
GtkAda User’s Guide
Version 2.24.1

Document revision level $Revision: 174895 $
Date: $Date: 2011-06-15 11:11:14 +0200 (Wed, 15 Jun 2011) $

E. Briot, J. Brobecker, A. Charlet

Copyright c© 1998-2000, Emmanuel Briot, Joel Brobecker, Arnaud Charlet

Copyright c© 2000-2011, AdaCore

This document is free; you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation; either version 2 of
the License, or (at your option) any later version.

This document is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNUGeneral Public License along with this program;
if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
MA 02110-1301 USA.

Chapter 1: Introduction: What is GtkAda ? 1

1 Introduction: What is GtkAda ?

GtkAda is a high-level portable graphical toolkit, based on the gtk+ toolkit, one of the official
GNU toolkits. It makes it easy to create portable user interfaces for multiple platforms,
including most platforms that have a X11 server and Win32 platforms.

Although it is based on a C library, GtkAda uses some advanced Ada features such as
tagged types, generic packages, access to subprograms, and exceptions to make it easier to
use and design interfaces. For efficiency reasons, it does not use controlled types, but takes
care of all the memory management for you in other ways.

As a result, this library provides a secure, easy to use and extensible toolkit.

Compared to the C library, GtkAda provides type safety (especially in the callbacks
area), and object-oriented programming. As opposed to common knowledge, it requires
less type casting than with in C. Its efficiency is about the same as the C library through
the use of inline subprograms.

GtkAda comes with a complete integration to the graphical interface builder Glad. This
makes it even easier to develop interfaces, since you just have to click to create a description
of the window and all the dialogs. Ada code can simply import that description to bring
the windows to life.

Under some platforms, GtkAda also provides a bridge to use OpenGL, with which you
can create graphical applications that display 3D graphics, and display them in a GtkAda
window, as with any other 2D graphics. This manual does not document OpenGL at all,
see any book on OpenGL, or the specification that came with your OpenGL library, for
more information.

The following Internet sites will always contain the latest public packages for GtkAda,
gtk+, Glade and Cairo

http://libre.adacore.com/libre/tools/GtkAda/

http://www.gtk.org/

http://glade.gnome.org/

http://www.cairographics.org/

The scheme used for GtkAda’s version numbers is the following: the major and minor
version number is the same as for the underlying gtk+ library (e.g 2.18). The micro version
number depends on GtkAda’s release number.

This toolkit was tested on the following systems:

• GNU Linux/x86

• GNU Linux/x86-64

• GNU Linux/ia64

• Solaris/sparc

• Windows XP/Vista/2003

with the latest version of the GNAT compiler, developed and supported by Ada Core
Technologies (see http://www.adacore.com).

This version of GtkAda is known to be compatible with gtk+ 2.16.x and 2.18.x. This
release may or may not be compatible with older versions of gtk+.

http://libre.adacore.com/libre/tools/GtkAda/
http://www.gtk.org/
http://glade.gnome.org/
http://www.cairographics.org/
http://www.adacore.com

Chapter 1: Introduction: What is GtkAda ? 2

This version of GtkAda is compatible with Glade version 3.7.3.

This document does not describe all the widgets available in GtkAda, nor does it try to
explain all the subprograms. The GtkAda Reference Manual provides this documentation
instead, as well as the GtkAda sources spec files themselves, whose extension is ‘.ads’.

No complete example is provided in this documentation. Instead, please refer to the
examples that you can find in the ‘testgtk/’ and ‘examples/’ directory in the GtkAda
distribution, since these are more up-to-date (and more extensive). They are heavily com-
mented, and are likely to contain a lot of information that you might find interesting.

If you are interested in getting support for GtkAda–including priority bug fixes, early
releases, help in using the toolkit, help in designing your interface, and on site consulting–
please contact AdaCore (mailto:sales@adacore.com).

mailto:sales@adacore.com

Chapter 2: Getting started with GtkAda 3

2 Getting started with GtkAda

This chapter describes how to start a new GtkAda application. It explains the basic features
of the toolkit, and shows how to compile and run your application.

It also gives a brief overview of the extensive widget hierarchy available in GtkAda.

2.1 How to build and install GtkAda

This section explains how to build and install GtkAda on your machine.

On Windows systems, we provide an automatic installer that installs GtkAda along with
dependent components like gtk+ libraries and Glade. If you are a Windows user, you can
skip the rest of this section which will address installation on Unix systems.

On Unix systems, you first need to install the glib and gtk+ libraries. Download the
compatible packages from the gtk+ web site (http://www.gtk.org), compile and install it.
Alternatively, if your operating system vendor provides glib and gtk+ development packages,
you can install the libraries they provide.

Change your PATH environment variable so that the script pkg-config, which indicates
where gtk+ was installed and what libraries it needs is automatically found by GtkAda. You
will no longer need this script once GtkAda is installed, unless you develop part of your
application in C.

OpenGL support will not be activated in GtkAda unless you already have the OpenGL
libraries on your systems. You can for instance look at Mesa, which is free implementation.

Optionally, you can also install the Glade interface builder. Get the compatible package
from the Glade web site, compile and install it.

You can finally download the latest version of GtkAda from the web site. Untar and
uncompress the package, then simply do the following steps:

$./configure

$ make

$ make tests (this step is optional)

$ make install

As usual with the configure script, you can specify where you want to install the
GtkAda libraries by using the --prefix switch.

You can specify the switch --disable-shared to prevent building shared libraries, even
if your system supports them (by default, both shared and static libraries are installed).
By default, your application will be linked statically with the GtkAda libraries. You can
override this default by specifying --enable-shared as a switch to configure, although
you can override it later through the LIBRARY TYPE scenario variable.

If you have some OpenGL libraries installed on your system, you can make sure that
configure finds them by specifying the --with-GL-prefix switch on the command line.
configure should be able to automatically detect the libraries however.

You must then make sure that the system will be able to find the dynamic libraries at
run time if your application uses them. Typically, you would do one of the following:

• run ldconfig if you installed GtkAda in one of the standard location and you are
super-user on your machine

http://www.gtk.org

Chapter 2: Getting started with GtkAda 4

• edit /etc/ld.conf if you are super-user but did not install GtkAda in one of the stan-
dard location. Add the path that contains libgtkada.so (by default ‘/usr/local/lib’
or ‘$prefix/lib’.

• modify your LD_LIBRARY_PATH environment variable if you are not super-user. You
should simply add the path to libgtkada.

In addition, if you are using precompiled Gtk+ binary packages, you will
also need to set the FONTCONFIG_FILE environment variable to point to the
‘prefix/etc/fonts/fonts.conf’ file of your binary installation.

For example, assuming you have installed Gtk+ under ‘/opt/gtk’ and using bash:

$ export FONTCONFIG_FILE=/opt/gtk/etc/fonts/fonts.conf

If your application is using printing, on UNIX and Linux you will need to point your
environment variable GTK EXE PREFIX to the root directory of your Gtk+ installation:

$ export GTK_EXE_PREFIX=/opt/gtk/

2.2 How to distribute a GtkAda application

Since GtkAda depends on Gtk+, you usually need to distribute some Gtk+ libraries along
with your application.

Under some OSes such as Linux, Gtk+ comes preinstalled, so in this case, a simple
solution is to rely on the preinstalled Gtk+ libraries. See below for more information on the
gtkada library itself.

Under other unix systems, GtkAda usually comes with a precompiled set of Gtk+ libraries
that have been specifically designed to be easily redistributed.

