# Licensed under a 3-clause BSD style license - see LICENSE.rst
#This module implements the base NDData class.
__all__ = ['NDData']
import numpy as np
from ..units import Unit
from .. import log
from .flag_collection import FlagCollection
from .nduncertainty import IncompatibleUncertaintiesException, NDUncertainty
from ..utils.compat.odict import OrderedDict
from ..io import registry as io_registry
from ..config import ConfigurationItem
WARN_UNSUPPORTED_CORRELATED = ConfigurationItem(
'warn_unsupported_correlated', True,
'Whether to issue a warning if NDData arithmetic is performed with '
'uncertainties and the uncertainties do not support the propagation '
'of correlated uncertainties.'
)
[docs]class NDData(object):
"""A Superclass for array-based data in Astropy.
The key distinction from raw numpy arrays is the presence of
additional metadata such as uncertainties, a mask, units, flags,
and/or a coordinate system.
Parameters
-----------
data : `~numpy.ndarray` or `~astropy.nddata.NDData`
The actual data contained in this `NDData` object. Not that this
will always be copies by *reference* , so you should make copy
the `data` before passing it in if that's the desired behavior.
uncertainty : `~astropy.nddata.NDUncertainty`, optional
Uncertainties on the data.
mask : `~numpy.ndarray`, optional
Mask for the data, given as a boolean Numpy array with a shape
matching that of the data. The values must be ``False`` where
the data is *valid* and ``True`` when it is not (like Numpy
masked arrays). If `data` is a numpy masked array, providing
`mask` here will causes the mask from the masked array to be
ignored.
flags : `~numpy.ndarray` or `~astropy.nddata.FlagCollection`, optional
Flags giving information about each pixel. These can be specified
either as a Numpy array of any type with a shape matching that of the
data, or as a `~astropy.nddata.FlagCollection` instance which has a
shape matching that of the data.
wcs : undefined, optional
WCS-object containing the world coordinate system for the data.
.. warning::
This is not yet defind because the discussion of how best to
represent this class's WCS system generically is still under
consideration. For now just leave it as None
meta : `dict`-like object, optional
Metadata for this object. "Metadata" here means all information that
is included with this object but not part of any other attribute
of this particular object. e.g., creation date, unique identifier,
simulation parameters, exposure time, telescope name, etc.
unit : `astropy.units.UnitBase` instance or str, optional
The units of the data.
Raises
------
ValueError
If the `uncertainty` or `mask` inputs cannot be broadcast (e.g., match
shape) onto `data`.
Notes
-----
`NDData` objects can be easily converted to a regular Numpy array
using `numpy.asarray`
For example::
>>> from astropy.nddata import NDData
>>> import numpy as np
>>> x = NDData([1,2,3])
>>> np.asarray(x)
array([1, 2, 3])
If the `NDData` object has a `mask`, `numpy.asarray` will return a
Numpy masked array.
This is useful, for example, when plotting a 2D image using
matplotlib::
>>> from astropy.nddata import NDData
>>> from matplotlib import pyplot as plt
>>> x = NDData([[1,2,3], [4,5,6]])
>>> plt.imshow(x)
"""
def __init__(self, data, uncertainty=None, mask=None, flags=None, wcs=None,
meta=None, unit=None):
if isinstance(data, self.__class__):
self.data = np.array(data.data, subok=True, copy=False)
if uncertainty is not None:
self.uncertainty = uncertainty
log.info("Overwriting NDData's current uncertainty being overwritten with specified uncertainty")
if mask is not None:
self.mask = mask
log.info("Overwriting NDData's current mask being overwritten with specified mask")
if flags is not None:
self.flags = flags
log.info("Overwriting NDData's current flags being overwritten with specified flag")
if wcs is not None:
self.wcs = wcs
log.info("Overwriting NDData's current wcs being overwritten with specified wcs")
if meta is not None:
self.meta = meta
log.info("Overwriting NDData's current meta being overwritten with specified meta")
if unit is not None:
raise ValueError('To convert to different unit please use .to')
else:
if hasattr(data, 'mask'):
self.data = np.array(data.data, subok=True, copy=False)
if mask is not None:
self.mask = mask
log.info("NDData was created with a masked array, and a "
"mask was explictly provided to NDData. The explicitly "
"passed-in mask will be used and the masked array's "
"mask will be ignored.")
