OGNL Language Guide

Drew Davidson

OGNL Language Guide

Drew Davidson
Copyright © 2004 OGNL Technology, Inc.

Table of Contents

O [gL oo (0 1o o R PP PPPPTI 1
A o 1E o) VPP PU PP UPPPPI 2
S 1 [= TP 3
A, EXPPESSIONS ...eeitieeeett ettt ettt e ettt e ettt e ettt e ettt e et e et et e et et e e et s 4
L0000 = | S PP PPTUPTN 4
REFEITING t0 PrOPEITIES ...t e e e e et e e e e eees 4

FgT0 (1o o [P T PP PPPPPI 4
Array and List INAEXINGeieiiieieii et eaees 5

JavaBeans INdexed Propertiesu i 5

OGNL Object Indexed Propertiesc.cuuuieiiuiiieiei et 5

CalliNg MELNOGScoeit ettt et e e e e e en e ees 5
Variable REFEIENCES .. .o 6
ParenthetiCal EXPrESSIONSuuu ittt 6
ChaiNEd SUDEXPIESSIONSceevtieeeeti ettt ettt e e et e e et e et e e e e e e e e nan s 6
COllECtION CONSIIUCTIONcieeti ettt ettt e et e e e e e e e 7

[S TP PUPPPTR 7

INBLIVE ATTAYS vttt e ettt e ettt e e et ettt e e e et e e e e eba e e e eereaeeene 7

=0 TP PPRTR PRI 7

Projecting ACroSS COIECHIONScuuuiieii et 7
Selecting From COlECHIONScoeeveee it 8
SElECting First MaICh ... 8

SElECting Last MaICHiiiiii e 8

CalliNG CONSITUCLONSeieett ettt ettt ettt ettt e e et e e e e eeena s 8
Calling StatiC MENOGScoeveeeiii et 8
GELtING SEALIC FIEIAS ...t e e e 9
EXPression BEVAIUBLIONuiiiiiii e 9
Pseudo-Lambda EXPIrESSIONSiieeuueeiiiiiie ettt ettt e e et e e e e e eaaas 9
Pseudo-Properties fOor CONECIIONSuuuiiiiiii e 9
Operators that differ from Javal'S OPEratorsccoeuuuiieiiiiie e 10
Setting values VErsus getting VAIUBSccouuuiiiiiiieeeii ettt e e 11

5. COErCiNg OBJECIS T0 TYPES .. iiiiieeeitii ettt e ettt e et e e e e e e e 12
Interpreting ObjectS @S BOOIEANSiiiiiiieii e 12
Interpreting ObjectS @S NUMDEISiiiii e 12
Interpreting ObJECtS @S INTEOEY'Sceevtuiieiie et e e e 12
Interpreting ObjectS 8S COIECHIONScieeei it 13

A. OGNL Language REFEIENCEuuniiiiiiii ettt e s 14
1007 = 0] £ TSP 14

List of Tables

3.1. OGNL Expression Parts

4.1. Specia Collections PSeUdo-Propertiesuu i

A.1l. OGNL Operators........

Chapter 1. Introduction

OGNL standsfor Object Graph Navigation L anguage. It isan expression and binding language for getting
and setting properties of Java objects. Normally the same expression is used for both getting and setting
the value of a property.

We pronounce OGNL as aword, like the last syllables of a drunken pronunciation of "orthogonal."

Many people have asked exactly what OGNL is good for. Several of the uses to which OGNL has been
applied are;

A binding language between GUI elements (textfield, combobox, etc.) to model objects.
Transformations are made easier by OGNL's TypeConverter mechanism to convert values from one
type to another (String to numeric types, for example).

* A data source language to map between table columns and a Swing TableModel.

* A binding language between web components and the underlying model objects (WebOGNL, Tapestry,
WebWork, WebObjects).

* A more expressive replacement for the property-getting language used by the Jakarata Commons
BeanUtils packageor JSTL'sEL (which only allow simple property navigation and rudimentary indexed
properties).

