
OGNL Developer Guide
Drew Davidson

OGNL Developer Guide
Drew Davidson
Copyright © 2004 OGNL Technology, Inc.

iii

Table of Contents
1. Introduction ... 1

Embedding OGNL .. 1
Extending OGNL ... 1

2. Property Accessors .. 3
3. Method Accessors ... 4
4. Elements Accessors ... 5
5. Class References ... 6
6. Type Conversion .. 7
7. Member Access .. 8
8. Null Handler .. 9
9. Other API features .. 10

Tracing Evaluations ... 10

iv

List of Examples
1.1. Expression Class .. 1

1

Chapter 1. Introduction
OGNL as a language allows for the navigation of Java objects through a concise syntax that allows for
specifying, where possible, symmetrically settable and gettable values. The language specifies a syntax
that attempts to provide as high a level of abstraction as possible for navigating object graphs; this usually
means specifying paths through and to JavaBeans properties, collection indices, etc. rather than directly
accessing property getters and setters (collectively know as accessors).

The normal usage of OGNL is to embed the language inside of other constructs to provide a place for
flexible binding of values from one place to another. An example of this is a web application where values
need to be bound from a model of some sort to data transfer objects that are operated on by a view. Another
example is an XML configuration file wherein values are generated via expressions which are then bound
to configured objects.

Embedding OGNL
The ognl.Ognl class contains convenience methods for evaluating OGNL expressions. You can do this
in two stages, parsing an expression into an internal form and then using that internal form to either set or
get the value of a property; or you can do it in a single stage, and get or set a property using the String form
of the expression directly. It is more efficient to pre-compile the expression to it's parsed form, however,
and this is the recommended usage.

OGNL expressions can be evaluated without any external context, or they can be provided with an
execution environment that sets up custom extensions to modify the way that expressions are evaluated.

The following example illustrates how to encapsulate the parsing of an OGNL expression within an object
so that execution will be more efficient. The class then takes an OgnlContext and a root object to
evaluate against.

Example 1.1. Expression Class

import ognl.Ognl;
import ognl.OgnlContext;

public class OgnlExpression
{
 private Object expression;

 public OgnlExpression(String expressionString) throws OgnlException
 {
 super();
 expression = Ognl.parseExpression(expressionString);
 }

 public Object getExpression()
 {
 return expression;
 }

 public Object getValue(OgnlContext context, Object rootObject) throws OgnlException
 {
 return Ognl.getValue(getExpression(), context, rootObject);
 }

 public void setValue(OgnlContext context, Object rootObject, Object value) throws OgnlException
 {
 Ognl.setValue(getExpression(), context, rootObject, value);
 }
}

Extending OGNL
OGNL expressions are not evaluated in a static environment, as Java programs are. Expressions are not
compiled to bytecode at the expression level based on static class reachability. The same expression can
have multiple paths through an object graph depending upon the root object specified and the dynamic
results of the navigation. Objects that are delegated to handle all of the access to properties of objects,

Introduction

2

elements of collections, methods of objects, resolution of class names to classes and converting between
types are collectively known as OGNL extensions. The following chapters delve more deeply into these
extensions and provide a roadmap as to how they are used within OGNL to customize the dynamic runtime
environment to suit the needs of the embedding program.

3

Chapter 2. Property Accessors
When navigating an OGNL expression many of the elements that are found are properties. Properties can
be many things depending on the object being accessed. Most of the time these property names resolve
to JavaBeans properties that conform to the set/get pattern. Other objects (such as Map) access properties
as keyed values. Regardless of access methodology the OGNL syntax remains the same. Under the hood,
however, there are PropertyAccessor objects that handle the conversion of property name to an
actual access to an objects' properties.

public interface PropertyAccessor
{
 Object getProperty(Map context, Object target, Object name) throws OgnlException;
 void setProperty(Map context, Object target, Object name, Object value) throws OgnlException;
}

You can set a property accessor on a class-by-class basis using
OgnlRuntime.setPropertyAccessor(). There are default property accessors for Object
(which uses JavaBeans patterns to extract properties) and Map (which uses the property name as a key).

4

Chapter 3. Method Accessors
Method calls are another area where OGNL needs to do lookups for methods based on dynamic
information. The MethodAccessor interface provides a hook into how OGNL calls a method. When a static
or instance method is requested the implementor of this interface is called to actually execute the method.

public interface MethodAccessor
{
 Object callStaticMethod(Map context, Class targetClass, String methodName, List args) throws MethodFailedException;
 Object callMethod(Map context, Object target, String methodName, List args) throws MethodFailedException;
}

You can set a method accessor on a class-by-class basis using
OgnlRuntime.setMethodAccessor(). The is a default method accessor for Object (which
simply finds an appropriate method based on method name and argument types and uses reflection to call
the method).

5

Chapter 4. Elements Accessors
Since iteration is a built-in function of OGNL and many objects support the idea of iterating over the
contents of an object (i.e. the object.{ ... } syntax) OGNL provides a hook into how iteration is
done. The ElementsAccessor interface defines how iteration is done based on a source object. Simple
examples could be a Collection elements accessor, which would simply

public interface ElementsAccessor
{
 public Enumeration getElements(Object target) throws OgnlException;
}

You can set a method accessor on a class-by-class basis using
OgnlRuntime.setElementsAccessor(). There are default elements accessors for Object
(which returns an Enumeration of itself as the only object), Map (which iterates over the
values in the Map), and Collection (which uses the collection's iterator()). One clever use
of ElementsAccessors is the NumberElementsAccessor class which allows for generating
numeric sequences from 0 to the target value. For example the expression (100).{ #this } will
generate a list of 100 integers ranged 0..99.