else:
self.mask = data.mask
else:
self.data = np.array(data, subok=True, copy=False)
self.mask = mask
self.uncertainty = uncertainty
self.flags = flags
self.wcs = wcs
self.meta = meta
self.unit = unit
@property
def mask(self):
return self._mask
@mask.setter
[docs] def mask(self, value):
if value is not None:
if isinstance(value, np.ndarray):
if value.dtype != np.bool_:
raise TypeError("mask must be a boolean Numpy array")
else:
if value.shape != self.shape:
raise ValueError("dimensions of mask do not match data")
else:
self._mask = value
else:
raise TypeError("mask must be a Numpy array")
else:
self._mask = value
@property
def flags(self):
return self._flags
@flags.setter
[docs] def flags(self, value):
if value is not None:
if isinstance(value, np.ndarray):
if value.shape != self.shape:
raise ValueError("dimensions of flags do not match data")
else:
self._flags = value
elif isinstance(value, FlagCollection):
if value.shape != self.shape:
raise ValueError("dimensions of FlagCollection does not match data")
else:
self._flags = value
else:
raise TypeError("flags should be a Numpy array or a FlagCollection instance")
else:
self._flags = value
@property
def uncertainty(self):
return self._uncertainty
@uncertainty.setter
[docs] def uncertainty(self, value):
if value is not None:
if isinstance(value, NDUncertainty):
self._uncertainty = value
self._uncertainty.parent_nddata = self
else:
raise TypeError("Uncertainty must be an instance of a NDUncertainty object")
else:
self._uncertainty = value
@property
def meta(self):
return self._meta
@meta.setter
@property
def unit(self):
return self._unit
@unit.setter
[docs] def unit(self, value):
if value is None:
self._unit = None
else:
self._unit = Unit(value)
@property
[docs] def shape(self):
"""
shape tuple of this object's data.
"""
return self.data.shape
@property
[docs] def size(self):
"""
integer size of this object's data.
"""
return self.data.size
@property
[docs] def dtype(self):
"""
`numpy.dtype` of this object's data.
"""
return self.data.dtype
@property
[docs] def ndim(self):
"""
integer dimensions of this object's data
"""
return self.data.ndim
def __array__(self):
"""
This allows code that requests a Numpy array to use an NDData
object as a Numpy array.
"""
if self.mask is not None:
return np.ma.masked_array(self.data, self.mask)
else:
return self.data
def __getitem__(self, item):
new_data = self.data[item]
if self.uncertainty is not None:
new_uncertainty = self.uncertainty[item]
else:
new_uncertainty = None
if self.mask is not None:
new_mask = self.mask[item]
else:
new_mask = None
if self.flags is not None:
if isinstance(self.flags, np.ndarray):
new_flags = self.flags[item]
elif isinstance(self.flags, FlagCollection):
raise NotImplementedError('Slicing complex Flags is currently not implemented')
else:
new_flags = None
if self.wcs is not None:
raise NotImplementedError('Slicing for WCS is not currently implemented')
else:
new_wcs = None
return self.__class__(new_data, uncertainty=new_uncertainty, mask=new_mask, flags=new_flags, wcs=new_wcs,
meta=self.meta, unit=self.unit)
def _arithmetic(self, operand, propagate_uncertainties, name, operation):
"""
{name} another dataset (`operand`) to this dataset.
Parameters
----------
operand : `~astropy.nddata.NDData`
The second operand in the operation a {operator} b
propagate_uncertainties : bool
Whether to propagate uncertainties following the propagation rules
defined by the class used for the `uncertainty` attribute.
Returns
-------
result : `~astropy.nddata.NDData`
The resulting dataset
Notes
-----
This method requires the datasets to have identical WCS properties,
equivalent units, and identical shapes. Flags and meta-data get set to
None in the resulting dataset. The unit in the result is the same as
the unit in `self`. Uncertainties are propagated, although correlated
errors are not supported by any of the built-in uncertainty classes.
If uncertainties are assumed to be correlated, a warning is issued by
default (though this can be disabled via the
`WARN_UNSUPPORTED_CORRELATED` configuration item). Values masked in
either dataset before the operation are masked in the resulting
dataset.