Most of what you can do in Javaispossiblein OGNL, plusother extras such aslist projection and selection
and lambda expressions.

http://www.ognl.org
http://jakarta.apache.org/tapestry/index.html
http://sourceforge.net/projects/opensymphony
http://wonder.sourceforge.net/index.html

Chapter 2. History

OGNL started out as away to set up associations between Ul components and controllers using property
names. As the desire for more complicated associations grew, Drew Davidson created what he called
KVCL, for Key-Vaue Coding Language, egged on by Luke Blanshard. Luke then reimplemented the
language using ANTLR, came up with the new name, and, egged on by Drew, filled it out to its current
state. Later on Luke again reimplemented the language using JavaCC. Further maintenance on al the code
isdone by Drew (with spiritual guidance from Luke).

http://www.webgain.com/products/java_cc/

Chapter 3. Syntax

Simple OGNL expressions are very simple. The language has become quite rich with features, but you
don't generally need to worry about the more complicated parts of the language: the simple cases have
remained that way. For example, to get at the name property of an object, the OGNL expression issimply
name. To get at the text property of the object returned by the headline property, the OGNL expression
is headline.text.

What isaproperty? Roughly, an OGNL property isthe same as abean property, which meansthat apair of
get/set methods, or alternatively afield, defines a property (the full story is abit more complicated, since
properties differ for different kinds of objects; see below for afull explanation).

The fundamental unit of an OGNL expression is the navigation chain, usualy just called "chain." The
simplest chains consist of the following parts:

Table 3.1. OGNL Expression Parts

Expression Element Part Example

Property names like the name and headline.text examples above

Method Calls hashCode() to return the current object's hash code

Array Indices listenerg 0] to return the first of the current object's
list of listeners

All OGNL expressions are evaluated in the context of a current object, and a chain simply uses the result
of the previous link in the chain as the current object for the next one. Y ou can extend a chain aslong as
you like. For example, this chain:

nane. toChar Array()[0] . nunericVal ue.toString()
This expression follows these steps to evaluate:

* extracts the name property of theinitial, or root, object (which the user provides to OGNL through the
OGNL context)

» callsthetoCharArray() method on theresulting St r i ng
 extractsthefirst character (the one at index 0) from the resulting array

« gets the numericVaue property from that character (the character is represented as a Char act er
object, and the Char act er class has amethod called getNumericValue()).

» callstoString() on the resulting | nt eger object. The final result of this expression is the St ri ng
returned by the last toString() call.

Note that this example can only be used to get a value from an object, not to set avalue. Passing the above
expression to the Ognl.setV alue() method would causean | nappr opr i at eExpr essi onExcept i on
to be thrown, because the last link in the chain is neither a property name nor an array index.

Thisis enough syntax to do the vast majority of what you ever need to do.

Chapter 4. Expressions

This section outlines the details the elements of OGNL's expressions.

Constants

OGNL has the following kinds of constants:

» String literals, as in Java (with the addition of single quotes): delimited by single- or double-quotes,
with the full set of character escapes.

e Character literals, also asin Java: delimited by single-quotes, also with the full set of escapes.
* Numeric literals, with afew more kinds than Java. In addition to Java's ints, longs, floats and doubles,
OGNL letsyou specify BigDecimalswith a"b" or "B" suffix, and Biglntegerswith an "h" or "H" suffix

(think "huge"---we chose "h" for Biglntegers because it does not interfere with hexadecimal digits).

e Boolean(true andf al se) literals.

Thenul | literal.

Referring to Properties

OGNL treats different kinds of objects differently in its handling of property references. Maps treat all
property references as element lookups or storage, with the property name as the key. Lists and arrays
treat numeric properties similarly, with the property name as the index, but string properties the same way
ordinary objects do. Ordinary objects (that is, all other kinds) only can handle string properties and do
so by using "get" and "set" methods (or "is' and "set"), if the object has them, or a field with the given
name otherwise.

