
OGNL Language Guide
Drew Davidson

OGNL Language Guide
Drew Davidson
Copyright © 2004 OGNL Technology, Inc.

iii

Table of Contents
1. Introduction ... 1
2. History .. 2
3. Syntax .. 3
4. Expressions .. 4

Constants .. 4
Referring to Properties .. 4
Indexing .. 4

Array and List Indexing .. 5
JavaBeans Indexed Properties ... 5
OGNL Object Indexed Properties .. 5

Calling Methods ... 5
Variable References .. 6
Parenthetical Expressions ... 6
Chained Subexpressions ... 6
Collection Construction ... 7

Lists ... 7
Native Arrays .. 7
Maps .. 7

Projecting Across Collections ... 7
Selecting From Collections .. 8

Selecting First Match .. 8
Selecting Last Match ... 8

Calling Constructors ... 8
Calling Static Methods .. 8
Getting Static Fields ... 9
Expression Evaluation ... 9
Pseudo-Lambda Expressions ... 9
Pseudo-Properties for Collections .. 9
Operators that differ from Java's operators ... 10
Setting values versus getting values ... 11

5. Coercing Objects to Types .. 12
Interpreting Objects as Booleans .. 12
Interpreting Objects as Numbers .. 12
Interpreting Objects as Integers ... 12
Interpreting Objects as Collections ... 13

A. OGNL Language Reference ... 14
Operators ... 14

iv

List of Tables
3.1. OGNL Expression Parts .. 3
4.1. Special Collections Pseudo-Properties ... 10
A.1. OGNL Operators ... 14

1

Chapter 1. Introduction
OGNL stands for Object Graph Navigation Language. It is an expression and binding language for getting
and setting properties of Java objects. Normally the same expression is used for both getting and setting
the value of a property.

We pronounce OGNL as a word, like the last syllables of a drunken pronunciation of "orthogonal."

Many people have asked exactly what OGNL is good for. Several of the uses to which OGNL has been
applied are:

• A binding language between GUI elements (textfield, combobox, etc.) to model objects.
Transformations are made easier by OGNL's TypeConverter mechanism to convert values from one
type to another (String to numeric types, for example).

• A data source language to map between table columns and a Swing TableModel.

• A binding language between web components and the underlying model objects (WebOGNL, Tapestry,
WebWork, WebObjects).

• A more expressive replacement for the property-getting language used by the Jakarata Commons
BeanUtils package or JSTL's EL (which only allow simple property navigation and rudimentary indexed
properties).

Most of what you can do in Java is possible in OGNL, plus other extras such as list projection and selection
and lambda expressions.

http://www.ognl.org
http://jakarta.apache.org/tapestry/index.html
http://sourceforge.net/projects/opensymphony
http://wonder.sourceforge.net/index.html

2

Chapter 2. History
OGNL started out as a way to set up associations between UI components and controllers using property
names. As the desire for more complicated associations grew, Drew Davidson created what he called
KVCL, for Key-Value Coding Language, egged on by Luke Blanshard. Luke then reimplemented the
language using ANTLR, came up with the new name, and, egged on by Drew, filled it out to its current
state. Later on Luke again reimplemented the language using JavaCC. Further maintenance on all the code
is done by Drew (with spiritual guidance from Luke).

http://www.webgain.com/products/java_cc/

3

Chapter 3. Syntax
Simple OGNL expressions are very simple. The language has become quite rich with features, but you
don't generally need to worry about the more complicated parts of the language: the simple cases have
remained that way. For example, to get at the name property of an object, the OGNL expression is simply
name. To get at the text property of the object returned by the headline property, the OGNL expression
is headline.text.

What is a property? Roughly, an OGNL property is the same as a bean property, which means that a pair of
get/set methods, or alternatively a field, defines a property (the full story is a bit more complicated, since
properties differ for different kinds of objects; see below for a full explanation).