In order to use the precompiled Gtk+ binaries that we distribute with GtkAda, you
need to distribute all the Gtk+ .so libraries along with your application, and use the
LD LIBRARY PATH environment variable to point to these libraries.

The list of libraries needed is ‘<gtkada-prefix>/lib/lib*.so.?’ along with your exe-
cutable, and set LD LIBRARY PATH.

You may also need the ‘libgtkada-xxx.so’ file. This dependency is optional since
gtkada supports both static and dynamic linking, so by e.g. using gtkada-config --static

or by using ‘gtkada_static.gpr’, you will end up linking with ‘libgtkada.a’.

Under Windows, you need to distribute the following files and directories along with
your application, and respect the original directory set up:

• ‘bin/*.dll’

• ‘etc/’

• ‘lib/gtk-2.0’

2.3 Organization of the GtkAda package

In addition to the full sources, the GtkAda package contains a lot of heavily commented
examples. If you haven’t been through those examples, we really recommend that you look
at them and try to understand them, since they contain some examples of code that you
might find interesting for your own application.

Chapter 2: Getting started with GtkAda 5

• ‘testgtk/’ directory:

This directory contains the application testgtk that tests all the widgets in GtkAda.
It gives you a quick overview of what can be found in the toolkit, as well as some
detailed information on the widgets and their parameters.

Each demo is associated with contextual help pointing to aspects worth studying.

It also contains an OpenGL demo, if GtkAda was compiled with support for OpenGL.

This program is far more extensive that its C counterpart, and the GtkAda team has
added a lot of new examples.

This directory also contains the application testcairo which demonstrates the use of
various Cairo functions in GtkAda.

• ‘examples/’ directory:

This directory contains some small examples, unrelated to ‘testgtk’. For instance,
this is where you will find new widgets created directly in Ada, as examples of how to
create your own callback marshallers.

On the whole these examples are a little more complex than ‘testgtk’ but since they
focus on demonstrating a precise concept, they are still quite easy to understand.

• ‘docs/’ directory:

It contains the html, info, text and TEX versions of the documentation you are currently
reading. Note that the documentation is divided into two subdirectories, one containing
the user guide, which you are currently reading, the other containing the reference
manual, which gives detailed information on all the widgets found in GtkAda. The
docs directory also contains a subdirectory with some slides that were used to present
GtkAda at various shows.

2.4 How to compile an application with GtkAda

This section explains how you can compile your own applications.

There are several ways to use GtkAda in your applications

2.4.1 Using project files

A set of project files is installed along with GtkAda. If you have installed GtkAda in the
same location as GNAT itself, nothing else needs to be done.

Otherwise, you need to make the directory that contains these project files visible to
the compiler. This is done by adding the directory to the ADA_PROJECT_PATH environment
variable. Assuming you have installed the library in ‘prefix’, the directory you need to
add is ‘prefix/lib/gnat’.

On Unix, this is done with

csh:

setenv ADA_PROJECT_PATH $prefix/lib/gnat:$ADA_PROJECT_PATH

sh:

ADA_PROJECT_PATH=$prefix/lib/gnat:$ADA_PROJECT_PATH

export ADA_PROJECT_PATH

To build your own application, you should then setup a project file (see the GNAT
documentation for more details on project files), which simply contains the statement

Chapter 2: Getting started with GtkAda 6

with "gtkada";

This will automatically set the right compiler and linker options, so that your application
is linked with GtkAda.

By default, the linker will use GtkAda’s shared library, if it was built. If you
would prefer to link with the static library, you can set the environment variable
LIBRARY TYPE=static export LIBRARY TYPE before launching the compiler or
linker, which will force it to use the static library instead.

2.4.2 Using the command line

The procedure is system-dependent, and thus is divided into two subsections.

2.4.2.1 Unix systems

On Unix systems, a script called gtkada-config is automatically created when you build
GtkAda. This script is copied in a subdirectory ‘bin/’ in the installation directory.

The easiest and recommended way to build a GtkAda application is to use the gnatmake
program distributed with GNAT, that takes care of all the dependencies for you. Use the
gtkada-config to specify where GtkAda and gtk+ libraries have been installed.

> gnatmake <main-file> ‘gtkada-config‘

Note the use of back-ticks around gtkada-config, which force the shell to evaluate the
script and put the output on the command line.

However, on complex systems, gnatmake might not be enough. Users frequently like to
create Makefiles. The script gtkada-config remains useful in that case, since you can call
it from your Makefile (same syntax as above with the back-ticks) to create variables like
FLAGS and LIBS. See the switches of gtkada-config below for more information.

The script gtkada-config understands the following command line switches (chosen to
be compatible with the ones set by gtk-config):

• --cflags: Output only the compiler flags, i.e the include directories where the GtkAda
spec files are found. This should be used if you only want to compile your files, but do
not want to bind or link them.

• --libs: Output only the switches for the linker. This lists the directories where all the
GtkAda, gtk+, and dependant libraries are found. For instance, if GtkAda was compiled
with support for OpenGL, the OpenGL libraries will automatically be present.

• --static: Forces linking with the static gtkada library. This option will still use the
dynamic gtk+ libraries.

2.4.2.2 Windows systems

Things are somewhat easier on Windows systems. You don’t have access to the gtkada-

config script. On the other hand you also don’t have to specify which libraries to use or
where to find them.

The only thing you should specify on the gnatmake command line is where the GtkAda
spec files are found, as in:

> gnatmake <main-file> -Ic:\gtkada\include\gtkada

if GtkAda was installed under ‘c:\gtkada’.

Chapter 2: Getting started with GtkAda 7

2.5 Architecture of the toolkit

The gtk+ toolkit has been designed from the beginning to be portable. It is made of two
libraries: gtk and gdk. In addition, GtkAda provides binding to three supporting libraries:
pango, cairo and glib.

Glib is a non-graphical library that includes support for lists, h-tables, threads, and so
on. It is a highly optimized, platform-independent library. Since most of its contents are
already available in Ada (or in the ‘GNAT.*’ hierarchy in the GNAT distribution), GtkAda
does not include a complete binding to it. For the parts of Glib that we do depend on, we
provide ‘Glib.*’ packages in the GtkAda distribution.

Gdk is the platform-dependent part of gtk+, and so there are different implementations
(for instance, for Win32 and X11 based systems) that implement a common API. Gdk
provides basic graphical functionality to, for instance, draw lines, rectangles and pixmaps
on the screen, as well as manipulate colors. The ‘Gdk.*’ packages provide a full Ada interface
to Gdk.

Pango is a modern font handling system. Bindings in GtkAda gives access to the API
to manipulate font descriptions and text attributes.

Cairo is the low-level 2D drawing library used by Gdk to render widgets. Cairo provides
a rich set of vector drawing features, supporting anti-aliasing, transparency, and 2D matrix
transformations.The ‘Cairo.*’ packages provide a complete Ada binding to Cairo.

Gtk is the top level library. It is platform independent, and does all its drawing through
calls to Gdk and Cairo. This is where the high-level widgets are defined. It also includes
support for callbacks. Its equivalent in the GtkAda libraries are the ‘Gtk.*’ packages. It is
made of a fully object-oriented hierarchy of widgets (see Section 2.6 [Widgets Hierarchy],
page 8).

Since your application only calls GtkAda, it is fully portable, and can be recompiled
as-is on other platforms.

+------------------------------- ----------+

| Your Application |

+--+

| GtkAda |

| +-----------------+ |

| | GTK | |

| +----+-----------------+----+ |

| | GDK | |

| +----+------+ +----------+----+

| | Pango | | Cairo |

+----+-----------+----+----+---------------+

| GLIB | X-Window / Win32 |

+---------------------+--------------------+

Although the packages have been evolving a lot since the first versions of GtkAda, the
specs are stabilizing now. We will try as much as possible to provide backward compatibility
whenever possible.