Note the new terminology here. Property "names' can be of any type, not just Strings. But to refer to non-
String properties, you must use what we have been calling the "index" notation. For example, to get the
length of an array, you can use this expression:

array.length

But to get at element 0 of the array, you must use an expression like this:

array[0]

Note that Java collections have some special properties associated with them. See the section called
“Pseudo-Properties for Collections’for these properties.

Indexing

As discussed above, the "indexing" notation is actually just property reference, though a computed form
of property reference rather than a constant one.

For example, OGNL internally treats the "array.length” expression exactly the same as this expression:

array["l ength"]

And this expression would have the same result (though not the same internal form):

array["len" + "gth"]

Expressions

Array and List Indexing

For Java arrays and Lists indexing is fairly ssmple, just like in Java. An integer index is given and that
element isthereferrent. If theindex isout of bounds of the array or List and IndexOutOf BoundsException
isthrown, just asin Java.

JavaBeans Indexed Properties

JavaBeans supports the concept of Indexed properties. Specifically this means that an object has a set of
methods that follow the following pattern:

e public Propert yType[] getPr oper t yNane()

* public void setPr oper t yName(Pr oper t yType[] anArray)

* public Propert yType getPr oper t yName(int index)

 public void setPr oper t yNane(int index, Pr oper t yType value)

OGNL can interpret this and provide seamless access to the property through the indexing notation.
References such as

someProperty|[2]

are automatically routed through the correct indexed property accessor (in the above case through
get SomePr operty(2) or set SomeProperty(2, value)). If there is no indexed property
accessor a property is found with the name sonePr oper t y and theindex is applied to that.

OGNL Object Indexed Properties

OGNL extends the concept of indexed properties to include indexing with arbitrary objects, not just
integers as with JavaBeans | ndexed Properties. When finding properties as candidates for object indexing,
OGNL looks for patterns of methods with the following signature:

* public Proper t yType getPr opert yName(l ndexType index)
 public void setPr oper t yNane(l ndexType index, Pr opert yType value)

ThePr opertyType and | ndexType must match each other in the corresponding set and get methods.
An actual example of using Object Indexed Propertiesis with the Serviet API: the Session object has two
methods for getting and setting arbitrary attributes:

public Object getAttribute(String nane) public void setAttribute(String name, Cbject value)

An OGNL expression that can both get and set one of these attributesis

session.attribute["foo"]

Calling Methods

OGNL calls methods a little differently from the way Java does, because OGNL is interpreted and must
choose the right method at run time, with no extra type information aside from the actual arguments
supplied. OGNL aways chooses the most specific method it can find whose types match the supplied
arguments; if there are two or more methods that are equally specific and match the given arguments, one
of them will be chosen arbitrarily.

Expressions

In particular, a null argument matches al non-primitive types, and so is most likely to result in an
unexpected method being called.

Note that the arguments to a method are separated by commas, and so the comma operator cannot be used
unlessit is enclosed in parentheses. For example,

net hod(ensurelLoaded(), name)

isacal to a 2-argument method, while

net hod((ensurelLoaded(), nane))

isacal to a1l-argument method.

Variable References

OGNL has asimple variable scheme, which lets you store intermediate results and use them again, or just
name things to make an expression easier to understand. All variables in OGNL are global to the entire
expression. You refer to avariable using a number sign in front of its name, like this:

#var

OGNL also stores the current object at every point in the evaluation of an expression in the this variable,
where it can be referred to like any other variable. For example, the following expression operates on
the number of listeners, returning twice the number if it is more than 100, or 20 more than the number
otherwise:

listeners.size().(#this > 100? 2*#this : 20+#this)
OGNL can be invoked with amap that defines initial values for variables. The standard way of invoking

OGNL defines the variables r oot (which holds the initial, or root, object), and cont ext (which holds
the Map of variablesitself).

