PyXPlot Users’ (Guide

A Command-line Plotting Package,
with Interface similar to that of Gnuplot,
which produces

Publication-Quality Output.

Version 0.7.1

Dominic Ford, Ross Church
Email: coders@pyxplot.org.uk

November 2009

Contents

1 Introduction

1.1 Overview o e
1.2 System Requirements
1.3 Imstallation
1.3.1 Installation within Linux Distributions
1.3.2 Installationas User.
1.3.3 System-wide Installation
14 Credits. e
1.5 Legal Blurb o
First Steps With PyXPlot
2.1 Getting Started
22 First Plots.
2.3 Printing Text o
2.4 Axis Labels and Titles
2.5 Operators and Functions
2.6 Plotting Data files
2.7 Directing Where Output Goes
2.8 Setting the Size of Output
29 DataStyles
2.10 Setting Axis Ranges
2.11 Function Fitting,
2.12 Interactive Help
2.13 Shell Commands
2.14 Differences Between PyXPlot and Gnuplot
PyXPlot and the Outside World
3.1 Command Line Switches
3.2 Command Histories
3.3 Reading data fromapipe
3.4 Formatting and Terminals
3.5 PaperSizes
3.6 Script Watching: pyxplot_watch

ii

CONTENTS

3.7 Variables 30
3.8 Theexeccommand 34
Advanced Plotting 35
4.1 A Tour of PyXPlot’s Plot Styles 35
4.1.1 Linesand Points 35
4.1.2 Upper and Lower Limit Data Points 36
4.1.3 Drawing Arrows 36
414 ErrorBarso 37
4.1.5 Plotting Functions with Errorbars, Arrows, or More . 38

4.2 Barcharts and Histograms 38
4.2.1 Basic Operation 38
4.2.2 Stacked Bar Charts 41
4.2.3 Steps ... 41

4.3 Choosing which Data to Plot 41
4.4 Horizontally arranged Data files 42
4.5 Configuring Axes 43
4.6 Keysand Legends 46
4.7 The linestyle Keyword 48
4.8 Colour Plotting oo 50
4.9 Plotting Many Files at Once 50
4.10 Backing Up Over-Written Files 51
Labelling Plots and Producing Galleries 53
5.1 Adding Arrows and Text Labels to Plots 53
5.1.1 Arrows 53
5.1.2 Text Labelso 54

5.2 Gridlines. 57
5.3 Multi-plottingo 57
5.3.1 Deleting, Moving and Changing Plots 58
5.3.2 Listing Items on a Multiplot 59
533 Linked Axes. L. 59
5.3.4 Text Labels, Arrows and Images 60
5.3.5 SpeedIssues 61
5.3.6 The refresh command 62

5.4 LaTeX and PyXPlot 62
Numerical Analysis 63
6.1 Function Splicing oo o 63
6.2 Datafile Interpolation: Spline Fitting 65
6.3 Tabulating Functions and Slicing Data Files 66
6.4 Numerical Integration and Differentiation 67

6.5 Histograms L o 68

CONTENTS

7 Configuring PyXPlot

7.1
7.2
7.3
7.4
7.5
7.6

Overview
Configuration Files
An Example Configuration File
Configuration Options: settings section
Configuration Options: terminal section
Recognised Colour Names

8 Command Reference

8.1

8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11
8.12
8.13
8.14
8.15
8.16
8.17
8.18
8.19

8.20
8.21
8.22
8.23
8.24
8.25
8.26
8.27

?

help

plot . .
8.19.1 axes e e
819.2 with
print . ..o oL

827.1 arrow e e e
827.2 autoscale
8.27.3 axescolour e

iii

71
71
71
72
74
79
80

v

CONTENTS

8.27.7 binorigino 95
8.27.8 binwidth 95
8.27.9 boxfrom 95
8.27.10boxwidth Lo 96
8.27.11datastyle 96
8.27.12displayo 96
827.13dpi 97
8.27.14fontsize Lo 97
8.27.15function style Lo 97
827 16grido 97
8.27.17gridmajcolouro Lo 98
8.27.18 gridmincolouro Lo 98
8.27.19Key 99
8.27.20keycolumns L L Lo 99
8.27211abelo 100
8.27.221inestyleo Lo 101
8.27.23linewidth Lo oo 101
8.27.24logscaleo 101
8.27.25 multiplot o 102
8.27.26mMXtICS 102
8.27.2Tmytics 102
8.27.281N0arrow oo 102
8.27.29mn0axis 103
8.27.30mnobackup 103
8.27.31nodisplay Lo 103
8.27.32nogrid 103
8.27.33nokey 103
8.27.34nolabel 103
8.27.35nolinestyleo 104
8.27.36nologscale 104
8.27.37Tnomultiplot oo 104
8.27.38mnotitle 104
8.27.39noxtics 105
8.27.40mnoytics 105
8.2741origino 105
8.27.420utput 105
8.27.43palette 105
8.27.44 papersizeo 106
8.27.45 pointlinewidth 0oL 106
8.2746pointsize Lo 106
8.2747preamble o 107
8.27.48samples 107
8.27.49size 107

8.27.50styleo 108

CONTENTS

8.2751lterminal
8.27.52textcolour
8.27.53texthalign oL o L
8.27.54textvaligno
8.27.55¢%itle
8.2756width
8.27.57xlabel
8.27.08Xrange
8.27.59xticdir
8.27.60xtics e e
8.27.61ylabelo
8.27.62yrange
827.63yticdir
82T.64ytics o
828 show e
8.29 spline
830 tabulate
831 text
832 undelete
833 unset

A Colour Tables
B Line and Point Types

C Other Applications of PyXPlot
C.1 Conversion of JPEG Images to Postscript
C.2 Inserting Equations in Powerpoint Presentations
C.3 Delivering Talks in PyXPlot
C.3.1 Setting up Infrastructure
C.3.2 Writing A Short Example Talk
C.3.3 Delivering your Talk

D The fit Command: Mathematical Details
D.1 Notationo
D.2 The Probability Density Function
D.3 Estimating the Errorinu®
D.4 The Covariance Matrix
D.5 The Correlation Matrix

D.6 Findingo; o e

E ChangeLog

121

125

127
127
127
128
129
130
133

135
135
136
136
138
139
140

143

vi

CONTENTS

List of Figures

2.1 A plot of the trajectories of rockets fired with different initial
velocities L
2.2 An example PyXPlot data file — the data file is shown in the

two left-hand columns, and commands are shown to the right.

2.3 The output from a script that fits a truncated Fourier series
to a sampled square wave

3.1 A list of all of the named paper sizes recognised by the set
papersize command oL oL

4.1 A gallery of the various bar chart styles which PyXPlot can
produce e e
4.2 A second gallery of the various bar chart styles which PyXPlot
can Produce e e e e e e e
4.3 A plot demonstrating the use of large numbers of axes
4.4 A plot demonsrating the use of custom axis ticks
4.5 A plot demonstrating the use of a two-column legend

5.1 A map of Australia, plotted using PyXPlot

6.1 A simple example of the use of function splicing to truncate
afunction L

6.2 An example of the use of function splicing to define a function
which does not have an analytic form

A.1 A list of the named colours which PyXPlot recognises, sorted
alphabetically

A.2 A list of the named colours which PyXPlot recognises, sorted
byhue

A.3 The named colours which PyXPlot recognises, arranged in
HSB colour space

vii

viii LIST OF FIGURES

Chapter 1

Introduction

1.1 Overview

PYXPLOT is a stand-alone command-line graphing package that is sim-
ple to use yet produces high-quality attractive output suitable for use in
publications. For ease of use, its interface is based heavily upon that of
the popular GNUPLOT plotting package, so users do not need to learn a
whole new scripting language. However, it uses the PyX graphics library
to produce its output, allowing the quality of its output to reach modern
standards. The command-line interface has also been extended by addition
of tools to carry out some commonly-required data-processing. An attempt
has been made to rectify frequently-noted flaws in Gnuplot; for example, all
text is now rendered automatically in the BTEX typesetting environment,
making it straightforward to label graphs with mathematical expressions.
The multiplot environment has been re-designed from scratch, making it
easy to produce galleries of plots with basic vector graphics around them.
For some samples of the results of which PyXPlot is capable, the reader is
referred to the project website!.

The ability to represent data visually, usually as some form of graph,
is a requirement for any scientific or mathematical work. Historically, a
very widely-used open-source plotting programme has been Gnuplot, the
principal attraction of which is its easy-to-use command-line interface, which
allows data files to be turned into graphs within seconds. One of its main
rivals has been PGPLOT, which is somewhat more flexible, but much less
easy to use; it can only be called from within a programme, and so code
must be written to produce each plot. This is potentially time consuming,
and it is necessary for the user to have some programming experience.

Alongside these, several commercial packages have existed, including
MAPLE, MATHEMATICA and SUPERMONGO. These can typically produce
prettier results than their free counterparts, but carry with them consider-

"http://www.pyxplot.org.uk/

2 CHAPTER 1. INTRODUCTION

able price tags and licensing restrictions. Moreover, none of these are as
easy to use as Gnuplot.

Both Gnuplot and Pgplot were developed in the mid-1980s. At that
time, the quality of their output seemed state-of-the-art. But this is less true
today. In most journal articles today, the text and equations are rendered
with a high degree of professionalism by the KTEX typesetting system. But
all too often, the graphs are less neat. The same is often true of the slides
used in presentations: graphs are often rendered with less professionalism
than the text around them.

In the early 2000s, several new free graphing packages emerged, among
them MATPLOTLIB and PyX. These have significantly improved upon the
quality of the plots produced by Gnuplot and Pgplot. However, both are
libraries which can be called from within the Python programming language,
rather than stand-alone plotting packages. They are not as easy to use as
Gnuplot. For visualising data at speed, Gnuplot remains the best option.