Since GtkAda is based on gtk+ we have tried to stay as close to it as possible while
using high-level features of the Ada language. It is thus relatively easy to convert external
examples from C to Ada.

We have tried to adopt a consistent naming scheme for Ada identifiers:

Chapter 2: Getting started with GtkAda 8

• The widget names are the same as in C, except that an underscore sign () is used to
separate words, e.g

Gtk_Button Gtk_Color_Selection_Dialog

• Because of a clash between Ada keywords and widget names, there are two exceptions
to the above general rule:

Gtk.GEntry.Gtk_Entry Gtk.GRange.Gtk_Range

• The function names are the same as in C, ignoring the leading gtk_ and the widget
name, e.g

gtk_misc_set_padding ⇒ Gtk.Misc.Set_Padding

gtk_toggle_button_set_state ⇒ Gtk.Toggle_Button.Set_State

• Most enum types have been grouped in the ‘gtk-enums.ads’ file

• Some features have been implemented as generic packages. These are the timeout
functions (see Gtk.Main.Timeout), the idle functions (see Gtk.Main.Idle), and the
data that can be attached to any object (see Gtk.Object.User_Data). Type safety is
ensured through these generic packages.

• Callbacks were the most difficult thing to interface with. These are extremely powerful
and versatile, since the callbacks can have any number of arguments and may or may
not return values. These are once again implemented as generic packages, that require
more explanation (see Chapter 4 [Signal handling], page 13).� �
WARNING: all the generic packages allocate some memory for internal structures, and

call internal functions. This memory is freed by gtk itself, by calling some Ada functions.
Therefore the generic packages have to be instantiated at library level, not inside a subpro-
gram, so that the functions are still defined when gtk needs to free the memory.
 	� �

WARNING Before any other call to the GtkAda library is performed, Gtk.Main.Init
must be invoked first. Most of the time, this procedure is invoked from the main procedure
of the application, in which case no use of GtkAda can be done during the application
elaboration.
 	
2.6 Widgets Hierarchy

All widgets in GtkAda are implemented as tagged types. They all have a common ances-
tor, called Gtk.Object.Gtk_Object. All visual objects have a common ancestor called
Gtk.Widget.Gtk_Widget.

The following table describes the list of objects and their inheritance tree. As usual
with tagged types, all the primitive subprograms defined for a type are also known for all
of its children. This is a very powerful way to create new widgets, as will be explained in
Section 10.3 [Creating new widgets in Ada], page 25.

Although gtk+ was written in C its design is object-oriented, and thus GtkAda has the
same structure. The following rules have been applied to convert from C names to Ada
names: a widget Gtk_XXX is defined in the Ada package Gtk.XXX, in the file ‘gtk-xxx.ads’.
This follows the GNAT convention for file names. For instance, the Gtk_Text widget is
defined in the package Gtk.Text, in the file ‘gtk-text.ads’.

Chapter 2: Getting started with GtkAda 9

Note also that most of the documentation for GtkAda is found in the spec files them-
selves.

It is important to be familiar with this hierarchy. It is then easier to know how to build
and organize your windows. Most widgets are demonstrated in the ‘testgtk/’ directory in
the GtkAda distribution.

Chapter 2: Getting started with GtkAda 10

� �

Hierarchy of widgets in GtkAda
 	

Chapter 3: Hierarchical composition of a window 11

3 Hierarchical composition of a window

Interfaces in GtkAda are built in layers, as in Motif. For instance, a typical dialog is
basically a Gtk Window, that in turn contains a Gtk Box, itself divided into two boxes and
a Gtk Separator, and so on.

Altough this may seem more complicated than setting absolute positions for children,
this is the simplest way to automatically handle the resizing of windows. Each container
that creates a layer knows how it should behave when it is resized, and how it should move
its children. Thus almost everything is handled automatically, and you don’t have to do
anything to support resizing.

If you really insist on moving the children to a specific position, look at the Gtk_Fixed

widget and its demo in ‘testgtk/’. But you really should not use this container, since you
will then have to do everything by hand.

All the containers are demonstrated in ‘testgtk/’, in the GtkAda distribution. This
should help you understand all the parameters associated with the containers. It is very
important to master these containers, since using the appropriate containers will make
building interfaces a lot easier.

Chapter 3: Hierarchical composition of a window 12

If you look at the widget hierarchy (see Section 2.6 [Widgets Hierarchy], page 8), you
can see that a Gtk Window inherits from Gtk Bin, and thus can have only one child. In
most cases, the child of a Gtk Window will thus be a Gtk Box, which can have any number
of children.

Some widgets in GtkAda itself are built using this strategy, from the very basic Gtk_

Button to the more advanced Gtk_File_Selection.

For example, by default a Gtk Button contains a Gtk Label, which displays the text of
the button (like “OK” or “Cancel”).

However, it is easy to put a pixmap in a button instead. When you create the button,
do not specify any label. Thus, no child will be added, and you can give it your own. See
‘testgtk/create_pixmap.adb’ for an example on how to do that.

Chapter 4: Signal handling 13

4 Signal handling

In GtkAda, the interaction between the interface and the core application is done via signals.
Most user actions on the graphical application trigger some signals to be ‘emitted’.

A signal is a message that an object wants to broadcast. It is identified by its name,
and each one is associated with certain events which happen during the widget’s lifetime.
For instance, when the user clicks on a Gtk Button, a “clicked” signal is emitted by that
button. More examples of signals can be found in the GtkAda reference manual.

It is possible to cause the application to react to such events by ‘connecting’ to a signal
a special procedure called a ‘handler’ or ‘callback’. This handler will be called every time
that signal is emitted, giving the application a chance to do any processing it needs. More
than one handler can be connected to the same signal on the same object; the handlers are
invoked in the order they were connected.

4.1 Predefined signals

Widgets, depending on their type, may define zero or more different signals. The signals
defined for the parent widget are also automatically inherited; thus every widget answers
many signals.

The easiest way to find out which signals can be emitted by a widget is to look at
the GtkAda reference manual. Every widget will be documented there. The GtkAda RM
explains when particular signals are emitted, and the general form that their handlers should
have (although you can always add a User_Data if you wish, see below).

You can also look directly at the C header files distributed with the gtk+ library. Each
widget is described in its own C file and has two C structures associated with it. One of
them is the “class” structure, which contains a series of pointers to functions. Each of these
functions has the same name as the signal name.

For instance, consider the following extract from gtkbutton.h:

struct _GtkButtonClass

{

GtkBinClass parent_class;

void (* pressed) (GtkButton *button);

void (* released) (GtkButton *button);

void (* clicked) (GtkButton *button);

void (* enter) (GtkButton *button);

void (* leave) (GtkButton *button);

};

This means that the Gtk Button widget redefines five new signals called pressed,
released, and so on, respectively.

The profile of the handler can also be deduced from those pointers: The handler has the
same arguments, plus an optional User_Data parameter that can be used to pass any kind
of data to the handler. When the User_Data parameter is used, the value of this data is
specified when connecting the handler to the signal. It is then given back to the handler
when the signal is raised.

Therefore, the profile of a handler should look like:

Chapter 4: Signal handling 14

procedure Pressed_Handler

(Button : access Gtk_Button_Record’Class;

User_Data : ...);

The callback does not need to use all the arguments. It is legal to use a procedure that
"drops" some of the last arguments. There is one special case, however: if, at connection
time, you decided to use User_Data, your callback must handle it. This is checked by the
compiler.