To assign avalue to avariable explicitly, simply write an assignment statement with a variable reference
on the left-hand side:

#var = 99

Parenthetical Expressions

As you would expect, an expression enclosed in parentheses is evaluated as a unit, separately from any
surrounding operators. This can be used to force an evaluation order different from the one that would be
implied by OGNL operator precedences. It is also the only way to use the comma operator in a method
argument.

Chained Subexpressions

If you use a parenthetical expression after a dot, the object that is current at the dot is used as the current
object throughout the parenthetical expression. For example,

headl i ne. parent. (ensur eLoaded(), nane)

traverses through the headline and parent properties, ensures that the parent isloaded and then returns (or
sets) the parent's name.

Top-level expressions can aso be chained in this way. The result of the expression is the right-most
expression element.

ensur eLoaded(), name

Expressions

Thiswill call ensur eLoaded() on theroot object, then get the name property of the root object as the
result of the expression.

Collection Construction

Lists

To create alist of objects, enclose alist of expressionsin curly braces. As with method arguments, these
expressions cannot use the comma operator unlessit is enclosed in parentheses. Here is an example:

nane in { null,"Untitled" }
This tests whether the nane property isnul | orequal to" Unti tl ed".

The syntax described above will create ainstanceof the Li st interface. The exact subclassis not defined.

Native Arrays

Sometimes you want to create Java native arrays, such asint[] or Integer[]. OGNL supports the creation
of these similarly to the way that constructors are normally called, but allows initialization of the native
array from either an existing list or a given size of the array.

newint[] { 1, 2, 3}
This creates anew int array consisting of threeintegers 1, 2 and 3.

To create an array with al nul | or O elements, use the aternative size constructor

new int[5]

This creates an int array with 5 dots, al initialized to zero.
Maps

Maps can also be created using a specia syntax.

#{ "foo" : "foo value", "bar" : "bar value" }
This creates a Map initialized with mappingsfor " f 00" and " bar " .

Advanced users who wish to select the specific Map class can specify that class before the opening curly
brace

#@ava. util.Li nkedHashMap@ "foo" : "foo value", "bar" : "bar value" }

The above example will create an instance of the JDK 1.4 class Li nkedHashMap, ensuring the the
insertion order of the elementsis preserved.

Projecting Across Collections

OGNL provides asimple way to call the same method or extract the same property from each element in
acollection and store the resultsin anew collection. We call this"projection,” from the database term for
choosing a subset of columns from atable. For example, this expression:

|'i steners. {del egat e}

returns alist of al the listeners delegates. See the coercion section for how OGNL treats various kinds
of objects as collections.

Expressions

During aprojection the #t hi s variable refersto the current element of the iteration.

objects.{ #this instanceof String ? #this : #this.toString()}

The above would produce a new list of elements from the objects list as string val ues.

Selecting From Collections

OGNL provides a simple way to use an expression to choose some elements from a collection and save
the results in a new collection. We call this "selection,” from the database term for choosing a subset of
rows from atable. For example, this expression:

listeners.{? #this instanceof ActionListener}

returns a list of al those listeners that are instances of the Act i onLi st ener class. See the coercion
section for how OGNL treats various kinds of objects as collections.

Selecting First Match

In order to get the first match from alist of matches, you could use indexing such asl i st eners. {?
true }[0].However, thisis cumbersome because if the match does not return any results (or if the
result list is empty) you will get an Ar r ayl ndexQut OF BoundsExcept i on.

The selection syntax is also available to select only the first match and return it as alist. If the match does
not succeed for any elements an empty list isthe result.

obj ects.{” #this instanceof String }

Will return the first element contained in objects that is an instance of the St r i ng class.

Selecting Last Match

Similar to getting the first match, sometimes you want to get the last element that matched.

obj ects.{$ #this instanceof String }

Thiswill return the last element contained in objects that is an instanceof the St r i ng class

Calling Constructors

You can create new objects as in Java, with the new operator. One difference is that you must specify
the fully qualified class name for classes other than those in the javalang package. ! (for example, new
java.util. ArrayLi st (), rather than ssimply new ArraylLi st ()).