The command-line interface of Gnuplot is very flexible: it can be con-
trolled interactively, by typing commands into a terminal, it can read a list
of commands in from a file, or it can receive commands through a UNIX
pipe from another process. These modes of use are all possible in PyXPlot
too.

We argue that Gnuplot’s interface brings another distinct advantage to
PyXPlot in comparison with plotting packages which insist upon being called
from within a programming language. PyXPlot requires that data be writ-
ten to a file on disk before it can be plotted. When plotting is done from
within a programming language, this can tempt the user into writing pro-
grammes which both perform calculations and plot the results immediately.
This sounds neat, but it can be a dangerous temptation. Remembering to
store a copy of the data used to produce a graph becomes a secondary prior-
ity. Months later, when the need arises to replot the same data in a different
form, or to compare it with newer data, remembering how to use a hurriedly
written programme can prove tricky — especially if the programme was origi-
nally written by someone else. But a simple data file is quite straightforward
to plot.

The similarity of PyXPlot’s interface to that of Gnuplot is such that
simple scripts written for Gnuplot should work with PyXPlot with minimal
modification; Gnuplot users should be able to get started very quickly. How-
ever, PyXPlot is still a work in progress, and a small number of Gnuplot’s
features are still missing. A detailed list of which features are supported can
be found in Section 2.14. The new features which have been added to the
interface are described in Chapters 3—6.

A Drief overview of Gnuplot’s interface is provided for novice users in
Chapter 2. Past Gnuplot users may skip over this chapter, though their
attention is drawn to one of the key changes to the interface — namely that
all textual labels on plots are now rendered using the IXTEX typesetting

1.2. SYSTEM REQUIREMENTS 3

environment. This does unfortunately introduce some incompatibility with
Gnuplot, since some strings which were valid before are no longer valid (see
Section 2.4 for more details). For example:

X set xlabel ’x"2°

would have been valid in Gnuplot, but now needs to be written in IATEX
mathmode as:

/ set xlabel ’$x"2$’

The nuisance of this incompatibility is surely far outweighed by the power
that KTEX brings, however. For users with no prior knowledge of ITEX
we recommend Tobias Oetiker’s excellent introduction, The Not So Short

Guide to BTEX2€>.

1.2 System Requirements

PyXPlot works on most UNIX-like operating systems. We have tested it
under Linux, Solaris and MacOS X, and believe that it should work on
other similar systems. It requires that the following software packages (not
included) be installed:

Python (Version 2.4 or later)
Latex (Used for all textual labels)
ImageMagick (needed for the gif, png and jpg terminals)
The following package is not required for installation, but many PyXPlot fea-

tures are disabled when it is not present, including the fit and spline com-
mands and the integration of functions. It is very strongly recommended:

Scipy (Python Scientific Library)

The following package is not required for installation, but it is not possible
to use the X11 terminal, i.e. to display plots on the screen, without it:

Ghostview (used for the X11 terminal)

Debian and Ubuntu users can find the above software in the packages
texlive, gv, imagemagick, python, python-scipy.

?Download from:
http://www.ctan.org/tex-archive/info/lshort/english/lshort.pdf

4 CHAPTER 1. INTRODUCTION

1.3 Installation

1.3.1 Installation within Linux Distributions

PyXPlot is available as a user-installable package within some Linux dis-
tributions. Gentoo®, Ubuntu? and Debian already have such packages. Al-
ternatively, and to ensure that they are using the latest version, Debian
and Ubuntu users can download the package from the PyXPlot website and
install it manually by typing:

dpkg -i pyxplot_0.7.1.deb

1.3.2 Installation as User

The following steps describe the installation of PyXPlot from a .tar.gz
archive by a user without superuser (i.e. root) access to his machine. It is
assumed that the packages listed above have already been installed; if they
are not, you will need to contact your system administrator.

e Unpack the distributed .tar.gz:

tar xvfz pyxplot_0.7.1.tar.gz
cd pyxplot

e Run the installation script:

./configure
make

e Finally, start PyXPlot:
./pyxplot

1.3.3 System-wide Installation

Having completed the steps described above, PyXPlot may be installed
system-wide by a superuser with the following additional step:

make install

3See http://gentoo-portage.com/sci-visualization/pyxplot

4Note that at the time of writing, there is an error in the packaging of PyXPlot in
Ubuntu which means that the tetex-extra package, upon which PyXPlot depends, is not
automatically installed with PyXPlot.

1.4. CREDITS 5)

By default, the PyXPlot executable installs to /usr/local/bin/pyxplot.
If desired, this installation path may be modified in the file Makefile.skel,
by changing the variable USRDIR in the first line to an alternative desired
installation location.

PyXPlot may now be started by any system user, simply by typing:

pyxplot

1.4 Credits

We would like to express our gratitude to several people who have con-
tributed to PyXPlot — first and foremost to Jorg Lehmann, André Wobst
and Michael Schindler for writing the PyX graphics library for Python, upon
which this software is heavily built. We would also like to think all of the
users who have got in touch with us by email since PyXPlot was first released
on the web. Your feedback and suggestions have been gratefully received.

1.5 Legal Blurb

This manual and the software which it describes are both copyright () Do-
minic Ford 2006-8, Ross Church 2008. They are distributed under the GNU
General Public License (GPL) Version 2, a copy of which is provided in the
COPYING file in this distribution. Alternatively, it may be downloaded from
the web, from the following location:
http://www.gnu.org/copyleft/gpl.html.

CHAPTER 1. INTRODUCTION

Chapter 2

First Steps With PyXPlot

In this chapter, we provide a brief overview of the basic operation of PyX-
Plot, principally covering those areas of syntax which are borrowed directly
from Gnuplot. Users who are already familiar with Gnuplot may wish to
skim or skip this chapter, though Section 2.4, which describes the use of
ETEX to render text, and Section 2.14, which details those parts of Gnu-
plot’s interface that are not supported by PyXPlot, may be of interest. In
the following chapters, we shall go on to describe the ways in which PyXPlot
extends Gnuplot’s interface.

Describing Gnuplot’s interface in its entirety is a substantial task, and
what follows is only an overview; novice users may find many excellent
tutorials on the web which will greatly supplement what is provided below.

2.1 Getting Started

The simplest way to start PyXPlot is to type ‘pyxplot’ at a shell prompt to
start an interactive session. A PyXPlot command-line prompt will appear,
into which commands can be typed. PyXPlot can be exited either by typing
exit, quit, or by pressing CTRL-D.

As you begin to plot increasingly complicated graphs, the number of
commands required to set them up and plot them will grow. It will soon
become preferable, instead of typing these commands into an interactive
session, to store lists of commands as scripts, which are simply text files
containing PyXPlot commands. These may be executed by passing the
filename of the command script to PyXPlot on the shell command line, for
example:

pyxplot foo.ppl

In this case, PyXPlot would execute all of the commands in the file foo.ppl
and then exit immediately afterwards. By convention, we suffix the filenames

7

8 CHAPTER 2. FIRST STEPS WITH PYXPLOT

of PyXPlot command scripts with ‘.ppl’, though this is not strictly neces-
sary. Several filenames may be passed on a single command line, indicating
a series of scripts to be executed in sequence:

pyxplot fool.ppl foo2.ppl foo3.ppl

It is possible to use a single PyXPlot session both interactively and from
command scripts. One way to do this is to pass the magic filename ‘~’ on

the command line:
pyxplot fool.ppl - foo2.ppl

This magic filename represents an interactive session, which commences after
the execution of fool.ppl, and should be terminated in the usual way after
use, with the exit or quit commands. Afterwards, the command script
foo02.ppl would execute.

From within an interactive session, it is possible to run a command script
using the load command:

pyxplot> load ’foo.ppl’

This example would have the same effect as typing the contents of the file
foo.ppl into the present session.

Usually a text editor is used to produce PyXPlot command scripts, but
the save command may also assist. This stores a history of the commands
executed in the present interactive session to file.

Command files can include comment lines, which should begin with a
hash character, for example:

This is a comment
Comments may also be placed on the same line as commands, for example:
set nokey # I’11 have no key on _my_ plot

Long commands may be split over multiple lines in the script by termi-
nating each line of it with a backslash character, whereupon the following
line will be appended to it.

2.2 First Plots

The basic workhorse command of PyXPlot is the plot command, which
is used to produce all plots. The following simple example would plot the
function sin(zx):

plot sin(x)

2.3. PRINTING TEXT 9

It is also possible to plot data stored in files on disk. The following would
plot data from a file data.dat, taking the z-co-ordinate of each point from
the first column of the data file, and the y-co-ordinate from the second. The
data file is assumed to be in plain text format!, with columns separated by
whitespace and/or commas?:

plot ’data.dat’

Several items can be plotted on the same graph by separating them by
commas:

plot ’data.dat’, sin(x), cos(x)
It is possible to define one’s own variables and functions, and then plot them:

a =2

b=1

c=1.5

f(x) = a*x(x**2) + b*x + ¢
plot f(x)

To unset a variable or function once it has been set, the following syntax

should be used:

2.3 Printing Text

PyXPlot has a print command for displaying strings and the results of
calculations to the terminal, for example:

a=2

print "Hello World!"
print a

f(x) = x*%2

a=3

print "The value of",a,"squared is",f(a)

Values may also be substituted into strings using the % operator, which
works in a similar fashion to Python string substitution operator3. The list
of values to be substituted into the string should be a ()-bracketed list*:

'If the filename of a data file ends with a .gz suffix, it is assuming to be gzipped
plaintext, and is decoded accordingly.

2This format is compatible with the Comma Separated Values (CSV) format produced
by many applications, including Microsoft Excel.