The fundamental unit of an OGNL expression is the navigation chain, usually just called "chain." The
simplest chains consist of the following parts:

Table 3.1. OGNL Expression Parts

Expression Element Part Example

Property names like the name and headline.text examples above

Method Calls hashCode() to return the current object's hash code

Array Indices listeners[0] to return the first of the current object's
list of listeners

All OGNL expressions are evaluated in the context of a current object, and a chain simply uses the result
of the previous link in the chain as the current object for the next one. You can extend a chain as long as
you like. For example, this chain:

name.toCharArray()[0].numericValue.toString()

This expression follows these steps to evaluate:

• extracts the name property of the initial, or root, object (which the user provides to OGNL through the
OGNL context)

• calls the toCharArray() method on the resulting String

• extracts the first character (the one at index 0) from the resulting array

• gets the numericValue property from that character (the character is represented as a Character
object, and the Character class has a method called getNumericValue()).

• calls toString() on the resulting Integer object. The final result of this expression is the String
returned by the last toString() call.

Note that this example can only be used to get a value from an object, not to set a value. Passing the above
expression to the Ognl.setValue() method would cause an InappropriateExpressionException
to be thrown, because the last link in the chain is neither a property name nor an array index.

This is enough syntax to do the vast majority of what you ever need to do.

4

Chapter 4. Expressions
This section outlines the details the elements of OGNL's expressions.

Constants
OGNL has the following kinds of constants:

• String literals, as in Java (with the addition of single quotes): delimited by single- or double-quotes,
with the full set of character escapes.

• Character literals, also as in Java: delimited by single-quotes, also with the full set of escapes.

• Numeric literals, with a few more kinds than Java. In addition to Java's ints, longs, floats and doubles,
OGNL lets you specify BigDecimals with a "b" or "B" suffix, and BigIntegers with an "h" or "H" suffix
(think "huge"---we chose "h" for BigIntegers because it does not interfere with hexadecimal digits).

• Boolean (true and false) literals.

• The null literal.

Referring to Properties
OGNL treats different kinds of objects differently in its handling of property references. Maps treat all
property references as element lookups or storage, with the property name as the key. Lists and arrays
treat numeric properties similarly, with the property name as the index, but string properties the same way
ordinary objects do. Ordinary objects (that is, all other kinds) only can handle string properties and do
so by using "get" and "set" methods (or "is" and "set"), if the object has them, or a field with the given
name otherwise.

Note the new terminology here. Property "names" can be of any type, not just Strings. But to refer to non-
String properties, you must use what we have been calling the "index" notation. For example, to get the
length of an array, you can use this expression:

array.length

But to get at element 0 of the array, you must use an expression like this:

array[0]

Note that Java collections have some special properties associated with them. See the section called
“Pseudo-Properties for Collections”for these properties.

Indexing
As discussed above, the "indexing" notation is actually just property reference, though a computed form
of property reference rather than a constant one.

For example, OGNL internally treats the "array.length" expression exactly the same as this expression:

array["length"]

And this expression would have the same result (though not the same internal form):

array["len" + "gth"]

Expressions

5

Array and List Indexing
For Java arrays and Lists indexing is fairly simple, just like in Java. An integer index is given and that
element is the referrent. If the index is out of bounds of the array or List and IndexOutOfBoundsException
is thrown, just as in Java.

JavaBeans Indexed Properties
JavaBeans supports the concept of Indexed properties. Specifically this means that an object has a set of
methods that follow the following pattern:

• public PropertyType[] getPropertyName()

• public void setPropertyName(PropertyType[] anArray)

• public PropertyType getPropertyName(int index)

• public void setPropertyName(int index, PropertyType value)

OGNL can interpret this and provide seamless access to the property through the indexing notation.
References such as

someProperty[2]

are automatically routed through the correct indexed property accessor (in the above case through
getSomeProperty(2) or setSomeProperty(2, value)). If there is no indexed property
accessor a property is found with the name someProperty and the index is applied to that.