OGNL chooses the right constructor to call using the same procedure it uses for overloaded method calls.

Calling Static Methods

Y ou can call astatic method usingthesyntax @1 ass @ret hod(ar gs) . If youleaveout class, it defaults
toj ava. | ang. Mat h, tomakeit easier to call m n and max methods. If you specify the class, you must
give the fully qualified name.

If you have an instance of a class whose static method you wish to call, you can call the method through
the object asif it was an instance method.

MThisis only true with the default ClassResolver in place. With a custom class resolver packages can be mapped in such away that more Java-like
references to classes can be made. Refer to the OGNL Developer's Guide for details on using Cl assResol ver class.

???
???

Expressions

If the method name is overloaded, OGNL chooses the right static method to call using the same procedure
it uses for overloaded instance methods.

Getting Static Fields

You can refer to astatic field using the syntax @1 ass @i el d. The class must be fully qualified.

Expression Evaluation

If you follow an OGNL expression with a parenthesized expression, without a dot in front of the
parentheses, OGNL will try to treat the result of the first expression as another expression to evaluate, and
will use the result of the parenthesized expression as the root object for that evaluation. The result of the
first expression may be any object; if it isan AST, OGNL assumesit is the parsed form of an expression
and simply interprets it; otherwise, OGNL takes the string value of the object and parses that string to get
the AST to interpret.

For example, this expression

#f act (30H)
looks up the fact variable, and interprets the value of that variable as an OGNL expression using the
Bi gl nt eger representation of 30 as the root object. See below for an example of setting the f act
variable with an expression that returns the factoria of its argument. Note that there is an ambiguity in
OGNL 's syntax between this doubl e eval uation operator and amethod call. OGNL resolves this ambiguity

by calling anything that looks like a method call, a method call. For example, if the current object had a
fact property that held an OGNL factorial expression, you could not use this approach to call it

fact (30H)

because OGNL would interpret this as a call to the fact method. Y ou could force the interpretation you
want by surrounding the property reference by parentheses:

(fact) (30H)

Pseudo-Lambda Expressions

OGNL has a simplified lambda-expression syntax, which lets you write simple functions. It is not a full-
blown lambda calculus, because there are no closures---all variables in OGNL have global scope and
extent.

For example, hereisan OGNL expression that declares arecursive factorial function, and then callsiit:

#fact = :[#this<=1? 1 : #this*#fact(#this-1)], #fact(30H)

The lambda expression is everything inside the brackets. The #this variable holds the argument to the
expression, which isinitially 30H, and is then one less for each successive call to the expression.

OGNL treats lambda expressions as constants. The value of a lambda expression is the AST that OGNL
uses as the parsed form of the contained expression.

Pseudo-Properties for Collections

There are some special properties of collections that OGNL makes available. The reason for thisis that
the collections do not follow JavaBeans patterns for method naming; thereforethesi ze(), | engt h(),

Expressions

etc. methods must be called instead of more intuitively referring to these as properties. OGNL corrects
this by exposing certain pseudo-properties asif they were built-in.

Table 4.1. Special Collections Pseudo-Properties

Collection Special Properties
Col | ecti on si ze
(inherited by Map, The size of the collection
Li st & Set)
i SEmpty

Evaluatestot r ue if the collection is empty

List iterator
Evalutestoan| t er at or over theli st.

Map keys
Evalutesto aSet of al keysinthe Map.

val ues
Evaluatesto aCol | ect i on of al vauesin the Map.

Note

:I!j These properties, plussi ze and i sEnpt y, are different than the indexed form of access for Maps

n (i.e. soneMap["si ze"] getsthe"si ze" key from the map, whereas soneMap. si ze gets the
- size of the Map.

Set iterator

Evalutestoan| t er at or over the Set .

Iterator next
Evalutes to the next object from thel t er at or .

hasNext
Evaluatestot r ue if thereisanext object available fromthel t er at or .