3For a description of this, see Guido van Rossum’s Python Library Reference: http:
//docs.python.org/lib/typesseq-strings.html

4Unlike in Python, the brackets are obligatory; *%d’%2 is not valid in PyXPlot.

10 CHAPTER 2. FIRST STEPS WITH PYXPLOT

Trajectories of rockets fired with speed v and angle 6

h/m

0 5 10 15 20

x/m

— 6 =30° v=10ms™!
- §=60° v=10ms!
....... 0 = 60°; v=15ms!

Figure 2.1: A plot of the trajectories of rockets fired with different initial
velocities. The key demonstrates the use of KTEX to render mathematical
symbols attractively. The full PyXPlot script used to generate this fig-
ure is available on the PyXPlot website at http://www.pyxplot.org.uk/
examples/Manual/Olaxislab/.

print "The value of %d squared is %d."%(a,f(a))
print "The %s of f(%f) is %d."%("value",sqrt(2),f(sqrt(2)))

2.4 Axis Labels and Titles

Labels can be added to the two axes of a plot, and a title put at the top.
Labels should be placed between either single (’) or double () quotes. For
example:

set xlabel "$x/{\rm m}$"

set ylabel "$h/{\rm m}$"

set title ’Trajectories of rockets fired with speed v and \
angle θ’

2.4. AXIS LABELS AND TITLES 11

The output produced by these commands is shown in Figure 2.1. Note that
the labels and title, and indeed all text labels in PyXPlot, are rendered using
KTEX, and so any ITEX commands can be used. As a caveat, however, this
does mean that care needs to be taken to escape any of KIEX’s reserved
characters —ie: \ & % #{ } $ -~ or ~.

Because of the use of quotes to delimit text labels, special care needs
to be taken when apostrophe and quote characters are used. The following
command would raise an error, because the apostrophe would be interpreted
as marking the end of the text label:

X set xlabel ’My plot’s X axis’

The following would achieve the desired effect:

/ set xlabel "My plot’s X axis"

To make it possible to render IXTEX strings containing both single and
double quote characters — for example, to put a German umlaut on the
name ‘Jorg’ in the WTEX string ‘J\"org’s Data’ — PyXPlot recognises the
backslash character to be an escape character when followed by either ’ or
7 in a ITEX string. This is the only case in which PyXPlot considers \ an

escape character. To render the example string above, one would type:
set xlabel "J\\"org’s Data"

In this example, two backslashes are required. The first is the ITEX es-
cape character used to produce the umlaut; the second is a PyXPlot escape
character, used so that the 7 character is not interpreted as delimiting the
string.

Having set labels and titles, they may be removed thus:

set xlabel ’’
set ylabel ’°
set title ’°

These are two other ways of removing the title from a plot:

set notitle
unset title

The unset command may be followed by almost any word that can
follow the set command, such as xlabel or title, to return that setting
to its default configuration. The reset command restores all configurable
parameters to their default states.

12 CHAPTER 2. FIRST STEPS WITH PYXPLOT

2.5 Operators and Functions

As has already been seen above, some mathematical functions such as sin(x)
are pre-defined within PyXPlot. A list of all of PyXPlot’s pre-defined func-
tions is given in Table 2.1. A list of operators recognised by PyXPlot is
given in Table 2.3.

2.6 Plotting Data files

In the simple example of the previous section, we plotted the first column
of a data file against the second. It is also possible to plot any arbitrary
column of a data file against any other; the syntax for doing this is:

plot ’data.dat’ using 3:5

This example would plot the contents of the fifth column of the file data.dat
on the vertical axis, against the the contents of the third column on the
horizontal axis. As mentioned above, columns in data files can be separated
using whitespace and/or commas. Algebraic expressions may also be used
in place of column numbers, for example:

plot ’data.dat’ using (3+$1+$2):(2+$3)

In such expressions, column numbers are prefixed by dollar signs, to distin-
guish them from numerical constants. The example above would plot the
sum of the values in the first two columns of the data file, plus three, on
the horizontal axis, against two plus the value in the third column on the
vertical axis. A more advanced example might be:

plot ’data.dat’ using 3.0:$($2)

This would place all of the data points on the line z = 3, meanwhile drawing
their vertical positions from the value of some column n in the data file,
where the value of n is itself read from the second column of the data file.

Later, in Section 4.4, I shall discuss how to plot rows of data files against
one another, in horizontally arranged data files.

It is also possible to plot data from only selected lines within a data file.
When PyXPlot reads a data file, it looks for any blank lines in the file. It
divides the data file up into data blocks, each being separated from the next
by a single blank line. The first datablock is numbered 0, the next 1, and
SO on.

When two or more blank lines are found together, the data file is divided
up into index blocks. The first index block is numbered 0, the next 1, and so
on. Each index block may be made up of a series of data blocks. To clarify
this, a labelled example data file is shown in Figure 2.2.

2.6. PLOTTING DATA FILES 13

acos(x) Return the arc cosine (measured in radians) of
x.

asin(x) Return the arc sine (measured in radians) of z.

atan(x) Return the arc tangent (measured in radians) of
x.

atan2(y, x) Return the arc tangent (measured in radians) of

y/x. Unlike atan(y/z), the signs of both x and
y are considered.

ceil(x) Return the ceiling of x as a float. This is the
smallest integral value > x.

cos(x) Return the cosine of x (measured in radians).

cosh(z) Return the hyperbolic cosine of x.

degrees(z) Convert angle x from radians to degrees.

erf(z) Return the error function, i.e. the Gaussian
(normal) distribution function.

exp(z) Return e raised to the power of x.

fabs(z) Return the absolute value of the float z.

floor(x) Return the floor of = as a float. This is the

largest integral value < x.

fmod(z,y) Return fmod(x, y), according to platform C. x
% v may differ.

gamma(z) Return the gamma function.

hypot(x,y) Return the Euclidean distance, /2 + y2.

ldexp(z,) Return = x 2°.

log(z], base]) Return the logarithm of x to the given base. If
the base not specified, returns the natural loga-
rithm (base e) of z.

log10(z) Return the base 10 logarithm of x.

max(z,y,...) Return the greatest of the numerical values sup-
plied.

min(z,y,...) Return the least of the numerical values sup-
plied.

Table 2.1: A list of mathematical functions which are pre-defined within
PyXPlot (cont’d. in Table 2.2).

14 CHAPTER 2. FIRST STEPS WITH PYXPLOT

pow(z,y) Return a¥.
radians(z) Converts angle = from degrees to radians.
random() Return a pseudo-random number in the range

0—1
sin(z) Return the sine of z (measured in radians).
sinh(x) Return the hyperbolic sine of x.
sqrt(x) Return the square root of .
tan(z) Return the tangent of z (measured in radians).

tanh(z) Return the hyperbolic tangent of x.

Table 2.2: A list of mathematical functions which are pre-defined within
PyXPlot (cont’d. from Table 2.1).

+ Algebraic sum
- Algebraic subtraction
* Algebraic multiplication

** Algebraic exponentiation
/ Algebraic division

% Modulo operator

<< Left binary shift

>> Right binary shift

& Binary and

I Binary or

- Logical exclusive or

< Magnitude comparison
> Magnitude comparison
<= Magnitude comparison
>= Magnitude comparison

== Equality comparison
= Equality comparison
<> Alias for '=

and Logical and

or Logical or

Table 2.3: A list of mathematical operators which PyXPlot recognises.

2.6. PLOTTING DATA FILES 15

0.0 0.0 Start of index 0, data block 0.
1.0 1.0
2.0 2.0
3.0 3.0
A single blank line marks the start of a new data block.
0.0 5.0 Start of index 0, data block 1.
1.0 4.0
0 2.0
A double blank line marks the start of a new index.
0.0 1.0 Start of index 1, data block 0.
1.0 1.0
A single blank line marks the start of a new data block.
0.0 5.0 Start of index 1, data block 1.

<etc>

Figure 2.2: An example PyXPlot data file — the data file is shown in the
two left-hand columns, and commands are shown to the right.

By default, when a data file is plotted, all data blocks in all index blocks
are plotted. To plot only the data from one index block, the following syntax
may be used:

plot ’data.dat’ index 1

To achieve the default behaviour of plotting all index blocks, the index
modifier should be followed by a negative number.

It is also possible to specify which lines and/or data blocks to plot from
within each index. To do so, the every modifier is used, which takes up to
six values, separated by colons:

plot ’data.dat’ every a:b:c:d:e:f

The values have the following meanings:

a Plot data only from every ath line in data file.

b Plot only data from every bth block within each index block.
c Plot only from line ¢ onwards within each block.

d Plot only data from block d onwards within each index block.
e Plot only up to the eth line within each block.

f Plot only up to the fth block within each index block.

Any or all of these values can be omitted, and so the following would both
be valid statements:

plot ’data.dat’ index 1 every 2:3
plot ’data.dat’ index 1 every ::3

The first would plot only every other data point from every third data block;
the second from the third line onwards within each data block.

16 CHAPTER 2. FIRST STEPS WITH PYXPLOT

A final modifier for selecting which parts of a data file are plotted is
select, which plots only those data points which satisfy some given crite-
rion. This is described in Section 4.3.

2.7 Directing Where Output Goes

By default, when PyXPlot is used interactively, all plots are displayed on
the screen. It is also possible to produce postscript output, to be read into
other programs or embedded into IITEX documents, as well as a variety of
other graphical formats. The set terminal command® is used to specify
the output format that is required, and the set output command is used
to specify the file to which output should be directed. For example,

set terminal postscript
set output ’myplot.eps’
plot sin(x)

would output a postscript plot of sin(x) to the file myplot.eps.