6

Chapter 5. Class References
In the sections on accessing static field and static methods it stated that classes must be full-specified in
between the class reference specifier (@<classname>@<field|method>@). This is not entirely true; the
default ClassResolver simply looks up the name of the class and assumes that it is fully specified.
The ClassResolver interface is included in the OGNL context to perform lookup of classes when an
expression is evaluated. This makes it possible to specify, for example, a list of imports that are specific
to a particular setValue() or getValue() context in order to look up classes. It also makes class
references agreeably short because you don't have to full specify a class name.

public interface ClassResolver
{
 public Class classForName(Map context, String className) throws ClassNotFoundException;
}

You can set a class resolver on a context basis using the Ognl methods addDefaultContext() and
createDefaultContext().

7

Chapter 6. Type Conversion
When performing set operations on properties or calling methods it is often the case that the values
you want to set have a different type from the expected type of the class. OGNL supports a
context variable (set by OgnlRuntime.setTypeConverter(Map context, TypeConverter
typeConverter)) that will allow types to be converted from one to another. The default
type converter that is uses is the ognl.DefaultTypeConverter, which will convert among
numeric types (Integer, Long, Short, Double, Float, BigInteger, BigDecimal, and
their primitive equivalents), string types (String, Character) and Boolean. Should you need
specialized type conversion (one popular example is in Servlets where you have a String[] from an
HttpServletRequest.getParameters() and you want to set values with it in other objects; a
custom type converter can be written (most likely subclassing ognl.DefaultTypeConverter) to
convert String[] to whatever is necessary.

public interface TypeConverter
{
 public Object convertValue(Map context,
 Object target,
 Member member,
 String propertyName,
 Object value,
 Class toType);
}

Note that ognl.DefaultTypeConverter is much easier to subclass; it implements
TypeConverter and calls it's own convertValue(Map context, Object value, Class
toType) method and already provides the numeric conversions. For example, the above converter (i.e.
converting String[] to int[] for a list of identifier parameters in a request) implemented as a subclass
of ognl.DefaultTypeConverter:

HttpServletRequest request;
Map context = Ognl.createDefaultContext(this);

/* Create an anonymous inner class to handle special conversion */
Ognl.setTypeConverter(context, new ognl.DefaultTypeConverter() {
 public Object convertValue(Map context, Object value, Class toType)
 {
 Object result = null;

 if ((toType == int[].class) && (value instanceof String[].class)) {
 String sa = (String[])value;
 int[] ia = new int[sa.length];

 for (int i = 0; i < sa.length; i++) {
 Integer cv;

 cv = (Integer)super.convertValue(context,
 sa[i],
 Integer.class);
 ia[i] = cv.intValue();
 }
 result = ia;
 } else {
 result = super.convertValue(context, value, toType);
 }
 return result;
 }
});
/* Setting values within this OGNL context will use the above-defined TypeConverter */
Ognl.setValue("identifiers",
 context,
 this,
 request.getParameterValues("identifier"));

8

Chapter 7. Member Access
Normally in Java the only members of a class (fields, methods) that can be accessed are the
ones defined with public access. OGNL includes an interface that you can set globally (using
OgnlContext.setMemberAccessManager()) that allows you to modify the runtime in Java
2 to allow access to private, protected and package protected fields and methods. Included in the
OGNL package is the DefaultMemberAccess class. It contains a constructor that allows you to
selectively lower the protection on any private, protected or package protected members using the
AccessibleObject interface in Java2. The default class can be subclasses to select different objects
for which accessibility is allowed.

public interface MemberAccess
{
 public Object setup(Member member);
 public void restore(Member member, Object state);
 public boolean isAccessible(Member member);
}

9

Chapter 8. Null Handler
When navigating a chain sometimes properties or methods will evaluate to null, causing subsequent
properties or method calls to fail with NullPointerExceptions. Most of the time this behaviour is
correct (as it is with Java), but sometimes you want to be able to dynamically substitute another object in
place of null. The NullHandler interface allows you to specify on a class-by-class basis how nulls
are handled within OGNL expressions. Implementing this interface allows you to intercept when methods
return null and properties evaluate to null and allow you to substitute a new value. Since you are given
the source of the method or property a really clever implementor might write the property back to the
object so that subsequent invocations do not return or evaluate to null.

public interface NullHandler
{
 public Object nullMethodResult(Map context, Object target, String methodName, List args);
 public Object nullPropertyValue(Map context, Object target, Object property);
}

NullHandler implementors are registered with OGNL using the
OgnlRuntime.setNullHandler() method.

10

Chapter 9. Other API features
Tracing Evaluations

As of OGNL 2.5.0 the OgnlContext object can automatically tracks evaluations of expressions. This
tracking is kept in the OgnlContext as currentEvaluation during the evaluation. After execution you
can access the last evaluation through the lastEvaluation property of OgnlContext.

Note

The tracing feature is turned off by default. If you wish to turn it on there is a setTraceEvaluations() method on OgnlContext
that you can call.

Any method accessor, elements accessor, type converter, property accessor or null handler may find this
useful to give context to the operation being performed. The Evaluation object is itself a tree and
can be traversed up, down and left and right through siblings to determine the exact circumstances of an
evaluation. In addition the Evaluation object tracks the node that was performing the operation, the
source object on which that operation was being performed and the result of the operation. If an exception
is thrown during execution the user can get the last evaluation's last descendent to find out exactly which
subexpression caused the error. The execption is also tracked in the Evaluation.