Enumer ati on next
Evalutes to the next object from the Enuner at i on.

hasNext
Evaluates to true if there is a next object available from the
Enuner ati on.

next El enent
Synonym for next .

hasMor eEl enent s
Synonym for has Next .

Operators that differ from Java's operators

For the most part, OGNL's operators are borrowed from Java and work similarly to Java's operators. See
the OGNL Reference for a complete discussion. Here we describe OGNL operators that are not in Java,
or that are different from Java.

» Thecomma(,) or sequence operator. This operator is borrowed from C. The commais used to separate
two independent expressions. The value of the second of these expressions is the value of the comma
expression. Hereis an example:

ensur eLoaded(), nane

10

Expressions

When this expression is eval uated, the ensureloaded method is called (presumably to make sure that all

parts of the object are in memory), then the name property isretrieved (if getting the value) or replaced
(if setting).

 List construction with curly braces ({}). You can create alist in-line by enclosing the valuesin curly
braces, asin this example:

{ null, true, false}

e Thei noperator (andnot i n,itsnegation). Thisisacontainment test, to seeif avalueisinacollection.
For example,

name in {null,"Untitled"} || name

» Seethe OGNL reference for afull list of operations

Setting values versus getting values

As stated before, some valuesthat are gettable are not also settable because of the nature of the expression.
For example,

names[0] . | ocation
is a settable expression - the final component of the expression resolves to a settable property.
However, some expressions, such as

nanes[0].length + 1

are not settable because they do not resolve to a settable property in an object. It is smply a computed
value. If you try to evaluate this expression using any of the Ognl . set Val ue() methods it will fail
withan | nappr opri at eExpr essi onExcepti on.

It is also possible to set variables using get expressions that include the '=" operator. Thisis useful when
aget expression needs to set avariable as a side effect of execution.

11

Chapter 5. Coercing Objects to Types

Herewe describe how OGNL interprets objects asvarioustypes. See below for how OGNL coerces objects
to booleans, numbers, integers, and collections.

Interpreting Objects as Booleans

Any object can be used where aboolean is required. OGNL interprets objects as booleans like this:
« If theobjectisaBool ean, itsvalueis extracted and returned

« If the object isaNunber , its double-precision floating-point value is compared with zero; non-zero is
treated ast r ue, zero asf al se.

 If theobjectisaChar act er, itsboolean valueist r ue if and only if its char value is non-zero.

e Otherwise, itsboolean valueist r ue if and only if itisnon-nul | .

Interpreting Objects as Numbers

Numerical operators try to treat their arguments as numbers. The basic primitive-type wrapper classes
(Integer, Double, and so on, including Character and Boolean, which are treated as integers), and the
"big" numeric classes from the java.math package (Biglnteger and BigDecimal), are recognized as special
numeric types. Given an object of some other class, OGNL tries to parse the object's string value as a
number.

Numerical operators that take two arguments use the following algorithm to decide what type the result
should be. The type of the actual result may be wider, if the result does not fit in the given type.

« If both arguments are of the same type, the result will be of the same type if possible.

* |If either argument is not of arecognized numeric class, it will be treated asiif it was a Doubl e for the
rest of thisalgorithm.

* If both arguments are approximationsto real numbers(Fl oat , Doubl e, or Bi gDeci nal), theresult
will be the wider type.

» If both arguments are integers (Bool ean, Byt e, Char act er, Short, I nteger, Long, or
Bi gl nt eger), the result will be the wider type.

 If oneargument isareal type and the other an integer type, the result will be the real typeif the integer
is narrower than "int"; Bi gDeci mal if theinteger isBi gl nt eger ; or the wider of the real type and
Doubl e otherwise.

Interpreting Objects as Integers

Operators that work only on integers, like the bit-shifting operators, treat their arguments as numbers,
except that Bi gDeci nal sand Bi gl nt eger s are operated on as Bi gl nt eger s and all other kinds
of numbers are operated on as Longs. For the Bi gl nt eger case, the result of these operators remains
aBi gl nt eger ; for the Long case, the result is expressed as the same type of the arguments, if it fits,
or asalong otherwise.