The set terminal command can also be used to configure various out-
put options within each supported file format. For example, the following
commands would produce black-and-white or colour output respectively:

set terminal monochrome
set terminal colour

The former is useful for preparing plots for black-and-white publications,
the latter for preparing plots for colourful presentations.

Both encapsulated and non-encapsulated postscript can be produced.
The former is recommended for producing figures to embed into documents,
the latter for plots which are to be printed without further processing. The
postscript terminal produces the latter; the eps terminal should be used
to produce the former. Similarly the pdf terminal produces files in the
portable document format (pdf) read by Adobe Acrobat:

set terminal postscript
set terminal eps
set terminal pdf

It is also possible to produce plots in the gif, png and jpeg graphic
formats, as follows:

set terminal gif
set terminal png
set terminal jpg

5Gnuplot users should note that the syntax of the set terminal command in PyXPlot
is somewhat different from that which they are used to; see Section 3.4.

2.8. SETTING THE SIZE OF OUTPUT 17

More than one of the above keywords can be combined on a single line,
for example:

set terminal postscript colour
set terminal gif monochrome

To return to the default state of displaying plots on screen, the x11
terminal should be selected:

set terminal x11

For more details of the set terminal command, including how to pro-
duce gif and png images with transparent backgrounds, see Section 3.4.

We finally note that, after changing terminals, the replot command is
especially useful; it repeats the last plot command. If any plot items are
placed after it, they are added to the pre-existing plot.

2.8 Setting the Size of Output

The widths of plots may be set be means of two commands — set size
and set width. Both are equivalent, and should be followed by the desired
width measured in centimetres, for example:

set width 20

The set size command can also be used to set the aspect ratio of plots
by following it with the keyword ratio. The number which follows should
be the desired ratio of height to width. The following, for example, would
produce plots three times as high as they are wide:

set size ratio 3.0
The command set size noratio returns to PyXPlot’s default aspect ratio

of the golden ratio®, ie. ((1+ \/5)/2)71. The special command set size
square sets the aspect ratio to unity.

6 Artists have used this aspect ratio since ancient times. The Pythagoreans observed
its frequent occurance in geometry, and Phidias (490 - 430 BC) used it repeatedly in the
architecture of the Parthenon. Renaissance artists such as Dali, who were in many ways
disciples of classical aesthetics, often used the ratio. Leonardi Da Vinci observed that
many bodily proportions closely approximate the golden ratio. Some even went so far as
to suggest that the ratio had a divine origin (e.g. Pacioli 1509). As for the authors of this
present work, we do assert that plots with golden aspect ratios are pleasing to the eye,
but leave the ponderance of its theological significance as an exercise for the reader.

18 CHAPTER 2. FIRST STEPS WITH PYXPLOT

2.9 Data Styles

By default, data from files are plotted with points and functions are plotted
with lines. However, either kinds of data can be plotted in a variety of ways.
To plot a function with points, for example, the following syntax is used”:

plot sin(x) with points

The number of points displayed (i.e. the number of samples of the function)
can be set as follows:

set samples 100
Likewise, data files can be plotted with a line connecting the data points:
plot ’data.dat’ with lines

A variety of other styles are available. The 1inespoints plot style com-
bines both the points and lines styles, drawing lines through points. Er-
rorbars can also be drawn as follows:

plot ’data.dat’ with yerrorbars

In this case, three columns of data need to be specified: the z- and y-co-
ordinates of each data point, plus the size of the vertical errorbar on that
data point. By default, the first three columns of the data file are used, but
once again (see Section 2.6), the using modifier can be used:

plot ’data.dat’ using 2:3:7 with yerrorbars

More details of the errorbars plot style can be found in Section 4.1.4.
Other plot styles supported by PyXPlot are listed in Section 8.19.2, and
their details can be found in many Gnuplot tutorials. Bar charts will be
discussed further in Section 4.2.

The modifiers pointtype and linetype, which can be abbreviated to
pt and 1t respectively, can also be placed after the with modifier. Each
should be followed by an integer. The former specifies what shape of points
should be used to plot the dataset, and the latter whether a line should
be continuous, dotted, dash-dotted, etc. Different integers correspond to
different styles.

The default plotting style referred to above can also be changed. For
example:

set style data lines

would change the default style used for plotting data from files to lines.
Similarly, the set style function command changes the default style used
when functions are plotted.

"Note that when a plot command contains using, every and with modifiers, the with
modifier must come last.

2.10. SETTING AXIS RANGES 19

2.10 Setting Axis Ranges

In Section 2.2, the set xlabel configuration command was previously in-
troduced for placing text labels on axes. In this section, the configuration
of axes is extended to setting their ranges.

By default, PyXPlot automatically scales axes to some sensible range
which contains all of the plotted data. However, it is possible for the user
to override this and set his own range. This can be done directly from the
plot command, for example:

plot [-1:1]1[-2:2] sin(x)

The ranges are specified immediately after the plot command, with the
syntax [minimum:maximum].® The first specified range applies to the z-axis,
and the second to the y-axis.? Any of the values can be omitted, for example:

plot [:]1[-2:2] sin(x)

would only set a range on the y-axis.
Alternatively, ranges can be set before the plot statement, using the
set xrange command, for example:

set xrange [-2:2]
set y2range [a:b]

If an asterisk is supplied in place of either of the limits in this command,
then any limit which had previously been set is switched off, and the axis
returns to its default autoscaling behaviour:

set xrange [-2:%]

A similar effect may be obtained using the set autoscale command, which
takes a list of the axes to which it is to apply. Both the upper and lower
limits of these axes are set to scale automatically. If no list is supplied, then
the command is applied to all axes.

set autoscale x y
set autoscale

Axes can be set to have logarithmic scales by using the set logscale
command, which also takes a list of axes to which it should apply. Its
converse is set nologscale:

8 An alternative valid syntax is to replace the colon with the word to: [minimum to
maximum].

9As will be discussed in Section 4.5, if further ranges are specified, they apply to the
x2-axis, then the y2-axis, and so forth.

20 CHAPTER 2. FIRST STEPS WITH PYXPLOT

set logscale
set nologscale y x x2

Further discussion of the configuration of axes can be found in Sec-
tion 4.5.

2.11 Function Fitting

It is possible to fit functional forms to data points read from files by using
the fit command. A simple example might be:'?

f(x) = a*xx+b
fit £() ’data.dat’ index 1 using 2:3 via a,b

The first line specifies the functional form which is to be used. The coef-
ficients within this function which are to be varied during the fitting process
are listed after the keyword via in the fit command. The modifiers index,
every and using have the same meanings here as in the plot command.!!
For example, given the following data file which contains a sampled square
wave, entitled “square.dat”:

0.314159 1
0.942478 1
1.570796 1
2.199115 1
2.827433 1
3.455752 -1
4.084070 -1
4.712389 -1
5.340708 -1
5.969026 -1

the following script fits a truncated Fourier series to it. The output can be
found in Figure 2.3.

f(x) = al*sin(x) + a3*sin(3#*x) + abxsin(b*x)

fit £() ’square.dat’ via al, a3, ab

set xlabel ’x’ ; set ylabel ’y’

plot ’square.dat’ title ’data’ with points pointsize 2, \
f(x) title ’Fitted function’ with lines

0Ty Gnuplot, this example would have been written fit £(x) ..., rather than fit
£() This syntax is supported in PyXPlot, but is deprecated.
"The select modifier, to be introduced in Section 4.3 can also be used.

2.11. FUNCTION FITTING 21

2 T T T T T T T T
X data
— Fitted function
1 L
> 0 +
—1 +
_2 1 |
0 2 4 6

Figure 2.3: The output from a script that fits a truncated Fourier se-
ries to a sampled square wave. Even with only three terms the Gibbs
pheonomenon is becoming apparent (see http://en.wikipedia.org/wiki/
Gibbs_phenomenon for an explanation).

This is useful for producing best-fit lines'?, and also has applications for
estimating the gradients of datasets. The syntax is essentially identical to
that used by Gnuplot, though a few points are worth noting:

e When fitting a function of n variables, at least n+1 columns (or rows —
see Section 4.4) must be specified after the using modifier. By default,
the first n + 1 columns are used. These correspond to the values of
each of the n inputs to the function, plus finally the value which the
output from the function is aiming to match.

e If an additional column is specified, then this is taken to contain the
standard error in the value that the output from the function is aiming
to match, and can be used to weight the data points which are input
into the fit command.

e By default, the starting values for each of the fitting parameters is
1.0. However, if the variables to be used in the fitting process are
already set before the fit command is called, these initial values are
used instead. For example, the following would use the initial values
{a =100,b = 50}:

12 Another way of producing best-fit lines is to use a cubic spline; more details are given
in Section 6.2

22

CHAPTER 2. FIRST STEPS WITH PYXPLOT

f(x) = axx+b

a = 100

b = 50

fit £() ’data.dat’ index 1 using 2:3 via a,b

As with all numerical fitting procedures, the fit command comes with
caveats. It uses a generic fitting algorithm, and may not work well with
poorly behaved or ill-constrained problems. It works best when all of
the values it is attempting to fit are of order unity. For example, in a
problem where a was of order 10'°, the following might fail:

f(x) = axx
fit £() ’data.dat’ via a

However, better results might be achieved if a were artificially made
of order unity, as in the following script:

f(x) = lelO*xax*xx
fit £() ’data.dat’ via a

A series of ranges may be specified after the fit command, using the
same syntax as in the plot command, as described in Section 2.10. If
ranges are specified then only data points falling within these ranges
are used in the fitting process; the ranges refer to each of the n variables
of the fitted function in order.

For those interested in the mathematical details, the workings of the
fit command is discussed in more detail in Chapter D.