OGNL Object Indexed Properties
OGNL extends the concept of indexed properties to include indexing with arbitrary objects, not just
integers as with JavaBeans Indexed Properties. When finding properties as candidates for object indexing,
OGNL looks for patterns of methods with the following signature:

• public PropertyType getPropertyName(IndexType index)

• public void setPropertyName(IndexType index, PropertyType value)

The PropertyType and IndexType must match each other in the corresponding set and get methods.
An actual example of using Object Indexed Properties is with the Servlet API: the Session object has two
methods for getting and setting arbitrary attributes:

public Object getAttribute(String name) public void setAttribute(String name, Object value)

An OGNL expression that can both get and set one of these attributes is

session.attribute["foo"]

Calling Methods
OGNL calls methods a little differently from the way Java does, because OGNL is interpreted and must
choose the right method at run time, with no extra type information aside from the actual arguments
supplied. OGNL always chooses the most specific method it can find whose types match the supplied
arguments; if there are two or more methods that are equally specific and match the given arguments, one
of them will be chosen arbitrarily.

Expressions

6

In particular, a null argument matches all non-primitive types, and so is most likely to result in an
unexpected method being called.

Note that the arguments to a method are separated by commas, and so the comma operator cannot be used
unless it is enclosed in parentheses. For example,

method(ensureLoaded(), name)

is a call to a 2-argument method, while

method((ensureLoaded(), name))

is a call to a 1-argument method.

Variable References
OGNL has a simple variable scheme, which lets you store intermediate results and use them again, or just
name things to make an expression easier to understand. All variables in OGNL are global to the entire
expression. You refer to a variable using a number sign in front of its name, like this:

#var

OGNL also stores the current object at every point in the evaluation of an expression in the this variable,
where it can be referred to like any other variable. For example, the following expression operates on
the number of listeners, returning twice the number if it is more than 100, or 20 more than the number
otherwise:

listeners.size().(#this > 100? 2*#this : 20+#this)

OGNL can be invoked with a map that defines initial values for variables. The standard way of invoking
OGNL defines the variables root (which holds the initial, or root, object), and context (which holds
the Map of variables itself).

To assign a value to a variable explicitly, simply write an assignment statement with a variable reference
on the left-hand side:

#var = 99

Parenthetical Expressions
As you would expect, an expression enclosed in parentheses is evaluated as a unit, separately from any
surrounding operators. This can be used to force an evaluation order different from the one that would be
implied by OGNL operator precedences. It is also the only way to use the comma operator in a method
argument.

Chained Subexpressions
If you use a parenthetical expression after a dot, the object that is current at the dot is used as the current
object throughout the parenthetical expression. For example,

headline.parent.(ensureLoaded(), name)

traverses through the headline and parent properties, ensures that the parent is loaded and then returns (or
sets) the parent's name.

Top-level expressions can also be chained in this way. The result of the expression is the right-most
expression element.

ensureLoaded(), name

Expressions

7

This will call ensureLoaded() on the root object, then get the name property of the root object as the
result of the expression.

Collection Construction

Lists
To create a list of objects, enclose a list of expressions in curly braces. As with method arguments, these
expressions cannot use the comma operator unless it is enclosed in parentheses. Here is an example:

name in { null,"Untitled" }

This tests whether the name property is null or equal to "Untitled".

The syntax described above will create a instanceof the List interface. The exact subclass is not defined.

Native Arrays
Sometimes you want to create Java native arrays, such as int[] or Integer[]. OGNL supports the creation
of these similarly to the way that constructors are normally called, but allows initialization of the native
array from either an existing list or a given size of the array.

new int[] { 1, 2, 3 }

This creates a new int array consisting of three integers 1, 2 and 3.

To create an array with all null or 0 elements, use the alternative size constructor

new int[5]

This creates an int array with 5 slots, all initialized to zero.

Maps
Maps can also be created using a special syntax.

#{ "foo" : "foo value", "bar" : "bar value" }

This creates a Map initialized with mappings for "foo" and "bar".

Advanced users who wish to select the specific Map class can specify that class before the opening curly
brace

#@java.util.LinkedHashMap@{ "foo" : "foo value", "bar" : "bar value" }

The above example will create an instance of the JDK 1.4 class LinkedHashMap, ensuring the the
insertion order of the elements is preserved.

Projecting Across Collections
OGNL provides a simple way to call the same method or extract the same property from each element in
a collection and store the results in a new collection. We call this "projection," from the database term for
choosing a subset of columns from a table. For example, this expression:

listeners.{delegate}

returns a list of all the listeners' delegates. See the coercion section for how OGNL treats various kinds
of objects as collections.