12

Coercing Objectsto Types

Interpreting Objects as Collections

The projection and selection operators (el. { €2} andel. { ?e2}), and thei n operator, all treat one of
their arguments asacollection and walk it. Thisis done differently depending on the class of the argument:

Javaarrays are walked from front to back
Membersof j ava. uti | . Col | ecti on are walked by walking their iterators
Membersof j ava. uti | . Map are waked by walking iterators over their values

Members of j ava. util.lterator andjava. util.Enuneration are waked by iterating
them

Members of j ava. | ang. Nunber are "walked" by returning integers less than the given number
starting with zero

All other objects are treated as singleton collections containing only themselves

13

Appendix A. OGNL Language
Reference

This section has a fairly detailed treatment of OGNL's syntax and implementation. See below for a
complete table of OGNL's operators, a section on how OGNL coerces objects to various types, and a
detailed description of OGNL's basic expressions.

Operators

OGNL borrows most of Java's operators, and adds a few new ones. For the most part, OGNL's treatment
of a given operator is the same as Java's, with the important caveat that OGNL is essentialy a typeless
language. What that means is that every value in OGNL is a Java object, and OGNL attempts to coerce
from each object a meaning appropriate to the situation it is used in (see the section on coercion).

The following table lists OGNL operators in reverse precedence order. When more than one operator is

listed in the same box, these operators have the same precedence and are evaluated in left-to-right order.

Table A.1. OGNL Operators

Operator get Val ue() Notes set Val ue() Notes
el, e2 Both el and e2 are evaluated|get Val ue is called on el, and
Sequence operator with the same source object, and|then set Val ue iscaled on e2.
the result of e2 is returned.
el=e2 get Val ue iscaled on e2, and|Cannot be the top-leve

Assignment operator

then set Val ue is called on el
with the result of e2 as the target
object.

expression for set Val ue.

el?e2: el
Conditional operator

get Val ue is cdled on el
and the result is interpreted as
a boolean. get Val ue is then
cadled on ether e2 or e3,
depending on whether the result
of el was true or fal se
respectively, and the result is
returned.

get Val ue iscaled on el, and
then set Val ue is cdled on
either e2 or e3.

el|]| e2,el or e2
Logical or operator

get Val ue is caled on el and
the result is interpreted as a
boolean. If t rue, that result is
returned; if f al se, get Val ue
is called on e2 and its value is
returned.

get Val ue is called on el; if
fal se, set Val ue is cadled on
e2. Note that el being true
prevents any further setting from
taking place.

el &&e2,el and e2
Logica and operator

get Val ue is called on el and
the result is interpreted as a
boolean. If fal se, that result
is returned; if true, get Val ue
is called on e2 and its vaue is
returned.

get Val ue is called on el; if
true, set Val ue is caled on
e2. Note that el being f al se
prevents any further setting from
taking place.

14

OGNL Language Reference

Operator get Val ue() Notes set Val ue() Notes
el| e2,el bor e2 el and e2 are interpreted as|Cannot be the top-level
Bitwise or operator integers and the result is an|expression passedto set Val ue.
integer.
el"e2,el xor e2 el and e2 are interpreted as|Cannot be the top-level

Bitwise exclusive-or operator |integers and the result is an|expression passedtoset Val ue.
integer.

el &e2,el band e2 el and e2 are interpreted as|Cannot be the top-leve

Bitwise and operator integers and the result is an|expression passed to set Val ue.
integer.

el==e2,el eq e2
Equality test

el!=e2,el neq e2
Inequality test

Equality is tested for as follows.
If either value is nul | , they are
equa if and only if both are
nul | . If they are the same object
or the equal s() method says
they are equal, they are equal. If
they are both Nurrber s, they are
equa if their values as double-
precision floating point numbers
are equal. Otherwise, they are not
equal. These rules make numbers
compare equal more readily than
they would normally, if just using
the equals method.