At the end of the fitting process, the best-fitting values of each parameter

are output to the terminal, along with an estimate of the uncertainty in
each. Additionally, the Hessian, covariance and correlation matrices are
output in both human-readable and machine-readable formats, allowing a
more complete assessment of the probability distribution of the parameters.

2.12 Interactive Help

In addition to this Users’ Guide, PyXPlot also has a help command, which
provides a hierarchical source of information. Typing help alone gives a
brief introduction to the help system, as well as a list of topics on which
help is available. To display help on any given topic, type help followed by
the name of the topic. For example:

help commands

2.13. SHELL COMMANDS 23

provides information on PyXPlot’s commands. Some topics have sub-topics,
which are listed at the end of each page. To view them, add further words
to the end of your help request — an example might be:

help commands help

which would display help on the help command itself.

2.13 Shell Commands

Shell commands may be executed directly from within PyXPlot by prefixing
them with an ! character. The remainder of the line is sent directly to the
shell, for example:

11s -1

Semi-colons cannot be used to place further PyXPlot commands after a shell
command on the same line.

X Ils -1 ; set key top left

It is also possible to substitute the output of a shell command into a
PyXPlot command. To do this, the shell command should be enclosed in
back-quotes (‘). For example:

a=‘ls -1 *.ppl | wc -1°¢
print "The current directory contains %d PyXPlot scripts."%(a)

It should be noted that back-quotes can only be used outside quotes.
For example:

X set xlabel ’‘1s¢’

will not work. The best way to do this would be:

/ set xlabel ‘echo "’" ; 1ls ; echo "’"¢

Note that it is not possible to change the current working directory by
sending the cd command to a shell, as this command would only change the
working directory of the shell in which the single command is executed:

X lcd ..

PyXPlot has its own cd command for this purpose, as well as its own
pwd command:

/ cd ..

24 CHAPTER 2. FIRST STEPS WITH PYXPLOT

2.14 Differences Between PyXPlot and Gnuplot

Because PyXPlot is still work in progress, it does not implement all of the
features of Gnuplot. It currently does not implement any three-dimensional
or surface plotting — i.e. the splot command of Gnuplot. It also does not
support the plotting of parametric functions.

Some of Gnuplot’s features have been significantly re-worked to improve
upon their operation. The prime example is Gnuplot’s multiplot mode,
which allows multiple graphs to be placed side-by-side. While we retain a
similar syntax, we have made it significantly more flexible. The use of dual
axes is another example: PyXPlot now places no limit on the number of
parallel horizontal and vertical axes which may be drawn on a graph.

These extensions to Gnuplot’s interface are described in detail in the
following chapters.

Chapter 3

PyXPlot and the Outside
World

This chapter describes PyXPlot as a UNIX programme, and how it can be
interfaced with other programs.

3.1 Command Line Switches

From the shell command line, PyXPlot accepts the following switches which
modify its behaviour:

-h --help Display a short help message listing the available
command-line switches.

-v --version Display the current version number of PyXPlot.

-q --quiet Turn off the display of the welcome message on
startup.

-V --verbose Display the welcome message on startup, as hap-
pens by default.

-c —--colour Use colour highlighting® to display output in green,

warning messages in amber, and error messages
in red.? These colours can be changed in the
terminal section of the configuration file; see Sec-
tion 7.1 for more details.

-m --monochrome Do not use colour highlighting, as happens by de-
fault.

IThis will only function on terminals which support colour output.
2The authors apologise to those members of the population who are red/green colour-
blind, but draws their attention to the following sentence.

25

26 CHAPTER 3. PYXPLOT AND THE OUTSIDE WORLD

3.2 Command Histories

When PyXPlot is used interactively, its command-line environment is based
upon the GNU Readline Library. This means that the up and down arrow
keys can be used to repeat or modify previously executed commands. Each
user’s command history is stored in his homespace in a history file called
.pyxplot_history, which allows PyXPlot to remember command histories
between sessions. Additionally, a save command is provided, allowing the
user to save his command history from the present session to a text file; this
has the following syntax:

save ’output_filename.ppl’

The related history command outputs the history to the terminal. This
outputs not only the history of the present session, but also commands
entered in previous sessions, which can be up to several hundred lines long.
It can optionally be followed by a number, to display the last n commands,

e.g.:

history 20

3.3 Reading data from a pipe

PyXPlot usually reads data from a file, but it possible to read data via a
pipe from standard input. To do this one uses the magic filename ‘-’:

plot ’-’ with lines

This facility should be used with caution; it is generally preferable to
write data to a file in order that it can be perused at a later date.

3.4 Formatting and Terminals

In this section, we describe the commands used to control the format of the
graphic output produced by PyXPlot. This continues the discussion from
Section 2.7 of how the set terminal command can be used to produce plots
in various graphic formats, such as postscript files, jpeg images, etc.

Many of these terminals — the word we use to describe an output format
— accept additional parameters which configure the exact appearance of the
output produced. For example, the default terminal, X11, which displays
plots on the screen, has such settings. By default, each time a new plot
is generated, if the previous plot is still open on the display, the old plot
is replaced with the new one. This way, only one plot window is open at

3.4. FORMATTING AND TERMINALS 27

any one time. This behaviour has the advantage that the desktop does not
become flooded with plot windows.

If this is not desired, however — for example if you want to compare two
plots — old graphs can be kept visible when plotting further graphs by using
the the X11 multiwindow terminal:

set terminal X11_singlewindow
plot sin(x)
plot cos(x) <-- first plot window disappears

c.f.:

set terminal X11_multiwindow
plot sin(x)
plot cos(x) <-- first plot window remains

As an additional option, the X11_persist terminal keeps plot windows
open after PyXPlot exits; the above two terminals close all plot windows
upon exit.

If the enlarge modifier is used with the set terminal command then
the whole plot is enlarged, or, in the case of large plots, shrunk, to the current
paper size, minus a small margin. The aspect ratio of the plot is preserved.
This is most useful with the postscript terminal, when preparing a plot to
send directly to a printer.

As there are many changes to the options accepted by the set terminal
command in comparison to those understood by Gnuplot, the syntax of
PyXPlot’s command is given below, followed by a list of the recognised
settings:

set terminal { X11_singlewindow | X11_multiwindow | X11_persist |
postscript | eps | pdf | gif | png | jpg }

colour | color | monochrome }

portrait | landscape }

invert | noinvert }

transparent | solid }

antialias | noantialias }

enlarge | noenlarge }

A A A A A

28 CHAPTER 3. PYXPLOT AND THE OUTSIDE WORLD

x11_singlewindow Displays plots on the screen (in X11 windows, using

x11 multiwindow

x11_persist
postscript
eps

pdf

gif

png

jrg
colour

color
monochrome
portrait

landscape

invert

noinvert

Ghostview). Each time a new plot is generated, it re-
places the old one, to prevent the desktop from becom-
ing flooded with old plots.?> [default when running
interactively; see below]

As above, but each new plot appears in a new window,
and the old plots remain visible. As many plots as may
be desired can be left on the desktop simultaneously.
As above, but plot windows remain open after PyX-
Plot closes.

Sends output to a postscript file. The filename for this
file should be set using set output. [default when
running non-interactively; see below]

As above, but produces encapsulated postscript.

As above, but produces pdf output.

Sends output to a gif image file; as above, the filename
should be set using set output.

As above, but produces a png image

As above, but produces a jpeg image.

Allows datasets to be plotted in colour. Automatically
they will be displayed in a series of different colours, or
alternatively colours may be specified using the with
colour plot modifier (see below). [default]
Equivalent to the above; provided for users of nation-
alities which can’t spell. ®

Opposite to the above; all datasets will be plotted in
black.

Sets plots to be displayed in upright (normal) orien-
tation. [default]

Opposite of the above; produces side-ways plots. Not
very useful when displayed on the screen, but you fit
more on a sheet of paper that way around.

Modifier for the gif, png and jpg terminals; produces
output with inverted colours.*

Modifier for the gif, png and jpg terminals; opposite
to the above. [default]

3The authors are aware of a bug, that this terminal can occasionally go blank when a
new plot is generated. This is a known bug in Ghostview, and can be worked around by
selecting File — Reload within the Ghostview window.

4This terminal setting is useful for producing plots to embed in talk slideshows, which
often contain bright text on a dark background. It only works when producing bitmapped
output, though a similar effect can be achieved in postscript using the set textcolour
and set axescolour commands (see Section 5.2).

3.5. PAPER SIZES 29

transparent Modifier for the gif and png terminals; produces out-
put with a transparent background.

solid Modeifier for the gif and png terminals; opposite to the
above. [default]

antialias Modifier for the gif, jpg and png terminals; produces

antialiased output, with colour boundaries smoothed
to disguise the effects of pixelisation [default]

noantialias Modifier for the gif, jpg and png terminals; opposite
to the above

enlarge Enlarge or shrink contents to fit the current paper size.

noenlarge Do not enlarge output; opposite to the above. [de-
fault]

The default terminal is normally x11_singlewindow, matching approx-
imately the behaviour of Gnuplot. However, there is an exception to this.
When PyXPlot is used non-interactively — i.e. one or more command scripts
are specified on the command line, and PyXPlot exits as soon as it finishes
executing them — the x11_singlewindow is not a very sensible terminal to
use: any plot window would close as soon as PyXPlot exited. The default
terminal in this case changes to postscript.

This rule does not apply when the special ‘—’ filename is specified in a list
of command scripts on the command line, to produce an interactive terminal
between running a series of scripts. In this case, PyXPlot detects that
the session will be interactive, and defaults to the usual x11_singlewindow
terminal.

An additional exception is on machines where the DISPLAY environment
variable is not set. In this case, PyXPlot detects that it has access to no X-
terminal on which to display plots, and defaults to the postscript terminal.