Any number of arguments can be dropped as long as those arguments are the last ones in
the list and you keep the first one. For instance, the signal "button press event" normally
can be connected to a handler with any of the following profiles:

-- with a user_data argument

procedure Handler

(Widget : access Gtk_Widget_Record’Class;

Event : Gdk.Event.Gdk_Event;

User_Data : ...);

procedure Handler

(Widget : access Gtk_Widget_Record’Class;

User_Data : ...);

-- without a user_data argument

procedure Handler

(Widget : access Gtk_Widget_Record’Class;

Event : Gdk.Event.Gdk_Event);

procedure Handler (Widget : access Gtk_Widget_Record’Class);

Beware that adding new arguments is not possible, since no value would be provided for
them. When connecting a handler, GtkAda will not always verify that your handler does
not have more arguments than expected, so caution is recommended (it only does so if you
use the Gtk.Marshallers package, see below).

4.2 Connecting signals

All signal handling work is performed using services provided by the Gtk.Handlers package.
This package is self-documented, so please read the documentation for this package either in
the GtkAda Reference Manual or in the specs themselves. The rest of this section assumes
that you have this documentation handy.

A short, annotated example of connecting signals follows; a complete example can be
found in create file selection.adb (inside the ‘testgtk/’ directory). In our example, an
application opens a file selector to allow the user to select a file. GtkAda provides a high-
level widget called Gtk File Selection which can be used in this case:

declare

Window : Gtk_File_Selection;

begin

Gtk.File_Selection.Gtk_New (Window, Title => "Select a file");

end;

When the “OK” button is pressed, the application needs to retrieve the selected file and
then close the dialog. The only information that the handler for the button press needs is
which widget to operate upon. This can be achieved by the following handler:

Chapter 4: Signal handling 15

procedure OK (Files : access Gtk_File_Selection_Record’Class) is

begin

Ada.Text_IO.Put_Line ("Selected " & Get_Filename (Files));

-- Prints the name of the selected file.

Destroy (Files);

-- Destroys the file selector dialog

end Ok;

We now need to connect the object we created in the first part with the new callback
we just defined. Gtk.Handlers defines four types of generic packages, depending on the
arguments one expects in the callback and whether the callback returns a value or not.
Note that you can not use an arbitrary list of arguments; this depends on the signal, as
explained in the previous section.

In our example, since the callback does not return any value and does not handle any
User_Data (that is, we don’t pass it extra data, which will be specified at connection
time), the appropriate package to use is Gtk.Handlers.Callback. We thus instantiate
that package.

Remember that generic package instantiations in GtkAda must be present in memory at
all times, since they take care of freeing allocated memory when finished. GtkAda generic
package instantiations must therefore always be performed at the library level, and not
inside any inner block.

package Files_Cb is new

Handlers.Callback (Gtk_File_Selection_Record);

The Files_Cb package now provides a set of Connect subprograms that can be used to
establish a tie between a widget and a handler. It also provides a set of other subprograms
which you can use to emit the signals manually, although most of the time, the signals are
simply emitted internally by GtkAda. We will not discuss the Emit By Name subprograms
here.

The general form of handler, as used in Gtk.Handlers, expects some handlers that take
two or three arguments: the widget on which the signal was applied, an array of all the
extra arguments sent internally by GtkAda, and possibly some user data given when the
connection was made.

This is the most general form of handler and it covers all the possible cases. However, it
also expects the user to manually extract the needed values from the array of arguments.
This is not always the most convenient solution. This is why GtkAda provides a second
package related to signals, Gtk.Marshallers.

The Gtk.Marshallers package provides a set of functions that can be used as call-
backs directly for GtkAda, and that will call your application’s handlers after extracting
the required values from the array of arguments. Although this might sound somewhat
complicated, in practice it simplifies the task of connecting signals. In fact, the techniques
employed are similar to what is done internally by gtk+ in C. Because of the similarity of
techniques, there is no overhead involved in using Gtk.Marshallers with Ada over the C
code in gtk+.

A set of functions To_Marshaller is found in every generic package in Gtk.Handlers.
They each take a single argument, the name of the function you want to call, and return a
handler that can be used directly in Connect.

The connection is then done with the following piece of code:

Chapter 4: Signal handling 16

Files_Cb.Object_Connect

(Get_Ok_Button (Window), -- The object to connect to the handler

"clicked", -- The name of the signal

Files_Cb.To_Marshaller (Ok’Access), -- The signal handler

Slot_Object => Window);

Note that this can be done just after creating the widget, in the same block. As soon as
it is created, a widget is ready to accept connections (although no signals will be emitted
before the widget is shown on the screen).

We use To_Marshaller since our handler does not accept the array of arguments as
a parameter, and we use the special Object_Connect procedure. This means that the
parameter to our callback (Files) will be the Slot Object given in Object Connect, instead
of being the button itself.

4.3 Handling user data

As described above, it is possible to define some data that is that passed to the callback when
it is called. This data is called user data, and is passed to the Connect or Object_Connect
subprograms.

GtkAda will automatically free any memory it has allocated internally to store this user
data. For instance, if you instantiated the generic package User_Callback with a String,
it means that you want to be able to have a callback of the form:

procedure My_Callback (Widget : access Gtk_Widget_Record’Class;

User_Data : String);

and connect it with a call similar to:
Connect (Button, "Clicked", To_Marshaller (My_Callback’Access),

User_Data => "any string");

GtkAda needs to allocate some memory to store the string (an unconstrained type).
However, this memory is automatically freed when the callback is destroyed.

There are a few subtleties in the use of user data, most importantly when the user data
is itself a widget.

The following four examples do exactly the same thing: each creates two buttons, where
clicking on the first one will destroy the second one. They all work fine the first time, while
both buttons exist. However, some of them will fail if you press on the first button a second
time.

Complete, compilable source code for these examples can be found in the distribution’s
‘examples/user_data’ directory, from which the code samples below are excerpted.

4.3.1 First case: simple user data

This code will fail: even after Button2 is destroyed, the Ada pointer continues to ref-
erence memory that has been deallocated. The second call to Destroy will fail with a
Storage Error.

package User_Callback is new Gtk.Handlers.User_Callback

(Gtk_Widget_Record, Gtk_Widget);

procedure My_Destroy2

(Button : access Gtk_Widget_Record’Class; Data : Gtk_Widget) is

begin

Destroy (Data);

Chapter 4: Signal handling 17

end My_Destroy2;

begin

User_Callback.Connect

(Button1, "clicked",

User_Callback.To_Marshaller (My_Destroy2’Access),

Gtk_Widget (Button2));

end;

4.3.2 Second case: using Object Connect instead

One of the solutions to fix the above problem is to use Object_Connect instead of Connect.
In that case, GtkAda automatically takes care of disconnecting the callback when either of
the two widgets is destroyed.

procedure My_Destroy (Button : access Gtk_Widget_Record’Class) is

begin

Destroy (Button);

end My_Destroy;

begin

Widget_Callback.Object_Connect

(Button1, "clicked",

Widget_Callback.To_Marshaller (My_Destroy’Access),

Button2);

end;

4.3.3 Third case: manually disconnecting the callback

Using Object_Connect is not always possible. In that case, one of the possibilities is to
store the Id of the callback, and properly disconnect it when appropriate. This is the most
complex method, and very often is not applicable, since you cannot know for sure when the
callback is no longer needed.

type My_Data3 is record

Button, Object : Gtk_Widget;