Expressions

8

During a projection the #this variable refers to the current element of the iteration.

objects.{ #this instanceof String ? #this : #this.toString()}

The above would produce a new list of elements from the objects list as string values.

Selecting From Collections
OGNL provides a simple way to use an expression to choose some elements from a collection and save
the results in a new collection. We call this "selection," from the database term for choosing a subset of
rows from a table. For example, this expression:

listeners.{? #this instanceof ActionListener}

returns a list of all those listeners that are instances of the ActionListener class. See the coercion
section for how OGNL treats various kinds of objects as collections.

Selecting First Match
In order to get the first match from a list of matches, you could use indexing such as listeners.{?
true }[0]. However, this is cumbersome because if the match does not return any results (or if the
result list is empty) you will get an ArrayIndexOutOfBoundsException.

The selection syntax is also available to select only the first match and return it as a list. If the match does
not succeed for any elements an empty list is the result.

objects.{^ #this instanceof String }

Will return the first element contained in objects that is an instance of the String class.

Selecting Last Match
Similar to getting the first match, sometimes you want to get the last element that matched.

objects.{$ #this instanceof String }

This will return the last element contained in objects that is an instanceof the String class

Calling Constructors
You can create new objects as in Java, with the new operator. One difference is that you must specify
the fully qualified class name for classes other than those in the java.lang package. 1 (for example, new
java.util.ArrayList(), rather than simply new ArrayList()).

OGNL chooses the right constructor to call using the same procedure it uses for overloaded method calls.

Calling Static Methods
You can call a static method using the syntax @class@method(args). If you leave out class, it defaults
to java.lang.Math, to make it easier to call min and max methods. If you specify the class, you must
give the fully qualified name.

If you have an instance of a class whose static method you wish to call, you can call the method through
the object as if it was an instance method.

1This is only true with the default ClassResolver in place. With a custom class resolver packages can be mapped in such a way that more Java-like
references to classes can be made. Refer to the OGNL Developer's Guide for details on using ClassResolver class.

???
???

Expressions

9

If the method name is overloaded, OGNL chooses the right static method to call using the same procedure
it uses for overloaded instance methods.

Getting Static Fields
You can refer to a static field using the syntax @class@field. The class must be fully qualified.

Expression Evaluation
If you follow an OGNL expression with a parenthesized expression, without a dot in front of the
parentheses, OGNL will try to treat the result of the first expression as another expression to evaluate, and
will use the result of the parenthesized expression as the root object for that evaluation. The result of the
first expression may be any object; if it is an AST, OGNL assumes it is the parsed form of an expression
and simply interprets it; otherwise, OGNL takes the string value of the object and parses that string to get
the AST to interpret.

For example, this expression

#fact(30H)

looks up the fact variable, and interprets the value of that variable as an OGNL expression using the
BigInteger representation of 30 as the root object. See below for an example of setting the fact
variable with an expression that returns the factorial of its argument. Note that there is an ambiguity in
OGNL's syntax between this double evaluation operator and a method call. OGNL resolves this ambiguity
by calling anything that looks like a method call, a method call. For example, if the current object had a
fact property that held an OGNL factorial expression, you could not use this approach to call it

fact(30H)

because OGNL would interpret this as a call to the fact method. You could force the interpretation you
want by surrounding the property reference by parentheses:

(fact)(30H)

Pseudo-Lambda Expressions
OGNL has a simplified lambda-expression syntax, which lets you write simple functions. It is not a full-
blown lambda calculus, because there are no closures---all variables in OGNL have global scope and
extent.

For example, here is an OGNL expression that declares a recursive factorial function, and then calls it:

#fact = :[#this<=1? 1 : #this*#fact(#this-1)], #fact(30H)

The lambda expression is everything inside the brackets. The #this variable holds the argument to the
expression, which is initially 30H, and is then one less for each successive call to the expression.

OGNL treats lambda expressions as constants. The value of a lambda expression is the AST that OGNL
uses as the parsed form of the contained expression.