The gif, png and jpg terminals result in some loss of image quality,
since the plot has to be sampled into a bitmapped graphic format. By
default, this sampling is performed at 300 dpi, though this may be changed
using the command set dpi <value>. Alternatively, it may be changed
using the DPI option in the settings section of a configuration file (see
Section 7.1).

3.5 Paper Sizes

By default, when the postscript terminal produces printable, i.e. not en-
capsulated, output, the paper size for this output is read from the user’s
system locale settings. It may be changed, however, with set papersize
command, which may be followed either by the name of a recognised paper
size, or by the dimensions of a user-defined size, specified as a height, width
pair, both being measured in millimetres. For example:

30 CHAPTER 3. PYXPLOT AND THE OUTSIDE WORLD

set papersize a4
set papersize 100,100

A list of recognised paper size names is given in Figure 3.1.°

3.6 Script Watching: pyxplot_watch

PyXPlot includes a simple tool for watching command script files and exe-
cuting them whenever they are modified. This may be useful when devel-
oping a command script, if one wants to make small modifications to it and
see the results in a semi-live fashion. This tool is invoked by calling the
pyxplot_watch command from a shell prompt. The command-line syntax
of pyxplot_watch is similar to that of PyXPlot itself, for example:

pyxplot_watch script.ppl

would set pyxplot_watch to watch the command script file script.ppl.
One difference, however, is that if multiple script files are specified on the
command line, they are watched and executed independently, not sequen-
tially, as PyXPlot itself would do. Wildcard characters can also be used to
set pyxplot_watch to watch multiple files.

This is especially useful when combined with Ghostview’s watch facility.
For example, suppose that a script foo.ppl produces postscript output
foo.ps. The following two commands could be used to give a live view of
the result of executing this script:

gv ——watch foo.ps &
pyxplot_watch foo.ppl

3.7 Variables

As has already been hinted at in Section 2.3, PyXPlot recognises two types
of variables: numeric variables and string variables. The former can be
assigned using any valid mathematical expression. For example:

a = 5.2 x sqrt(64)

SFor everything that you ever wanted to know about international paper sizes, see
Marcus Kuhn’s excellent treatise: http://www.cl.cam.ac.uk/~mgk25/iso-paper.html.
If you still want to know more, then Wikipedia has a good article on the Swedish extensions
to this system and the Japanese B-series: http://en.wikipedia.org/wiki/Paper_size.

5Note that pyxplot_watch *.script and pyxplot_watch *.script will behave dif-
ferently in most UNIX shells. In the first case, the wildcard is expanded by your shell,
and a list of files passed to pyxplot_watch. Any files matching the wildcard, created after
running pyxplot_watch, will not be picked up. In the latter case, the wildcard is expanded
by pyxplot_watch itself, which will pick up any newly created files.

3.7. VARIABLES 31

Name h/mm w/mm Name h/mm w/mm

2a0 1681 1189 medium 584 457

4a0 2378 1681 monarch 267 184

a0 1189 840 post 489 394

al 840 594 quad_demy 1143 889

alO 37 26 quarto 254 203

a2 594 420 royal 635 508

a3 420 297 statement 216 140

ad 297 210 swedish_d0 1542 1090

ab 210 148 swedish_d1 1090 771

ab 148 105 swedish_d10 48 34

a7 105 74 swedish_d2 771 545

a8 74 52 swedish_d3 545 385

a9 52 37 swedish_d4 385 272

b0 1414 999 swedish-d5 272 192

bl 999 707 swedish-d6 192 136

b10 44 31 swedish_d7 136 96

b2 707 499 swedish_d8 96 68

b3 499 353 swedish-d9 68 48

b4 353 249 swedish-e0 1241 878

b5 249 176 swedish-el 878 620

b6 176 124 swedish-e10 38 27

b7 124 88 swedish_e2 620 439

b8 88 62 swedish_e3 439 310

b9 62 44 swedish_e4 310 219

c0 1296 917 swedish_e5 219 155

cl 917 648 swedish_e6 155 109

cl0 40 28 swedish_e7 109 77

c2 648 458 swedish_e8 77 54

c3 458 324 swedish_e9 54 38

cd 324 229 swedish_f0 1476 1044

c5 229 162 swedish_f1 1044 738

c6 162 114 swedish_f10 46 32

c7 114 81 swedish_f2 738 522

c8 81 57 swedish_f3 522 369

c9 57 40 swedish_f4 369 261

crown 508 381 swedish_f5 261 184

demy 572 445 swedish_f6 184 130
double_demy 889 597 swedish_f7 130 92
elephant 711 584 swedish_f8 92 65
envelope_dl 110 220 swedish_f9 65 46
executive 267 184 swedish_g0 1354 957
foolscap 330 203 swedish_gl 957 677
government_letter 267 203 swedish_gl10 42 29
international_businesscard 85 53 swedish_g2 677 478
japanese_b0 1435 1015 swedish_g3 478 338
japanese_bl 1015 717 swedish_g4 338 239
japanese_b10 44 31 swedish_gb 239 169
japanese_b2 717 507 swedish_g6 169 119
japanese-b3 507 358 swedish_g7 119 84
japanese_b4 358 253 swedish_g8 84 59
japanese_b5 253 179 swedish_g9 59 42
japanese_b6 179 126 swedish_h0 1610 1138
japanese_b7 126 89 swedish_h1 1138 805
japanese_b8 89 63 swedish_h10 50 35
japanese_b9 63 44 swedish_h2 805 569
japanese_kiku4 306 227 swedish_h3 569 402
japanese_kikub 227 151 swedish_h4 402 284
japanese_shiroku4 379 264 swedish_h5 284 201
japanese_shirokub 262 189 swedish_h6 201 142
japanese_shiroku6 188 127 swedish_h7 142 100
large_post 533 419 swedish_h8 100 71
ledger 432 279 swedish_h9 71 50

legal 356 216 tabloid 432 279

letter 279 216 us_businesscard 89 51

Figure 3.1: A list of all of the named paper sizes recognised by the set
papersize command, with their heights, h, and widths, w, measured in
millimetres.

32 CHAPTER 3. PYXPLOT AND THE OUTSIDE WORLD

would assign the value 41.6 to the variable a. Numerical variables can sub-
sequently be used in mathematical expressions themselves, for example:

a=2%pi
plot [0:1] sin(a*x)

String variables can be assigned in an analogous manner, by enclosing the
string in quotation marks. They can then be used wherever a quoted string
could be used, for example as a filename or a plot title, as in:

plotname = "The Growth of a Rabbit Population"
set title plotname

String variables can be modified using the search-and-replace string op-
erator’, =~, which takes a regular expression with a syntax similar to that
expected by the shell command sed and applies it to the relevant string.?
For example:

twister="seven silver soda syphons"
twister =7 s/s/th/
print twister

Note that only the s (substitute) command of sed is implemented in
PyXPlot. Any character can be used in place of the / characters in the
above example, for example:

twister =" s0s@thQ
Flags can be passed, as in sed or perl, for example:
twister =" s@s@thlg

Table 3.3 lists all of the regular expression flags recognised by the =~ op-
erator.

Strings may also be put together using the string substitution operator,
%, which works in a similar fashion to Python string substitution operator.
This is described in detail in Section 2.3. For example, to concatenate the
two strings contained in variables a and b into variable ¢ one would run:

c = "%shs"%h(a,b)

One common practical application of these string operators is to label
plots with the title of the data file being plotted, as in:

"Programmers with experience of perl will recognise this syntax.

8Regular expression syntax is a massive subject, and is beyond the scope of this manual.
The official GNU documentation for the sed command is heavy reading, but there are
many more accessible tutorials on the web.

3.7. VARIABLES 33

Replace all matches of the pattern; by default, only the first
match is replaced.

Perform case-insensitive matching, such that expressions like
[A-Z] will match lowercase letters, too.

Make \w, \W, \b, \B, \s and \S dependent on the current locale.
When specified, the pattern character ~ matches the beginning
of the string and the beginning of each line immediately follow-
ing each newline. The pattern character $ matches at the end
of the string and the end of each line immediately preceding
each newline. By default, = matches only the beginning of the
string, and $ only the end of the string and immediately before
the newline, if present, at the end of the string.

Make the . special character match any character at all, in-
cluding a newline; without this flag, . will match anything
except a newline.

Make \w, \W, \b, \B, \s and \S dependent on the Unicode
character properties database.

This flag allows the user to write regular expressions that look
nicer. Whitespace within the pattern is ignored, except when in
a character class or preceded by an unescaped backslash. When
a line contains a #, neither in a character class or preceded by
an unescaped backslash, all characters from the leftmost such
through the end of the line are ignored.

Table 3.3: A list of the flags accepted by the =~ operator. Most are rarely
used, but the g flag is very useful. This table is adapted from Guido
van Rossum’s Python Library Reference: http://docs.python.org/lib/

node46.html.

34 CHAPTER 3. PYXPLOT AND THE OUTSIDE WORLD

filename="data_file.dat"

title="A plot of the data in {\tt %sl}."/,(filename)
title="s/_/_/g # Underscore is a reserved character in LaTeX
set title title

plot filename

3.8 The exec command

The exec command can be used to execute PyXPlot commands contained
within string variables. For example:

terminal="eps"
exec "set terminal Ys"%(terminal)

It can also be used to write obfuscated PyXPlot scripts.

Chapter 4

Advanced Plotting

In this chapter, we continue to explore the various options of the plot
command. Specifically, we turn to those aspects which differ from Gnuplot’s
plot command.

4.1 A Tour of PyXPlot’s Plot Styles

We begin by reviewing the various plot styles which are available in PyXPlot.
Two of these we have already met: 1ines, which draws straight lines between
data points, and points, which does not connect data points.