Id : Handler_Id;

end record;

type My_Data3_Access is access My_Data3;

package User_Callback3 is new Gtk.Handlers.User_Callback

(Gtk_Widget_Record, My_Data3_Access);

procedure My_Destroy3

(Button : access Gtk_Widget_Record’Class;

Data : My_Data3_Access) is

begin

Destroy (Data.Button);

Disconnect (Data.Object, Data.Id);

end My_Destroy3;

Id : Handler_Id;

begin

Data3 := new My_Data3’ (Object => Gtk_Widget (Button1),

Button => Gtk_Widget (Button2),

Id => (Null_Signal_Id, null));

Id := User_Callback3.Connect

(Button1, "clicked",

User_Callback3.To_Marshaller (My_Destroy3’Access),

Chapter 4: Signal handling 18

Data3);

Data3.Id := Id;

end;

4.3.4 Fourth case: setting a watch on a specific widget

GtkAda provides a function Add_Watch, that will automatically disconnect a callback when
a given widget is destroyed. This is the function used internally by Object_Connect. In the
example below, the callback is automatically disconnected whenever Button2 is destroyed.

procedure My_Destroy2

(Button : access Gtk_Widget_Record’Class; Data : Gtk_Widget) is

begin

Destroy (Data);

end My_Destroy2;

Id : Handler_Id;

begin

Id := User_Callback.Connect

(Button1, "clicked",

User_Callback.To_Marshaller (My_Destroy2’Access),

Gtk_Widget (Button2));

Add_Watch (Id, Button2);

end;

Chapter 5: Starting an application with GtkAda 19

5 Starting an application with GtkAda

You need to perform some initializations to start a GtkAda application:
-- predefined units of the library

with Gtk.Rc;

with Gtk.Main;

with Gtk.Enums;

with Gtk.Window;

...

-- My units

with Callbacks;

...

procedure Application is

procedure Create_Window is ...

begin
-- Set the locale specific datas (e.g time and date format)

Gtk.Main.Set_Locale;

-- Initializes GtkAda

Gtk.Main.Init;

-- Load the resources. Note that this part is optional.

Gtk.Rc.Parse ("application.rc");

-- Create the main window

Create_Window;

-- Signal handling loop

Gtk.Main.Main;

end Application;

the Create_Window procedure looks like
procedure Create_Window is

Main_Window : Gtk.Window.Gtk_Window;

...

begin
Gtk.Window.Gtk_New

(Window => Main_Window,

The_Type => Gtk.Enums.Window_Toplevel);

-- From Gtk.Widget:

Gtk.Window.Set_Title (Window => Main_Window, Title => "Editor");

-- Construct the window and connect various callbacks

...

Gtk.Window.Show_All (Main_Window);

end Create_Window;

Chapter 6: Resource files 20

6 Resource files

Resource files let you parametrize aspects of the widgets in a GtkAda application without
having to recompile it.

A resource file needs to be loaded (Gtk.Rc.Parse) before setting the corresponding
window.

In this file, it is possible to specify visual characteristics of widgets, such as their col-
ors and fonts. Under X, the xfontsel command allows you to easily select a font. The
FontSelection widget is also a simple way to select fonts.

Here is an example of a resource file:
application.rc

#

resource file for "Application"

Buttons style

style "button"

{

BackGround Colors

Red Green Blue

bg[PRELIGHT] = { 0.0, 0.75, 0.0 } # Green when the mouse is on

the button

bg[ACTIVE] = { 0.75, 0.0, 0.0 } # Red on click

ForeGround Colors

Red Green Blue

fg[PRELIGHT] = { 1.0, 1.0, 1.0 } # White when the mouse is on

the button

fg[ACTIVE] = { 1.0, 1.0, 1.0 } # White on click

}

All the buttons will have the style "button"

widget_class "*GtkButton*" style "button"

Text style

style "text"

{

font = "-adobe-courier-medium-r-normal-*-15-*-*-*-*-*-*-*"

text[NORMAL] = { 0.0, 0.0, 0.0 } # black

fg[NORMAL] = { 0.0, 0.0, 0.0 } # black

base[NORMAL] = { 1.0, 1.0, 1.0 } # white : background color

}

All Gtk_Text will have the "text" style

widget_class "*GtkText" style "text"

Chapter 7: Memory management 21

7 Memory management

GtkAda takes care of almost all the memory management for you. Here is a brief overview
of how this works, you’ll have to check the sources if you want more detailed information.
Gtk+ (the C library) does its own memory management through reference counting, i.e.
any widget is destroyed when it is no longer referenced anywhere in the application.

In GtkAda itself, a “user data” is associated with each object allocated by a Gtk_New

procedure. A “destroy” callback is also associated, to be called when the object to which
the user data belongs is destroyed. Thus, every time a C object is destroyed, the equivalent
Ada structure is also destroyed (see Gtk.Free_User_Data).

Concerning widgets containing children, every container holds a reference to its children,
whose reference counting is thus different from 0 (and generally 1). When the container
is destroyed, the reference of all its children and grand-children is decremented, and they
are destroyed in turn if needed. So the deallocation of a widget hierarchy is also performed
automatically.

Chapter 8: Tasking with GtkAda 22

8 Tasking with GtkAda

Note that Gtk+ under Windows does not interact properly with threads, so the only safe
approach under this operating system is to perform all your Gtk+ calls in the same task.

On other platforms, the Glib library can be used in a task-safe mode by calling
Gdk.Threads.G_Init and Gdk.Threads.Init before making any other Glib/Gdk calls.
Gdk routines may then be called simultaneously by multiple tasks, thanks to task-safe
construction of Gdk’s internal data structures. However, Gdk objects such as hash
tables are not automatically protected, so it is the application’s responsibility to prevent
simultaneous access to user-defined objects (e.g. by using protected objects).

When Gdk is initialized to be task-safe, GtkAda becomes task aware. There is a single
global lock that you must acquire with Gdk.Threads.Enter before making any Gdk/Gtk
call, and which you must release with Gdk.Threads.Leave afterwards.

Gtk.Main.Main should be called with the lock acquired (see example below), ensuring
that all the functions executed in the task that started the main loop do not need to protect
themselves again.

Beware that the GtkAda main loop (Gtk.Main.Main) can only be be run inside one
specific task. In other words, you cannot call Gtk.Main.Main from any task other than the
one that started the outer level main loop.

Note that Gdk.Threads assumes that you are using a tasking run time that maps Ada
tasks to native threads.

A minimal main program for a tasking GtkAda application looks like:
with Gdk.Threads;

with Gtk.Main;

with Gtk.Enums; use Gtk.Enums;

with Gtk.Window; use Gtk.Window;

procedure GtkAda_With_Tasks is
Window : Gtk_Window;

begin
Gdk.Threads.G_Init;

Gdk.Threads.Init;

Gtk.Main.Init;

Gtk_New (Window, Window_Toplevel);

Show (Window);

Gdk.Threads.Enter;

Gtk.Main.Main;

Gdk.Threads.Leave;

end GtkAda_With_Tasks;

Callbacks require a bit of attention. Callbacks from GtkAda (signals) are made within
the GtkAda lock. However, callbacks from Glib (timeouts, IO callbacks, and idle functions)
are made outside of the GtkAda lock. So, within a signal handler you do not need to call
Gdk.Threads.Enter, but within the other types of callbacks, you do.

Chapter 9: Processing external events 23

9 Processing external events

It often happens that your application, in addition to processing graphical events through
the GtkAda main loop, also needs to monitor external events. This is the case if, for
instance, you are running external processes and need to display their output, or if you are
listening to incoming data on a socket. If you implement your own main loop to poll for
these external events and then invoke the GUI, the GUI will enter its main loop and not
return control back to you.