Pseudo-Properties for Collections
There are some special properties of collections that OGNL makes available. The reason for this is that
the collections do not follow JavaBeans patterns for method naming; therefore the size(), length(),

Expressions

10

etc. methods must be called instead of more intuitively referring to these as properties. OGNL corrects
this by exposing certain pseudo-properties as if they were built-in.

Table 4.1. Special Collections Pseudo-Properties

Collection Special Properties

Collection
(inherited by Map,
List & Set)

size
The size of the collection

isEmpty
Evaluates to true if the collection is empty

List iterator
Evalutes to an Iterator over the List.

Map keys
Evalutes to a Set of all keys in the Map.

values
Evaluates to a Collection of all values in the Map.

Note

These properties, plus size and isEmpty, are different than the indexed form of access for Maps
(i.e. someMap["size"] gets the "size" key from the map, whereas someMap.size gets the
size of the Map.

Set iterator
Evalutes to an Iterator over the Set.

Iterator next
Evalutes to the next object from the Iterator.

hasNext
Evaluates to true if there is a next object available from the Iterator.

Enumeration next
Evalutes to the next object from the Enumeration.

hasNext
Evaluates to true if there is a next object available from the
Enumeration.

nextElement
Synonym for next.

hasMoreElements
Synonym for hasNext.

Operators that differ from Java's operators
For the most part, OGNL's operators are borrowed from Java and work similarly to Java's operators. See
the OGNL Reference for a complete discussion. Here we describe OGNL operators that are not in Java,
or that are different from Java.

• The comma (,) or sequence operator. This operator is borrowed from C. The comma is used to separate
two independent expressions. The value of the second of these expressions is the value of the comma
expression. Here is an example:

ensureLoaded(), name

Expressions

11

When this expression is evaluated, the ensureLoaded method is called (presumably to make sure that all
parts of the object are in memory), then the name property is retrieved (if getting the value) or replaced
(if setting).

• List construction with curly braces ({}). You can create a list in-line by enclosing the values in curly
braces, as in this example:

{ null, true, false }

• The in operator (and not in, its negation). This is a containment test, to see if a value is in a collection.
For example,

name in {null,"Untitled"} || name

• See the OGNL reference for a full list of operations

Setting values versus getting values
As stated before, some values that are gettable are not also settable because of the nature of the expression.
For example,

names[0].location

is a settable expression - the final component of the expression resolves to a settable property.

However, some expressions, such as

names[0].length + 1

are not settable because they do not resolve to a settable property in an object. It is simply a computed
value. If you try to evaluate this expression using any of the Ognl.setValue() methods it will fail
with an InappropriateExpressionException.

It is also possible to set variables using get expressions that include the '=' operator. This is useful when
a get expression needs to set a variable as a side effect of execution.

12

Chapter 5. Coercing Objects to Types
Here we describe how OGNL interprets objects as various types. See below for how OGNL coerces objects
to booleans, numbers, integers, and collections.

Interpreting Objects as Booleans
Any object can be used where a boolean is required. OGNL interprets objects as booleans like this:

• If the object is a Boolean, its value is extracted and returned

• If the object is a Number, its double-precision floating-point value is compared with zero; non-zero is
treated as true, zero as false.

• If the object is a Character, its boolean value is true if and only if its char value is non-zero.

• Otherwise, its boolean value is true if and only if it is non-null.

Interpreting Objects as Numbers
Numerical operators try to treat their arguments as numbers. The basic primitive-type wrapper classes
(Integer, Double, and so on, including Character and Boolean, which are treated as integers), and the
"big" numeric classes from the java.math package (BigInteger and BigDecimal), are recognized as special
numeric types. Given an object of some other class, OGNL tries to parse the object's string value as a
number.

Numerical operators that take two arguments use the following algorithm to decide what type the result
should be. The type of the actual result may be wider, if the result does not fit in the given type.

• If both arguments are of the same type, the result will be of the same type if possible.

• If either argument is not of a recognized numeric class, it will be treated as if it was a Double for the
rest of this algorithm.

• If both arguments are approximations to real numbers (Float, Double, or BigDecimal), the result
will be the wider type.