"""
if self.wcs != operand.wcs:
raise ValueError("WCS properties do not match")
if not (self.unit is None and operand.unit is None):
if (self.unit is None or operand.unit is None
or not self.unit.is_equivalent(operand.unit)):
raise ValueError("operand units do not match")
if self.shape != operand.shape:
raise ValueError("operand shapes do not match")
if self.unit is not None:
operand_data = operand.unit.to(self.unit, operand.data)
else:
operand_data = operand.data
data = operation(self.data, operand_data)
result = self.__class__(data) # in case we are dealing with an inherited type
if propagate_uncertainties is None:
result.uncertainty = None
elif self.uncertainty is None and operand.uncertainty is None:
result.uncertainty = None
elif self.uncertainty is None:
result.uncertainty = operand.uncertainty
elif operand.uncertainty is None:
result.uncertainty = self.uncertainty
else: # both self and operand have uncertainties
if WARN_UNSUPPORTED_CORRELATED() and \
(not self.uncertainty.support_correlated or \
not operand.uncertainty.support_correlated):
log.info("The uncertainty classes used do not support the "
"propagation of correlated errors, so uncertainties"
" will be propagated assuming they are uncorrelated")
try:
method = getattr(self.uncertainty, propagate_uncertainties)
result.uncertainty = method(operand, result.data)
except IncompatibleUncertaintiesException:
raise IncompatibleUncertaintiesException(
"Cannot propagate uncertainties of type {0:s} with uncertainties of "
"type {1:s} for {2:s}".format(
self.uncertainty.__class__.__name__,
operand.uncertainty.__class__.__name__,
name))
if self.mask is None and operand.mask is None:
result.mask = None
elif self.mask is None:
result.mask = operand.mask
elif operand.mask is None:
result.mask = self.mask
else: # combine masks as for Numpy masked arrays
result.mask = self.mask & operand.mask
result.flags = None
result.wcs = self.wcs
result.meta = None
result.unit = self.unit
return result
[docs] def add(self, operand, propagate_uncertainties=True):
if propagate_uncertainties:
propagate_uncertainties = "propagate_add"
else:
propagate_uncertainties = None
return self._arithmetic(
operand, propagate_uncertainties, "addition", np.add)
add.__doc__ = _arithmetic.__doc__.format(name="Add", operator="+")
[docs] def subtract(self, operand, propagate_uncertainties=True):
if propagate_uncertainties:
propagate_uncertainties = "propagate_subtract"
else:
propagate_uncertainties = None
return self._arithmetic(
operand, propagate_uncertainties, "subtraction", np.subtract)
subtract.__doc__ = _arithmetic.__doc__.format(name="Subtract", operator="-")
[docs] def multiply(self, operand, propagate_uncertainties=True):
if propagate_uncertainties:
propagate_uncertainties = "propagate_multiply"
else:
propagate_uncertainties = None
return self._arithmetic(
operand, propagate_uncertainties, "multiplication", np.multiply)
multiply.__doc__ = _arithmetic.__doc__.format(name="Multiply", operator="*")
[docs] def divide(self, operand, propagate_uncertainties=True):
if propagate_uncertainties:
propagate_uncertainties = "propagate_divide"
else:
propagate_uncertainties = None
return self._arithmetic(
operand, propagate_uncertainties, "division", np.divide)
divide.__doc__ = _arithmetic.__doc__.format(name="Divide", operator="/")
[docs] def convert_unit_to(self, unit, equivalencies=[]):
"""
Returns a new `NDData` object whose values have been converted
to a new unit.
Parameters
----------
unit : `astropy.units.UnitBase` instance or str
The unit to convert to.
equivalencies : list of equivalence pairs, optional
A list of equivalence pairs to try if the units are not
directly convertible. See :ref:`unit_equivalencies`.
Returns
-------
result : `~astropy.nddata.NDData`
The resulting dataset
Raises
------
UnitsException
If units are inconsistent.
"""
if self.unit is None:
raise ValueError("No unit specified on source data")
data = self.unit.to(unit, self.data, equivalencies=equivalencies)
result = self.__class__(data) # in case we are dealing with an inherited type
result.uncertainty = self.uncertainty
result.mask = self.mask
result.flags = None
result.wcs = self.wcs
result.meta = self.meta
result.unit = unit
return result
read = classmethod(io_registry.read)
write = io_registry.write