There are several ways to handle this situation:

• The cleanest solution, especially if you intend to make the GUI a major part of your
application (as opposed to just popping up a few dialogs here and there), would be to
use the gtk+ main loop as the infinite loop, instead of yours.

You can then use gtk+ “idle callbacks” (which are called every time the gtk+ loop is
not busy processing graphical events) or “timeout callbacks” (which are called every n
milliseconds), and in those callbacks do the work you were doing before in your own
main loop (that assumes the check is relatively fast, otherwise the GUI will be frozen
during that time). Such callbacks are created through packages in glib-main.ads

• Another approach is to not start the gtk+ main loop, but to check periodically whether
there are some events to be handled. See the subprogram Gtk.Main.Main_Iteration.

This second approach is not necessarily recommended, since you would basically du-
plicate code that’s already in gtk+ to manage the main loop, and you also get finer
control using idle and timeout callbacks

Chapter 10: Object-oriented features 24

10 Object-oriented features

GtkAda has been designed from the beginning to provide a full object oriented layer over
gtk+. This means that features such as type extension and dynamic dispatching are made
available through the standard Ada language.

This section will describe how things work, how you can extend existing widgets, and
even how to create your own widgets.

10.1 General description of the tagged types

10.1.1 Why should I use object-oriented programming ?

Every widget in the Gtk.* packages in GtkAda is a tagged type with a number of primitive
subprograms that are inherited by all of its children. Tagged types in Ada make it possible
to perform safe, automatic type conversions without using explicit casts (such as is necessary
when coding in C). It is also possible for the compiler to verify whether or not these type
conversions are valid. Most errors are found at compile time, which leads to a safer and
more robust application.

As a further example, imagine a table that has been populated by some widgets. It is
possible to query for this table’s children and operate on these widgets without knowing
details about their type, their creator, and so on–the tagged objects that are returned
contain all the information necessary. It becomes possible to use dynamic dispatching
without ever having to cast to a known type.

Modifying a standard widget to draw itself differently or display different data is easy
using tagged types. Simply create a new type that extends the current one (see the section
Section 10.2 [Using tagged types to extend Gtk widgets], page 25 below.

Creating a new reusable widget from scratch is also possible. Create a new tagged type
and specify properties of the widget–such as how it is to draw itself and how it should react
to events. See the section Section 10.3 [Creating new widgets in Ada], page 25 below.

Object oriented programming through the use of Ada tagged types makes GtkAda a
very powerful, flexible, and safe tool for designing graphical interfaces.

10.1.2 Type conversions from C to Ada widgets

There are three kinds of widgets that you can use with GtkAda:

• Ada widgets: These are widgets that are written directly in Ada, using the object
oriented features of GtkAda

• Standard widgets: These are the widgets that are part of the standard gtk+ and GtkAda
distributions. This include all the basic widgets you need to build advanced interfaces.

• third party C widgets These are widgets that were created in C, and for which you (or
someone else) created an Ada binding. This is most probably the kind of widgets you
will have if you want to use third party widgets.

GtkAda will always be able to find and/or create a valid tagged type in the first two
cases, no matter if you explicitly created the widget or if it was created automatically by
gtk+. For instance, if you created a widget in Ada, put it in a table, and later on extracted
it from the table, then you will still have the same widget.

Chapter 10: Object-oriented features 25

In the third case (third party C widgets), GtkAda is not, by default, able to create the
corresponding Ada type.

The case of third party C widgets is a little bit trickier. Since GtkAda does not know
anything about them when it is built, it can’t magically convert the C widgets to Ada
widgets. This is your job to teach GtkAda how to do the conversion.

We thus provide a ’hook’ function which you need to modify. This function is defined
in the package Glib.Type Conversion. This function takes a string with the name of the C
widget (ex/ "GtkButton"), and should return a newly allocated pointer. If you don’t know
this type either, simply return null.

10.2 Using tagged types to extend Gtk widgets

With this toolkit, it’s possible to associate your own data with existing widgets simply by
creating new types. This section will show you a simple example, but you should rather
read the source code in the ‘testgtk/’ directory where we used this feature instead of using
user_data as is used in the C version.

type My_Button_Record is new Gtk_Button_Record with record
-- whatever data you want to associate with your button

end record;
type My_Button is access all My_Button_Record’Class;

With the above statements, your new type is defined. Every function available for Gtk_
Button is also available for My_Button. Of course, as with every tagged type in Ada, you
can create your own primitive functions with the following prototype:

procedure My_Primitive_Func (Myb : access My_Button_Record);

To instanciate an object of type My_Button in your application, do the following:

declare
Myb : My_Button;

begin
Myb := new My_Button_Record;

Initialize (Myb); -- from Gtk.Button

end;

The first line creates the Ada type, whereas the Initialize call actually creates the C
widget and associates it with the Ada type.

10.3 Creating new widgets in Ada

With GtkAda, you can create widgets directly in Ada. These new widgets can be used
directly, as if they were part of gtk itself.

Creating new widgets is a way to create reuseable components. You can apply to them
the same functions as you would for any other widget, such as Show, Hide, and so on.

This section will explain how to create two types of widgets: composite widgets and
widgets created from scratch. Two examples are provided with GtkAda, in the directories
‘examples/composite_widget’ and ‘examples/base_widget’. Please also refer to the gtk+
tutorial, which describes the basic mechanisms that you need to know to create a widget.

Chapter 10: Object-oriented features 26

10.3.1 Creating composite widgets

A composite widget is a widget that does not do much by itself. Rather, this is a collection of
subwidgets grouped into a more general entity. For instance, among the standard widgets,
Gtk_File_Selection and Gtk_Font_Selection belong to this category.

The good news is that there is nothing special to know. Just create a new tagged type,
extending one of the standard widgets (or even another of your own widgets), provide a
Gtk_New function that allocates memory for this widget, and call the Initialize function
that does the actual creation of the widget and the subwidgets. There is only one thing to
do: Initialize should call the parent class’s Initialize function, to create the underlying
C widget.

The example directory ‘examples/composite_widget’ reimplements the Gtk_Dialog

widget as written in C by the creators of gtk+.

10.3.2 Creating widgets from scratch

Creating a working widget from scratch requires a certain level of familiary with the GtkAda
signal mechanism and entails much work with low level signals. This is therefore not an
activity recommended for novice GtkAda programmers.

Creating a widget from scratch is what you want to do if your widget should be drawn
in a special way, should create and emit new signals, or otherwise perform differently than
pre-existing widgets. The example we give in ‘examples/base_widget’ is a small target
on which the user can click, and that sends one of two signals: "bullseye" or "missed",
depending on where the user has clicked.

See also the example in ‘examples/tutorial/gtkdial’ for a more complex widget, that
implements a gauge where the user can move the arrow to select a new value.

Once again, the only two functions that you must create are Gtk_New and Initialize.
This time, Initialize has to do two things:

Parent_Package.Initialize (Widget);

-- The above line calls the Initialize function from the parent.

-- This creates the underlying C widget, which we are going to

-- modify with the following call:

Gtk.Object.Initialize_Class_Record

(Widget, Signals, Class_Record);

-- This initializes the "class record" for the widget and

-- creates the signals.

In the above example, the new part is the second call. It takes three or four arguments:

• Widget This is the widget that you want to initialize

• Signals This is an array of string access containing the name of the signals you want
to create. For instance, you could create Signals with

Signals : Gtkada.Types.Chars_Ptr_Array := "bullseye" + "missed";

This will create two signals, named "bullseye" and "missed", whose callbacks’ argu-
ments can be specified with the fourth parameter.