• If both arguments are integers (Boolean, Byte, Character, Short, Integer, Long, or
BigInteger), the result will be the wider type.

• If one argument is a real type and the other an integer type, the result will be the real type if the integer
is narrower than "int"; BigDecimal if the integer is BigInteger; or the wider of the real type and
Double otherwise.

Interpreting Objects as Integers
Operators that work only on integers, like the bit-shifting operators, treat their arguments as numbers,
except that BigDecimals and BigIntegers are operated on as BigIntegers and all other kinds
of numbers are operated on as Longs. For the BigInteger case, the result of these operators remains
a BigInteger; for the Long case, the result is expressed as the same type of the arguments, if it fits,
or as a Long otherwise.

Coercing Objects to Types

13

Interpreting Objects as Collections
The projection and selection operators (e1.{e2} and e1.{?e2}), and the in operator, all treat one of
their arguments as a collection and walk it. This is done differently depending on the class of the argument:

• Java arrays are walked from front to back

• Members of java.util.Collection are walked by walking their iterators

• Members of java.util.Map are walked by walking iterators over their values

• Members of java.util.Iterator and java.util.Enumeration are walked by iterating
them

• Members of java.lang.Number are "walked" by returning integers less than the given number
starting with zero

• All other objects are treated as singleton collections containing only themselves

14

Appendix A. OGNL Language
Reference

This section has a fairly detailed treatment of OGNL's syntax and implementation. See below for a
complete table of OGNL's operators, a section on how OGNL coerces objects to various types, and a
detailed description of OGNL's basic expressions.

Operators
OGNL borrows most of Java's operators, and adds a few new ones. For the most part, OGNL's treatment
of a given operator is the same as Java's, with the important caveat that OGNL is essentially a typeless
language. What that means is that every value in OGNL is a Java object, and OGNL attempts to coerce
from each object a meaning appropriate to the situation it is used in (see the section on coercion).

The following table lists OGNL operators in reverse precedence order. When more than one operator is
listed in the same box, these operators have the same precedence and are evaluated in left-to-right order.

Table A.1. OGNL Operators

Operator getValue() Notes setValue() Notes

e1, e2
Sequence operator

Both e1 and e2 are evaluated
with the same source object, and
the result of e2 is returned.

getValue is called on e1, and
then setValue is called on e2.

e1 = e2
Assignment operator

getValue is called on e2, and
then setValue is called on e1
with the result of e2 as the target
object.

Cannot be the top-level
expression for setValue.

e1 ? e2 : e3
Conditional operator

getValue is called on e1
and the result is interpreted as
a boolean. getValue is then
called on either e2 or e3,
depending on whether the result
of e1 was true or false
respectively, and the result is
returned.

getValue is called on e1, and
then setValue is called on
either e2 or e3.

e1 || e2, e1 or e2
Logical or operator

getValue is called on e1 and
the result is interpreted as a
boolean. If true, that result is
returned; if false, getValue
is called on e2 and its value is
returned.

getValue is called on e1; if
false, setValue is called on
e2. Note that e1 being true
prevents any further setting from
taking place.

e1 && e2, e1 and e2
Logical and operator

getValue is called on e1 and
the result is interpreted as a
boolean. If false, that result
is returned; if true, getValue
is called on e2 and its value is
returned.

getValue is called on e1; if
true, setValue is called on
e2. Note that e1 being false
prevents any further setting from
taking place.

OGNL Language Reference

15

Operator getValue() Notes setValue() Notes

e1 | e2, e1 bor e2
Bitwise or operator

e1 and e2 are interpreted as
integers and the result is an
integer.

Cannot be the top-level
expression passed to setValue.

e1 ^ e2, e1 xor e2
Bitwise exclusive-or operator

e1 and e2 are interpreted as
integers and the result is an
integer.

Cannot be the top-level
expression passed to setValue.

e1 & e2, e1 band e2
Bitwise and operator

e1 and e2 are interpreted as
integers and the result is an
integer.