Cannot be the top-leve
expression passed to set Val ue.

el<e2,el It e2
L ess than comparison

el<=e2,el Ite e2
Less than or equals
comparison

el> e2,el gt e2
Greater than comparison

el>=e2,el gte e2

Greater than or equas
comparison
el ine2

List membership comparison

The ordering operators compare
with conpareTo() if their
arguments are non-numeric
and implement Conpar abl e;
otherwise, the arguments are
interpreted as numbers and
compared numerically. The in
operator is not from Java; it tests
for inclusion of el in €2, where €2
isinterpreted as a collection. This
test is not efficient: it iterates the
collection. However, it uses the
standard OGNL equality test.

Cannot be the top-leve
expression passed to set Val ue.

elnot ine2
List non-membership
comparison

el <<e2,el shl e2
Bit shift left

el >>e2,el shr e2

Bit shift right

el >>>e2,el ushr e2

Logical shift right

el and e2 are interpreted as
integers and the result is an
integer.

Cannot be the top-leve
expression passed to set Val ue.

15

OGNL Language Reference

Operator get Val ue() Notes set Val ue() Notes
el +e2 The plus operator concatenates|Cannot be the top-level
Addition strings if its arguments are non- | expression passed to set Val ue.
numeric; otherwiseit interpretsits
el-e2 arguments as numbers and adds
Subtraction them. The minus operator always
works on numbers.
el* e2 Multiplication, division, which|Cannot be the top-level
Multiplication interpret their arguments as|expression passed to set Val ue.
numbers, and remainder, which
el/ e2 interprets its arguments as
Division integers.
el %e?2
Remainder
+ e Unary plus is a no-op, it|{Cannot be the top-level
Unary plus simply returns the value of its|expression passedtoset Val ue.
argument. Unary minus interprets
- e its argument as anumber. Logical
Unary minus not interprets its argument as a
boolean. Bitwise not interprets
'enot e its argument as an integer. The
Logical not cl ass argument to instanceof is
—e the fully qualified name of a Java
Bitwise not class.

e i nst anceof cl ass
Class membership

e. met hod(ar gs)
Method call

e. property
Property

el[e2]
Index

el.{ e2}
Projection

el.{?e2}
Selection

el. (e2)
Subexpression evaluation

el(e2)
Expression evaluation

Generally spesking, navigation
chainsare evaluated by evaluating
the first expression, then
evaluating the second onewith the
result of the first as the source
object.

Some of these forms can be
passed as top-level expressions
to setValue and others
cannot. Only those chains that
end in property references
(e.property), indexes (el] e2]),
and subexpressions (el. (e2))
can be;, and expression
evaluations can be aswell. For the
chains, get Val ue is called on
theleft-hand expression (e or el),
and then set Val ue is called on
therest with theresult asthetarget
object.

const ant
Constant

(e)

Parenthesized expression

Basic expressions

Only property references
(property), indexes ([e]),
and variable references

(#vari abl e) can be passed

16

OGNL Language Reference

Operator get Val ue() Notes set Val ue() Notes
met hod(ar gs) as top-level expressions to
Method call set Val ue. For indexes,
get Val ue is cdled on e, and
property then the result is used as the
Property reference property "name" (which might be
a String or any other kind of
[el object) to set in the current target

Index reference object. Variable and property

{ e } references are set more directly.
List creation

#vari abl e
Context variable reference

@| ass@ret hod(ar gs)
Static method reference

@l ass@i el d
Static field reference

newcl ass(args)
Constructor call

new array- conmponent -
class[] {e, ..}

Array creation
#{ el: e2, ..}
Map creation
#@l assnanre@ el: e2, ..
}
Map creation with specific
subclass
el
Lambda expression
definition
Note
L .ﬂj These operators are listed in reverse precedence order

e
=

17