• Class_Record Every widget in C is associated with two records. The first one, which
exists only once per widget type, is the “class record”. It contains the list of signals
that are known by this widget type, the list of default callbacks for the signals, ...;

Chapter 10: Object-oriented features 27

the second record is an “instance record”, which contains data specific to a particular
instance.

In GtkAda, the “instance record” is simply your tagged type and its fields. The call
to Initialize_Class_Record is provided to initialize the “class record”. As we said,
there should be only one such record per widget type. This parameter “Class Record”
will point to this records, once it is created, and will be reused for every instanciation
of the widget.

• Parameters This fourth argument is in fact optional, and is used to specify which kind
of parameters each new signal is expecting. By default (ie if you don’t give any value for
this parameter), all the signals won’t expect any argument, except of course a possible
user data. However, you can decide for instance that the first signal ("bullseye") should
in fact take a second argument (say a Gint), and that "missed" will take two parameters
(two Gints).

Parameters should thus contain a value of

(1 => (1 => Gtk_Type_Int, 2 => Gtk_Type_None),

2 => (1 => Gtk_Type_Int, 2 => Gtk_Type_Int));

Due to the way arrays are handled in Ada, each component must have the same num-
ber of signals. However, if you specify a type of Gtk_Type_None, this will in fact be
considered as no argument. Thus, the first signal above has only one parameter.

Note also that to be able to emit a signal such a the second one, ie with multiple
arguments, you will have to extend the packages defined in Gtk.Handlers. By default,
the provided packages can only emit up to one argument (and only for a few specific
types). Creating your own Emit_By_Name subprograms should not be hard if you look
at what is done in ‘gtk-marshallers.adb’. Basically, something like:

procedure Emit_With_Two_Ints

(Object : access Widget_Type’Class;

Name : String;

Arg1 : Gint;

Arg2 : Gint);

pragma Import (C, Emit_With_Two_Ints,

"gtk_signal_emit_by_name");

Emit_With_Two_Ints (Gtk.Get_Object (Your_Widget),

"missed" & ASCII.NUL, 1, 2);

will emit the "missed" signal with the two parameters 1 and 2.

Then of course Initialize should set up some signal handlers for the functions you
want to redefine. Three signals are especially useful:

• "size request"

This callback is passed one parameter, as in :

procedure Size_Request

(Widget : access My_Widget_Record;

Requisition : in out Gtk.Widget.Gtk_Requisition);

This function should modify Requisition to specify the widget’s ideal size. This might
not be the exact size that will be set, since some containers might decide to enlarge or
to shrink it.

Chapter 10: Object-oriented features 28

• "size allocate"

This callback is called every time the widget is moved in its parent window, or it is
resized. It is passed one paramater, as in :

procedure Size_Allocate

(Widget : access My_Widget_Record;

Allocation : in out Gtk.Widget.Gtk_Allocation)

This function should take the responsability to move the widget, using for instance
Gdk.Window.Move_Resize.

• "expose event"

This callback is called every time the widget needs to be redrawn. It is passed one
parameter, the area to be redrawn (to speed things up, you don’t need to redraw the
whole widget, just this area).

Chapter 11: Support for Glade, the Gtk GUI builder 29

11 Support for Glade, the Gtk GUI builder

11.1 Introduction

GtkAda now comes with support for the GUI builder Glade-3. Glade-3 provides a graphical
interface for designing windows and dialogs. The interface description is saved in an XML
file which can be loaded at run-time by your GtkAda application. With this approach,
there is no need to write or generate Ada code to describe the interface, all is needed is to
write the callbacks for various actions.

11.2 Launching Glade

Under UNIX and Linux, Glade is invoked by the command-line script glade-3 which is
located in the bin directory of your GtkAda installation. Under Windows, Glade is invoked
by clicking on the executable glade-3.exe, also located in the bin directory of your GtkAda
installation.

11.3 Building your interface

In Glade-3 the interface is done by point-and-clicking. The first step is to create one or
more toplevel window and then placing widgets in these windows.

Detailed tutorials can be found at: http://live.gnome.org/Glade/Tutorials

In the Preferences for your project (menu Edit->Preferences), make sure that the pref-
erence "Project file format" is set to "GtkBuilder".

11.4 Using the interface in your application.

Once the interface is built and saved in an XML file, you can use it in your GtkAda
application. You will need to use objects defined in the package Gtkada.Builder to load
the interface file and to connect subprograms defined in your application to signals emitted
by the interface. See the detailed explanations and examples in gtkada-builder.ads

http://live.gnome.org/Glade/Tutorials

Chapter 12: Binding new widgets 30

12 Binding new widgets

GtkAda comes with a Perl script to help you create a binding to a C widget (this is the
script we have used ourselves). This will not fully automate the process, although it should
really speed things up. You will probably need less than 15 min to create a new binding
once you will get used to the way GtkAda works. Note that your C file should have the
same format as is used by Gtk+ itself.

To get started on a new binding, launch the script ‘contrib/binding.pl’ as follows:
$ touch gtk-button.ads

$ binding.pl ../include/gtk/gtkbutton.h > temporary

This dumps several kind of information on the standard output:

• List of subprograms defined in the ‘.h’ file. Their documentation is also added, since
binding.pl will parse the ‘.c’ file as appropriate.

• List of properties and signals for the widget

• Tentative bodies for the subprograms These will often need adjustements, but provide
a good start

You can also use this script to update existing bindings:
$ binding.pl ../include/gtk/*.h

Chapter 13: Debugging GtkAda applications 31

13 Debugging GtkAda applications

This chapter presents a number of technics that can be used when debugging GtkAda
applications. First, the standard tools to debug Ada applications can be used:

Compile with -g
You should almost always include debugging information when compiling and
linking your code. This gives you the possibility to use the debugger. See below
the variable GDK DEBUG for how to disable grabs.

bind with -E
Using this argument on the gnatbind or gnatmake command line will force the
compiler to include backtraces when an exception is raised. These backtraces
can be converted to symbolic backtraces by using the addr2line tool.

Link with -lgmem
Using this switch gives access to the gnatmem tool, that helps you to detect mem-
ory leaks or doubly-deallocated memory. The latter often results in hard-to-fix
Storage Error exceptions. See the GNAT User’s guide for more information.

There are also a number of technics specific to GtkAda or gtk+ applications. For most
of them, you might need to recompile these libraries with the appropriate switches to get
access to the extended debugging features.

Use the --sync switch
Under unix systems, all applications compiled with gtk+ automatically support
this switch, which forces events to be processed synchronously, thus making it
easier to detect problems as soon as they happen. This switch is not relevant
to Windows systems.

break on g log
In the debugger, it is often useful to put a breakpoint on the glib function g_log.
When gtk+ is linked dynamically, you will need to first start your application
with begin, then put the breakpoint and continue the application with cont.
This helps understand internal errors or warnings reported by gtk+ and glib

compile glib with --disable-mem-pools

Glib, the underlying layer that provides system-independent services to gtk+,
has an extensive and optimized system for memory allocation. Bigger chunks
of Memory are allocated initially, and then subdivided by glib itself. Although
this is extremely performant, this also make the debugging of memory-related
problems (storage error) more difficult. Compiling with the above switch forces
glib to use the standard malloc() and free() system calls. On GNU/Linux
systems, it might be useful to set the variable MALLOC_CHECK_ to 1 to use error-
detecting algorithms (see the man page for malloc()).

compile glib and gtk+ with --enable-debug=yes

It is recommended that you specify this switch on the configure command
line when compiling these two libraries. In addition to compiling the libraries

Chapter 13: Debugging GtkAda applications 32

with debugging information for the debugger, additional runtime debug op-
tions (controllable via environment variables) become available. Specifying --

enable-debug=no is not recommended for production releases (see glib or gtk+
documentation for details).