Cannot be the top-level
expression passed to setValue.

e1 == e2, e1 eq e2
Equality test

e1 != e2, e1 neq e2
Inequality test

Equality is tested for as follows.
If either value is null, they are
equal if and only if both are
null. If they are the same object
or the equals() method says
they are equal, they are equal. If
they are both Numbers, they are
equal if their values as double-
precision floating point numbers
are equal. Otherwise, they are not
equal. These rules make numbers
compare equal more readily than
they would normally, if just using
the equals method.

Cannot be the top-level
expression passed to setValue.

e1 < e2, e1 lt e2
Less than comparison

e1 <= e2, e1 lte e2
Less than or equals
comparison

e1 > e2, e1 gt e2
Greater than comparison

e1 >= e2, e1 gte e2
Greater than or equals
comparison

e1 in e2
List membership comparison

e1 not in e2
List non-membership
comparison

The ordering operators compare
with compareTo() if their
arguments are non-numeric
and implement Comparable;
otherwise, the arguments are
interpreted as numbers and
compared numerically. The in
operator is not from Java; it tests
for inclusion of e1 in e2, where e2
is interpreted as a collection. This
test is not efficient: it iterates the
collection. However, it uses the
standard OGNL equality test.

Cannot be the top-level
expression passed to setValue.

e1 << e2, e1 shl e2
Bit shift left

e1 >> e2, e1 shr e2
Bit shift right

e1 >>> e2, e1 ushr e2
Logical shift right

e1 and e2 are interpreted as
integers and the result is an
integer.

Cannot be the top-level
expression passed to setValue.

OGNL Language Reference

16

Operator getValue() Notes setValue() Notes

e1 + e2
Addition

e1 - e2
Subtraction

The plus operator concatenates
strings if its arguments are non-
numeric; otherwise it interprets its
arguments as numbers and adds
them. The minus operator always
works on numbers.

Cannot be the top-level
expression passed to setValue.

e1* e2
Multiplication

e1 / e2
Division

e1 % e2
Remainder

Multiplication, division, which
interpret their arguments as
numbers, and remainder, which
interprets its arguments as
integers.

Cannot be the top-level
expression passed to setValue.

+ e
Unary plus

- e
Unary minus

! e, not e
Logical not

~ e
Bitwise not

e instanceof class
Class membership

Unary plus is a no-op, it
simply returns the value of its
argument. Unary minus interprets
its argument as a number. Logical
not interprets its argument as a
boolean. Bitwise not interprets
its argument as an integer. The
class argument to instanceof is
the fully qualified name of a Java
class.

Cannot be the top-level
expression passed to setValue.

e.method(args)
Method call

e.property
Property

e1[e2]
Index

e1.{ e2 }
Projection

e1.{? e2 }
Selection

e1.(e2)
Subexpression evaluation

e1(e2)
Expression evaluation

Generally speaking, navigation
chains are evaluated by evaluating
the first expression, then
evaluating the second one with the
result of the first as the source
object.

Some of these forms can be
passed as top-level expressions
to setValue and others
cannot. Only those chains that
end in property references
(e.property), indexes (e1[e2]),
and subexpressions (e1.(e2))
can be; and expression
evaluations can be as well. For the
chains, getValue is called on
the left-hand expression (e or e1),
and then setValue is called on
the rest with the result as the target
object.

constant
Constant

(e)
Parenthesized expression

Basic expressions Only property references
(property), indexes ([e]),
and variable references
(#variable) can be passed

OGNL Language Reference

17

Operator getValue() Notes setValue() Notes

method(args)
Method call

property
Property reference

[e]
Index reference

{ e, ... }
List creation

#variable
Context variable reference

@class@method(args)
Static method reference

@class@field
Static field reference

new class(args)
Constructor call

new array-component-
class[] { e, ... }

Array creation

#{ e1 : e2, ... }
Map creation

#@classname@{ e1 : e2, ...
}

Map creation with specific
subclass

:[e]
Lambda expression
definition

as top-level expressions to
setValue. For indexes,
getValue is called on e, and
then the result is used as the
property "name" (which might be
a String or any other kind of
object) to set in the current target
object. Variable and property
references are set more directly.

Note

These operators are listed in reverse precedence order

