other initializers should be chained so that they either call the designated initializer, or
they call another initializer that (eventually) calls it.

The importance of having a designated initializer is this: when a subclass is created, it
need only override the designated initializer to ensure that all of its instances are properly
initialized. If this is not done, external code could invoke an initializer that initializes
only the superclass’s instance variables, and not the subclass’s. To avoid this, each class
designates a “ground out” initializer to which other initializers ultimately delegate. Then
the subclass overrides this initializer, and in its own designated initializer, makes a call to
it, to ensure that the superclass is initialized properly. Thus:

Oimplementation SuperClass
- initWithA: (int)a
{
return [self initWithA:a B:0]; // O is default value
3

// designated init for SuperClass
- initWithA: (int)a B: (int)b

{
self = [super init];
myA = a;
myB = b;
return self;
+
Q@end

Oimplementation SubClass

// overrides SuperClass’s designated init
- initWithA: (int)a B: (int)b
{
return [self initWithA: (int)a B: (int)b C: (int)cl;
+

// designated init for SubClass
- initWithA: (int)a B: (int)b C: (int)c

{
self = [super initWithA: a B: b];
myC = c;
return self;

}

@end

Note, as shown above, unlike in some other object-oriented languages, 'self’ is a variable
that can be redefined. For example, we could have written the new constructor above like
this:

Chapter 4: Writing New Classes 39

self = [[self alloc] init];

// note "self" now refers to the new instance!
[self setX: 1.0];
return self;

}

Another point to note is that Objective-C does not enforce calling superclass initializers
before carrying out subclass initialization. Although above the first call in the designated
initializer was always [super ...], this was not required, and if you need to set something
up before super acts, you are free to do so.

4.2.4 Flexible Initialization

As mentioned before, it is possible for an initialization process to, if desired, return not a
new object but an existing object. This may be done in one of two ways. If you are doing
it from a convenience class method like new, then use something like the following:

+ new
{
if (singleton == nil)
singleton = [[self alloc] init];
return singleton;

}

Note this example presupposes the existence of a class variable, ’singleton’. Class variables
as such don’t exist in Objective-C but can be simulated, as discussed below.

If you want to possibly return an existing instance from an init instance method like init,
the procedure is slightly more complicated:
- init
{
if (singleton != nil)
{
RELEASE (self) ;
self = RETAIN(singleton);
}
else
{
singleton = self;
}
return self;

}

Here, we explicitly deallocate the current instance and replace it with the desired existing
instance. Because this might happen, you should always be careful to use the returned
value from an init method:

id anObject = [SomeClass alloc];
// this is bad:

[anObject init];
// anObject might have been deallocated!
// do this instead:

40 Objective-C GNUstep Base Programming Manual

anObject = [anObject init];

One scenario where this actually occurs in the GNUstep libraries is with the class
NSConnection. It only permits one connection to exist between any two ports, so if you
call initWithReceivePort:sendPort: when a connection for the ports exists, the method
will deallocate the newly allocated instance, and return the current conflicting object,
rather than the receiver.

In general, it is better to catch this type of requirement in a “new” class method rather
than an instance “init” method so as to avoid the unnecessary allocation of instances that
will not be used, however this is not always possible given other design constraints.

4.2.5 Instance Deallocation

As described in Chapter 3 [Memory Management|, page 23, objects should be deallocated
when they are no longer needed. When garbage collection is not being used, this is done
through explicit calls to the dealloc method. When GC is being used, dealloc is still
called implicitly, and should be implemented. However the tasks of the dealloc method
are fewer in this case.

When garbage collection is not active, the dealloc method must release all other objects
that this instance has retained. Usually these are those instance variables that are objects
rather than primitive types. In certain cases such as container classes, other objects must
be released as well. In addition, if the instance has acquired any external resources, such as
a network connection or open file descriptor, these should be relinquished as well. Likewise,
any memory that has been directly allocated through use of malloc or other functions
should be released.

When garbage collection is active, the dealloc method is still responsible to relinquish
external resources, but other GNUstep objects need not be released, since they will be
garbage collected once this instance has been.

If you cannot be sure whether your class will be running in a garbage-collecting environment,
it never hurts to execute all of the releases of other objects. This will not harm the operation
of the garbage collector, though it will result in pointless calls to the retain/release methods
that are stubbed out under garbage collection. If this could cause a performance hit in your
application, you should use the RETAIN/RELEASE macros instead of the function calls.

Here is an example of a dealloc implementation:

- dealloc

{
RELEASE (anInstanceVariableObject);
NSZoneFree (NULL, myMemory) ;
[super dealloc];

}

Here, we use the RELEASE macro to release an instance variable, and the NSZoneFree func-
tion to free memory that was earlier allocated with NSZoneMalloc or a related function.
(See Chapter 8 [Base Library|, page 85 for discussion of GNUstep’s raw memory allocation
functions.) The NULL used indicates that the memory was from the default zone, and is
equivalent to saying 'NSDefaultMallocZone ()’ instead.

Chapter 4: Writing New Classes 41

Finally, notice we end with a call to [super dealloc]. This should always be done in
dealloc implementations, and you should never concern yourself with deallocating struc-
tures that are associated with a superclass, since it will take care of this itself.

4.3 Protocols

Protocols in Objective-C provide a level of flexibility beyond class structure in determining
what messages objects respond to. They are similar to interfaces in Java but more flexible.

There are two types of protocol in Objective-C: informal protocols, where we document
methods to which objects will respond, and specify how they should behave, and formal
protocols, where we provide a list of methods that an object will support in a format where
the compiler can check things, and the runtime can also check that an object conforms to
the protocol. Informal protocols are merely convention, but are useful where we want to say
that some system will work as long as it (or its delegate) implements some subset of a group
of methods. Formal protocols are of more use when we want the compiler or runtime to
check that an object implements all of a group of methods itself. Formal protocols form an
inheritance hierarchy like classes, and a given class may conform to more than one protocol.
Thus, formal protocols are identical in many respects to Java interfaces.

As in Java, a particularly important use of protocols is in defining the methods that an
object in a remote process can respond to ... by setting the protocol used by a local proxy
object, you can avoid having to send messages to the remote process to check what methods
are available - you can simply check the local protocol object. This will be covered later in
Chapter 7 [Distributed Objects], page 65.

Informal protocols are closely associated with Categories, another Objective-C language
facility, and will be discussed in the next section.

4.3.1 Declaring a Formal Protocol

A formal protocol is declared as a series of method declarations, just like a class interface.
The difference is that a protocol declaration begins with @protocol rather than @interface,
and has an optional super protocol specified in angle brackets.

Oprotocol List

- (void) add: (id) item;
- (void) remove: (id) item;
- getAtIndex: (int)idx;
- (void) clear;

@end

O@protocol LinkedList <List>

- (void) addFirst: (id)item;
- (void) addLast: (id)item;
- getFirst;

- getlast;

Q@end

42 Objective-C GNUstep Base Programming Manual

4.3.2 Implementing a Formal Protocol

If you want your class to conform to a protocol, you declare it in your interface, and
implement the methods in your declaration:

@interface BiQueue <LinkedList>
{
// instance variables
}
// method declarations
// [don’t need to redeclare those for the LinkedList protocoll]
- takeFirst
- t