
Script calling sequence for Server Sync SessionScript calling sequence for Server Sync SessionScript calling sequence for Server Sync SessionScript calling sequence for Server Sync SessionScript calling sequence for Server Sync Session

Session level Datastore level Datatype level
Sequence is run once per sync session) Each datastore has its own set of these scripts, and if multiple

datastores are involved in a sync session, these sequences are run
separately for each datastore

Each datatype has its own set of these scripts.
Usually, only one datatype is involved per datastore,
but it is possibe that sending and receiving type is
different.

Session context Login Context Datastore context Database context Datatype context
This is the most "global" context for a
session. Variables defined here are
accessible from all other contexts using
SESSIONVAR() and SETSESSIONVAR()
functions.

This context exists only
during login. If you want to
set session-wide
parameters during login,
use SETSESSIONVAR() to
access session context's
variables.

This context is only for a few scripts
that operate on the fairly abstract
level of SyncML "datastores", and
are not involved in actual access to
user data.

This context is for scripts
which are related to the
actual database interfacing
of a datastore. They can
access database related
functions as the SQLxxxx()
in SQL/ODBC datastores.

This context is for scripts that operate on the level of
SyncML datatypes, such as vCard or RFC822 email.
They operate on internal data fields (as defined in
<fieldlist>), but cannot access the database. Primary
use of datatype context scripts is for implementing
special behaviour (such as merging, comparing,
filtering) for data items of a certain type.

Initialisation of sync sessionInitialisation of sync session
sessioninitscript first script executed. Define session-global variables here.

logininitscript called before accessing database for login. Can be used to implement fully custom login check
logincheckscript called to do extra checks to accept/deny a login and/or to store user-specific options into session variables
loginfinishscript has final say about allowing login. Can e.g. be used to log or count login failures.

alertscript called when alert command is received. Can be used to allow or deny certain sync modes, or force sync mode
depending on server side user settings.

adminreadyscript called when administrative data has been read (e.g. date of last successful sync)
customgetputscript can be used to issue custom get/put commands to a client.
rulescript If a remote rule (device dependency rule) matches the current device, its rulescript is called. Usually, the

rulescript sets session global flags and parameters using SETSESSIONVAR().
initscript called whenever a datatype is used by a datastore.

datastoreinitscript called before user data is accessed for the first time. Can be used to modify filters that define the sync set
filterinitscript called to check if a filter script must be run for every item to be sent to the client. In addition, it can request that

all items (not only the modified/added ones) must be filtered to determine the sync set.
optionfilterscript called for SQL databases to calculate a WHERE clause for filtering while fetching data, thus enormously

increasing performance when syncing small subsets of large data sets.
initscript called before reading or writing first user data item in the database. For <array> maps, this is called once per

array before the first array element is read or written.
Per user data item in server's sync setPer user data item in server's sync set

afterreadscript called after reading an item from the database. Used to implement custom field conversions. When using
<array> maps, these may execute separate initscript/afterreadscript/finishscript

filterscript called to perform custom filtering. Note that if filterinitscript returns FALSE, this scipt is not called
Per user data item received from client:Per user data item received from client:

incomingscript called after parsing data received from client. This script can be used to check for and eventually repair invalid
data (like events too far in the past or future, missing mandatory fields)

processitemscript
called before processing an incoming data command (like add, update, delete). Can be used to implement
special behaviour like ignoring or rejecting items based on content. This is heavily used e.g. for non-symmetric
datastores like email in the sample config

comparescript implements custom comparison between two data items - this is needed in slow sync or conflict case only
mergescript implements custom merging of data between two items (usually to keep som data from an item that looses a

conflict into the item that wins the conflict)
localidscript called to obtain the identifier (like a table primary key) for adding a new data item into the database
beforewritescript called before writing an item to the database. Used to implement custom field conversions.

afterwritescript
called after writing an item to the database. Can be used to store related detail data.
When using <array> maps, these may execute separate initscript/beforewritescript/afterwritescript and
finishscript

receiveditemstatusscript this is called to check and eventually modify the status code sent to the client. It can decide to abort the sync on
certain error conditions or suppress or modify error codes. Script exists twice - on datastore and session levels.receiveditemstatusscript

Per item sent to clientPer item sent to client
outgoingscript called before generating formatted data (e.g. a vCard item) to be sent to client. Can be used to normalize data,

provide defaults or add data based on calculation (like a FN property in vCard).
Per status received for item from clientPer status received for item from client

sentitemstatusscript this is called to check and eventually modify the status code received from the client. It can decide to irgnore or
modify some errors reported by the client. Script exists twice - on datastore and session levels.sentitemstatusscript

Finalisation of syncFinalisation of sync

finalisationscript
This script is called once for every item that was inserted or updated in the database, if the <fieldmap> contains
at least one <map> with mode "x". This script is useful to establish inter-item database relations after all items
are already synchronized.

finishscript called after all user data accesses (but not necessarily admin accesses) are done.
syncendscript called after all other database accesses are done - for successful as well as failed syncs. Can be used to write

extra data to the database, for example summary data for the user.
datastorefinishscript last chance to do something related to this datastore sync. For example, use SHELLEXECUTE() to call an

external program to finalize the sync.
customendputscript can be used to issue a custom put after all datastores are finished (e.g. proprietary summary/status information

for the client)
sessionfinishscript last chance to do something related to this sync session.

Called when get, put or result command with unrecognized targetURI is received Called when get, put or result command with unrecognized targetURI is received Called when get, put or result command with unrecognized targetURI is received Called when get, put or result command with unrecognized targetURI is received Called when get, put or result command with unrecognized targetURI is received
customputresulthandlerscript called when a SyncML PUT, RESULT or GET command with unrecognized targetURI is received - can be used

to handle proprietary extensions.customgethandlerscript