For these three variables, the possible values are given below. These are lists of
colon-separated keywords. You can choose to remove any of these value from
the variable

‘GOBJECT_DEBUG=objects:signals’
This sets up the debugging output for glib. The value ‘objects’ is
probably the most useful, and displays, on exit of the application,
the list of unfreed objects. This helps detect memory leaks. The
second value ‘signals’ will display all the signals emitted by the
objects. Note that this results in a significant amount of output.

‘GDK_DEBUG=updates:nograbs:events:dnd:misc:
xim:colormap:gdkrgb:gc:pixmap:image:input:cursor’

This sets up the debugging output for gdk. The most useful value is
‘nograbs’, which prevents the application from ever grabbing the
mouse or keyboards. If you don’t set this, it might happen that
the debugger becomes unusable, since you don’t have access to the
mouse when the debugger stops on a breakpoint. Another sim-
pler solution is to debug remotely from another machine, in which
case the grabs won’t affect the terminal on which the debugger is
running.

‘GTK_DEBUG=misc:plugsocket:text:tree:updates:keybindings’
This sets up the debugging output for gtk. Almost all of these
values are mostly for internal use by gtk+ developpers, although
‘keybindings’ might prove useful sometimes.

Import the C function ada gtk debug get ref count
This function has the following Ada profile:

function Ref_Count (Add : System.Address) return Guint;

pragma Import (C, Ref_Count, "ada_gtk_debug_get_ref_count");

and should be called in a manner similar to
declare

Widget : Gtk_Widget;

Count : Guint;

begin
Count := Ref_Count (Get_Object (Widget));

end;

and returns the internal reference counter for the widget. When this counter
reaches 0, the memory allocated for the widget is automatically freed.

This is mostly a debugging aid for people writting their own containers, and
shouldn’t generally be needed. You shouldn’t rely on the internal reference
counter in your actual code, which is why it isn’t exported by default in GtkAda.

Chapter 14: How to report bugs 33

14 How to report bugs

GtkAda is a mature, stable toolkit that is heavily and widely used on a variety of
platforms. We test GtkAda using an Ada version of the ‘testgtk.c’ file found in the
gtk+ distribution, as well as by generating a significant number of interfaces using the GUI
builder and Gate. For code examples that demonstrate the use of this toolkit, look within
the ‘testgtk/’ directory.

There are two kinds of problems you can encounter:

• If the gtk library itself was compiled with warnings turned on, you may get some warn-
ing messages, mainly because of types problems. These warnings should not appear,
as we have tried to be as type safe as possible in this package. To know exactly where
the problem is, compile your program with debug information, run gdb, and set a
breakpoint on the function g_log. Then run your program as usual, using the run

command. Then send us the result of the where command. Here is a summary:
$ gnatmake -f -g <your_program_name> ‘gtkada-config‘

$ gdb <your_program_name>

(gdb) break main

(gdb) run

(gdb) break g_log

(gdb) continue

....

(gdb) where

• In some (hopefully) rare cases, you can even get a segmentation fault within gtk. That
means there is definitly something wrong either in your program or in the toolkit.
Please check your program carefully and, if you think this is a problem in GtkAda
itself, send us an e-mail.

If you are a supported user of GNAT, send mail to mailto:report@gnat.com to report
errors, otherwise send mail to the GtkAda list (mailto:gtkada@lists.adacore.com) ex-
plaining exactly what your are doing, what is the expected result and what you actually
get. Please include the required sources to reproduce the problem, in a format usable by
gnatchop (basically, insert all the required sources at the end of the mail). Please try to
provide as small as possible a subset of your sources.

Of course, we will welcome any patch you can provide, so that this toolkit may be as
useful as possible.

mailto:report@gnat.com
mailto:gtkada@lists.adacore.com

Chapter 15: Bibliography 34

15 Bibliography

We recommand the following documents. Most of them were written with C in mind, but
should be easily adapted after you’ve read the rest of this document.

• [1] "Gtk+/Gome Application Development" – Havoc Pennington This book, by one of
the main authors of the the GNOME environment, describes in detail some of the inner
mechanisms of gtk+, including signal handling, and a complete description of all the
widgets and all the events found in Gdk.Event.

It is worth noting that this book has been published under the Open Publication
License. You can get an electronic copy of it at http://www.opencontent.org/.

http://www.opencontent.org/

i

Table of Contents

1 Introduction: What is GtkAda ? 1

2 Getting started with GtkAda 3
2.1 How to build and install GtkAda . 3
2.2 How to distribute a GtkAda application . 4
2.3 Organization of the GtkAda package . 4
2.4 How to compile an application with GtkAda . 5

2.4.1 Using project files . 5
2.4.2 Using the command line . 6

2.4.2.1 Unix systems . 6
2.4.2.2 Windows systems . 6

2.5 Architecture of the toolkit . 7
2.6 Widgets Hierarchy . 8

3 Hierarchical composition of a window 11

4 Signal handling . 13
4.1 Predefined signals . 13
4.2 Connecting signals . 14
4.3 Handling user data . 16

4.3.1 First case: simple user data . 16
4.3.2 Second case: using Object Connect instead 17
4.3.3 Third case: manually disconnecting the callback 17
4.3.4 Fourth case: setting a watch on a specific widget 18

5 Starting an application with GtkAda 19

6 Resource files . 20

7 Memory management . 21

8 Tasking with GtkAda . 22

9 Processing external events . 23

ii

10 Object-oriented features . 24
10.1 General description of the tagged types . 24

10.1.1 Why should I use object-oriented programming ? 24
10.1.2 Type conversions from C to Ada widgets 24

10.2 Using tagged types to extend Gtk widgets . 25
10.3 Creating new widgets in Ada . 25

10.3.1 Creating composite widgets . 26
10.3.2 Creating widgets from scratch . 26

11 Support for Glade, the Gtk GUI builder . . . 29
11.1 Introduction . 29
11.2 Launching Glade . 29
11.3 Building your interface . 29
11.4 Using the interface in your application. 29

12 Binding new widgets . 30

13 Debugging GtkAda applications 31

14 How to report bugs . 33

15 Bibliography . 34

	Introduction: What is GtkAda ?
	Getting started with GtkAda
	How to build and install GtkAda
	How to distribute a GtkAda application
	Organization of the GtkAda package
	How to compile an application with GtkAda
	Using project files
	Using the command line
	Unix systems
	Windows systems

	Architecture of the toolkit
	Widgets Hierarchy

	Hierarchical composition of a window
	Signal handling
	Predefined signals
	Connecting signals
	Handling user data
	First case: simple user data
	Second case: using Object_Connect instead
	Third case: manually disconnecting the callback
	Fourth case: setting a watch on a specific widget

	Starting an application with GtkAda
	Resource files
	Memory management
	Tasking with GtkAda
	Processing external events
	Object-oriented features
	General description of the tagged types
	Why should I use object-oriented programming ?
	Type conversions from C to Ada widgets

	Using tagged types to extend Gtk widgets
	Creating new widgets in Ada
	Creating composite widgets
	Creating widgets from scratch

	Support for Glade, the Gtk GUI builder
	Introduction
	Launching Glade
	Building your interface
	Using the interface in your application.

	Binding new widgets
	Debugging GtkAda applications
	How to report bugs
	Bibliography