4.1.1 Lines and Points
The following are PyXPlot’s most basic plot styles!:

e dots — places a small dot at each datum.

e points — places a marker symbol at each datum.

e lines — connects adjacent data points with straight lines.
e linespoints — a combination of both lines and points.

When using the points, linespoints and dots plot styles, the size of
the plotted points or dots can be varied by using the pointsize modifier,
for example:

set samples 25
plot sin(x) with dots pointsize 10

which would represent data with large dots. The default value of this
setting is 1.0.

IThis is not an exhaustive list; see Section 8.19.2.

35

36 CHAPTER 4. ADVANCED PLOTTING

The width of lines can similarly be controlled with the 1inewidth modifier,
and the width of the lines used to draw point symbols can be controlled with
the pointlinewidth modifier. For example:

set samples 25
plot sin(x) with points pointlinewidth 2

In addition to setting these parameters on a per-plot basis, their default
values can also be changed. The command:

set pointlinewidth 2

would set the default line width used when drawing data points. Both here,
and in the plot command, the abbreviation plw is valid.

4.1.2 Upper and Lower Limit Data Points

PyXPlot can plot data points using the standard upper- and lower-limit
symbols. No special syntax is required for this; these symbols are point-
types? 12 and 13 respectively, obtained as follows:

plot ’upperlimits.dat’ with points pointtype 12
plot ’lowerlimits.dat’ with points pointtype 13

4.1.3 Drawing Arrows

Data may be represented as arrows connecting two points on a plot by using
the arrows plot style. This takes four columns of data — x1, y1, x2 and yo —
and for each data point draws an arrow from the point (x1,y;) to the point
(z2,y2). Three different kinds of arrows can be drawn: ones with normal
arrow heads, ones with no arrow heads, which just appear as lines, and ones
with arrow heads on both ends. The syntax to obtain these varieties is:

plot ’data.dat’ with arrows_head
plot ’data.dat’ with arrows_nohead
plot ’data.dat’ with arrows_twohead

The syntax with arrows is a shorthand for with arrows_head. This
plot style is analogous to the vectors plot style in Version 4 of Gnuplot.

2The pointtype modifier was introduced in Section 2.9.

4.1. A TOUR OF PYXPLOT’S PLOT STYLES 37

4.1.4 FError Bars

In Gnuplot, when one uses errorbars, one can specify either the size of the
errorbar, or the minimum to maximum range of the errorbar. Both of these
usages share a common syntax, and Gnuplot’s behaviour depends upon the
number of columns of data provided:

plot ’data.dat’ with yerrorbars

Given a data file with three columns, this takes the third column to indi-
cate the size of the y-errorbar. Given a four-column data file, it takes the
third and fourth columns to indicate the minimum to maximum range to be
marked out by the errorbar.

To avoid confusion, a different syntax is adopted in PyXPlot. The syn-
tax:

plot ’data.dat’ with yerrorbars

always assumes that the third column of the data file indicates the size of
the errorbar, regardless of whether a fourth is present. The syntax:

plot ’data.dat’ with yerrorrange

always assumes that the third and fourth columns indicate the minimum to
maximum range of the errorbar.

For clarity, a complete list of the errorbar plot styles available in PyXPlot
is given below:

yerrorbars Vertical errorbars; size drawn from the third
data column.

xerrorbars Horizontal errorbars; size drawn from the
third data column.

xyerrorbars Horizontal and vertical errorbars; sizes drawn
from the third and fourth data columns re-
spectively.

errorbars Shorthand for yerrorbars.

38 CHAPTER 4. ADVANCED PLOTTING

yerrorrange Vertical errorbars; minimum drawn from
the third data column, maximum from the
fourth.

xerrorrange Horizontal errorbars; minimum drawn from
the third data column, maximum from the
fourth.

xyerrorrange Horizontal and vertical errorbars; horizontal
minimum drawn from the third data column
and maximum from the fourth; vertical min-
imum drawn from the fifth and maximum
from the sixth.

errorrange Shorthand for yerrorrange.

4.1.5 Plotting Functions with Errorbars, Arrows, or More

In Gnuplot, when a function (as opposed to a data file) is plotted, only those
plot styles which accept two columns of data can be used — for example,
lines or points. This means that it is not possible to plot a function with
errorbars. In PyXPlot, this is possible using the following syntax:

plot f(x):g(x) with yerrorbars

Two functions are supplied, separated by a colon; plotting proceeds as if
a data file had been supplied, containing values of x in column 1, values
of f(z) in column 2, and values of g(z) in column 3. This may be useful,
for example, if g(x) measures the intrinsic uncertainty in f(x). The using
modifier may also be used:

plot £(x):g(x) using 2:3

Here, g(x) would be plotted on the y-axis, against f(z) on the z-axis.
It should be noted, however, that the range of values of x used would still
correspond to the range of the plot’s horizontal axis. If the above were to
be attempted with an autoscaling horizontal axis, the result might be rather
unexpected — PyXPlot would find itself autoscaling the z-axis range to the
spread of values of f(x), but find that this itself changed depending upon
the range of the z-axis.?

4.2 Barcharts and Histograms

4.2.1 Basic Operation

As in Gnuplot, bar charts and histograms can be produced using the boxes
plot style:

3We’re aware that this is not good. Expect it to change in a future release.

4.2. BARCHARTS AND HISTOGRAMS 39

S @ T ()

—o

=05 F

Figure 4.1: A gallery of the various bar chart styles which PyXPlot can
produce. See the text for more details. The script and data file used to
produce this image are available on the PyXPlot website at http://www.
pyxplot.org.uk/examples/Manual/O4barchart?2/.

plot ’data.dat’ with boxes

Horizontally, the interfaces between the bars are, by default, at the mid-
points along the z-axis between the specified data points (see, for example,
Figure 4.1a). Alternatively, the widths of the bars may be set using the
set boxwidth command. In this case, all of the bars will be centred upon
their specified z-co-ordinates, and have total widths equalling that specified
in the set boxwidth command. Consequently, there may be gaps between
them, or they may overlap, as seen in Figure 4.1(b).

Having set a fixed box width, the default behaviour of scaling box widths
automatically may be restored either with the unset boxwidth command,
or by setting the boxwidth to a negative width.

As a third alternative, it is also possible to specify different widths for
each bar manually, in an additional column of the input data file. To achieve
this behaviour, the wboxes plot style should be used:

plot ’data.dat’ using 1:2:3 with wboxes

This plot style expects three columns of data to be provided: the z- and
y-co-ordinates of each bar in the first two, and the width of the bars in the
third. Figure 4.1(c) shows an example of this plot style in use.

40 CHAPTER 4. ADVANCED PLOTTING

L' (a ' boxesI | T (b) ' boxesI’_H_‘ "_m_‘l_
LI |
B e e L O
1 (c) '{inlptﬂ;Tb | { 1 (d) ' stepsI | -
_ l‘ lT TH H lT Tl 1
-1t | | ‘ + | | ‘ -
L (e) ' stepsI | 1 () ' histep; | -

> 0 F + i
-1t | . | R
—10 0 10—10 0 10

Figure 4.2: A second gallery of the various bar chart styles which PyXPlot
can produce. See the text for more details. The script and data file used to
produce this image are available on the PyXPlot website at http://www.
pyxplot.org.uk/examples/Manual/0O3barchartl/.

By default, the bars originate from the line y = 0, as is normal for
a histogram. However, should it be desired for the bars to start from a
different vertical point, this may be achieved by using the set boxfrom
command, for example:

set boxfrom 5

In this case, all of the bars would now originate from the line y = 5. Fig-
ure 4.2(1) shows the kind of effect that is achieved; for comparison, Fig-
ure 4.2(b) shows the same bar chart with the boxes starting from their
default position of y = 0.

The bars may be filled using the with fillcolour modifier, followed by
the name of a colour:

4.3. CHOOSING WHICH DATA TO PLOT 41

plot ’data.dat’ with boxes fillcolour blue
plot ’data.dat’ with boxes fc 4

Figures 4.1(b) and (d) demonstrate the use of filled bars.
Finally, the impulses plot style, as in Gnuplot, produces bars of zero
width; see Figure 4.2(c) for an example.

4.2.2 Stacked Bar Charts

If several data points are supplied to the boxes or wboxes plot styles at a
common z-co-ordinate, then the bars are stacked one above another into a
stacked barchart. Consider the following data file:

11
2 2
23
34

The second bar at x = 2 would be placed on top of the first, spanning the
range 2 < y < 5, and having the same width as the first. If plot colours
are being automatically selected from the palette, then a different palette
colour is used to plot the upper bar.

4.2.3 Steps

The plot styles met so far plot data as solid bars, with left, right and top
sides all drawn. Data may also be plotted with steps, with the left and right
sides of each bar omitted. Some examples are shown in Figures 4.2(d), (e)
and (f). Asis illustrated in these panels, three flavours of steps are available,
exactly as in Gnuplot:

plot ’data.dat’ with steps
plot ’data.dat’ with fsteps
plot ’data.dat’ with histeps

When using the steps plot style, the data points specify the right-most
edges of each step. When using the fsteps plot style, they specify the left-
most edges of the steps. The histeps plot style works rather like the boxes
plot style; the interfaces between the steps occur at the horizontal midpoints
between the data points.

4.3 Choosing which Data to Plot

As well as the plot command’s index, using and every modifiers, which
allow users to plot subsets of data from data files, it also has a further

42 CHAPTER 4. ADVANCED PLOTTING

modifier, select. This can be used to plot only those data points in a data
file which specify some given criterion. For example:

plot ’data.dat’ select ($8>5)
plot sin(x) select (($1>0) and ($2>0))

In the second example, two selection criteria are given, combined with the
logical and operator. A full list of all of the operators recognised by PyXPlot,
including logical operators, was given in Chapter 2; see Table 2.3. The select
modifier has many applications, for example, plotting two-dimensional slices
of three-dimensional datasets and plotting subsets of data from files.

When plotting using the lines style, the default behaviour is for the
lines plotted not to be broken if a set of datapoints are removed by the select
modifier. However, this behaviour is sometimes undesirable. To cause the
plotted line to break when points are removed the discontinuous modifier
is supplied. For example:

plot sin(x) select ($1>0) discontinuous

plots a set of disconnected peaks from the sine function.

4.4 Horizontally arranged Data files

The command syntax for plotting columns of data files against one another
was previously described in Section 2.6. In an extension of what is possible
in Gnuplot, PyXPlot also allows one to plot rows of data against one another
in horizontally-arranged data files. For this, the keyword rows is placed after
the using modifier:

plot ’data.dat’ index 1 using rows 1:2

For completeness, the syntax using columns is also accepted, to specify the
default behaviour of plotting columns against one another:

plot ’data.dat’ index 1 using columns 1:2

When plotting horizontally-arranged data files, the meanings of the index
and every modifiers (see Section 2.6) are altered slightly. The former con-
tinues to refer to vertically-displaced blocks of data separated by two blank
lines. Blocks, as referenced in the every modifier, likewise continue to refer
to vertically-displaced blocks of data points, separated by single blank lines.
The row numbers passed to the using modifier are counted from the top of
the current block.

However, the line-numbers specified in the every modifier — i.e. variables
a, c and e in the system introduced in Section 2.6 — now refer to horizontal
columns, rather than lines. For example:

4.5. CONFIGURING AXES 43

plot ’data.dat’ using rows 1:2 every 2::3::9

would plot the data in row 2 against that in row 1, using only the values in
every other column, between columns 3 and 9.

4.5 Configuring Axes

By default, plots have only one z-axis and one y-axis. Further parallel axes
can be added and configured via statements such as:

set x3label ’foo’
plot sin(x) axes x3yl
set axis x3

In the top statement, a further horizontal axis, called the x3-axis, is implic-
itly created by giving it a label. In the next, the axes modifier is used to
tell the plot command to plot data using the horizontal z3-axis and the
vertical y-axis. Here again, the axis would be implicitly created if it didn’t
already exist. In the third statement, an x3-axis is explicitly created.

Unlike Gnuplot, which allows only a maximum of two parallel axes to be
attached to any given plot, PyXPlot allows an unlimited number of axes to
be used. Odd-numbered z-axes appear below the plot, and even numbered
r-axes above it; a similar rule applies for y-axes, to the left and to the right.
This is illustrated in Figure 4.3.

As discussed in the previous chapter, the ranges of axes can be set ei-
ther using the set xrange command, or within the plot command. The
following two statements would set equivalent ranges for the x3-axis:

set x3range [-2:2]
plot [:J[:1[:1[:]1[-2:2] sin(x) axes x3yl

As usual, the first two ranges specified in the plot command apply to the
x- and y-axes. The next pair apply to the x2- and y2-axes, and so forth.

Having made axes with the above commands, they may subsequently be
removed using the unset axis command as follows:

unset axis x3
unset axis x3x5y3 y7

The top statement, for example, would remove axis x3. The command
unset axis on its own, with no axes specified, returns all axes to their
default configuration. The special case of unset axis x1 does not remove
the first x-axis — it cannot be removed — but instead returns it to its default
configuration.

It should be noted that if the following two commands are typed in
succession, the second may not entirely negate the first:

44 CHAPTER 4. ADVANCED PLOTTING

The X8 axis
-10 0 10
The X4 axis
—10 0 10
The X2 axis
-10 0 10
10 - 10 . . ; ; . ; ; ; ; 10
2 %) —
5 7 g
g 0 ~ > 0 F 4 0 é
o 2 ®
= 3 £
—-10 t —10 : : : : ! : : : : —10
—10 0 10
The X axis
—-10 0 10
The X3 axis

Figure 4.3: A plot demonstrating the use of large numbers of axes. Odd-
numbered z-axes appear below the plot, and even numbered z-axes above
it; a similar rule applies for y-axes, to the left and to the right.

4.5. CONFIGURING AXES 45

set x3label ’foo’
unset x3label ’foo’

If an x3-axis did not previously exist, then the first will have implicitly cre-
ated one. This would need to be removed with the unset axis x3 command
if it was not desired.

A subtly different task is that of removing labels from axes, or setting
axes not to display. To achieve this, a number of special axis labels are used.
Labelling an axis nolabels has the effect that no title or numerical labels are
placed upon it. Labelling it nolabelstics is stronger still; this removes all
tick marks from it as well (similar in effect to the set noxtics command; see
below). Finally, labelling it invisible makes an axis completely invisible.

Labels may be placed on such axes, by suffixing the magic keywords
above with a colon and the desired title. For example:

set xlabel ’nolabels:Time’

would produce an z-axis with no numeric labels, but a label of ‘Time’.

In the unlikely event of wanting to label a normal axis with one of these
magic words, this may be achieved by prefixing the magic word with a space.
There is one further magic axis label, linkaxis, which will be described in
Section 5.3.3.

The ticks of axes can be configured to point either inward, towards the
plot, as is the default, or outward towards the axis labels, or in both direc-
tions. This is achieved using the set xticdir command, for example:

set xticdir inward
set y2ticdir outward
set x2ticdir both

The position of ticks along each axis can be configured with the set
xtics command. The appearance of ticks along any axis can be turned off
with the set noxtics command. The syntax for these is given below:

set xtics { axis | border | inward | outward | both }
{ autofreq

| <increment>
| <minimum>, <increment> { , <maximum> }
I ({"label"} <position>

{ , {"label"} <position> })

}
set noxtics
show xtics

46 CHAPTER 4. ADVANCED PLOTTING

The keywords inward, outward and both alter the directions of the ticks,
and have the same effect as in the set xticdir command. The keyword
axis is an alias for inward, and border an alias for outward; both are
provided for compatibility with Gnuplot. If the keyword autofreq is given,
the automatic placement of ticks along the axis is restored.

If <minimum>, <increment>, <maximum> are specified, then ticks are
placed at evenly spaced intervals between the specified limits. In the case
of logarithmic axes, <increment> is applied multiplicatively.

Alternatively, the final form allows ticks to be placed on an axis individ-
ually, and each given its own textual label.

The following example sets the xl-axis to have tick marks at x = 0.05,
0.1, 0.2 and 0.4. The x2-axis has symbolically labelled tics at x = 1/m, 2/,
etc., pointing outwards from the plot. The left-hand y-axis has tick marks
placed automatically whereas the y2-axis has no tics at all. The overall
effect is shown in Figure 4.4.

set log x1x2

set grid x2

set xtics 0.05, 2, 0.4
set x2tics border \

("$\frac{1}{\pi}$" 1/pi, "$\frac{1}{2\pi}$" 1/(2x*pi),
"$\frac{1}{3\pi}$" 1/(3xpi), "$\frac{1}{4\pi}$" 1/(4*pi),
"$\frac{1}{5\pi}$" 1/(5xpi), "$\frac{1}{6\pi}$" 1/(6*pi))

set ytics autofreq
set noy2tics

Minor tick marks can be placed on axes with the set mxtics command,
which has the same syntax as above.

4.6 Keys and Legends

By default, plots are displayed with legends in their top-right corners. The
textual description of each dataset is drawn by default from the command
used to plot it. Alternatively, the user may specify his own description for
each dataset by following the plot command with the title modifier, as
follows:

plot sin(x) title ’A sine wave’
plot cos(x) title ’?

In the lower case, a blank title is specified, in which case PyXPlot makes
no entry for the dataset in the legend. This is useful if it is desired to
place some but not all datasets into the legend of a plot. Alternatively, the
production of the legend can be completely turned off for all datasets using

4.6. KEYS AND LEGENDS 47

=y
3
ot
3
o
3
w
3
v}
3
3=

exp(z)sin(1/z)

0.05 0.1 0.2 0.4

Figure 4.4: A plot illustrating some of the crossing points of the function
exp(z)sin(1/x). The commands used to set up ticking on the axes in this

plot are as given in the text.

48 CHAPTER 4. ADVANCED PLOTTING

the command set nokey. The opposite effect can be achieved by the set
key command.

The set key command command can also be used to dictate where on
the plot the legend should be placed, using a syntax along the lines of:

set key top right

The following recognised positioning keywords are self-explanatory: top,
bottom, left, right, xcentre and ycentre. The word outside places the
key outside the plot, on its right side. The words below and above place
legends below and above the plot respectively.

In addition, two positional offset co-ordinates may be specified after such
keywords — the first value is assumed to be an z-offset, and the second a
y-offset, both in units of centimetres. For example:

set key bottom left 0.0 -2

would display a key below the bottom left corner of the graph.

By default, entries in the key are placed in a single vertical list. They
can instead be arranged into a number of columns by means of the set
keycolumns command. This should be followed by the integer number of
desired columns, for example:

set keycolumns 2

An example of a plot with a two-column legend is given in Figure 4.5.

4.7 The linestyle Keyword

At times, the string of style keywords placed after the with modifier in plot
commands can grow rather unwieldy in its length. For clarity, frequently
used plot styles can be stored as linestyles; despite the name, this is true of
styles involving points as well as lines. The syntax for setting a linestyle is:

set linestyle 2 points pointtype 3

where the 2 is the identification number of the linestyle. In a subsequent
plot statement, this linestyle can be recalled as follows:

plot sin(x) with linestyle 2

4.7. THE LINESTYLE KEYWORD 49

0.6 | G
04 | 1
0.2 |) -
0 1 1 1
0 0.2 0.4 0.6
x
e sin(z)
---- xexp(x) - x cos(x)

Figure 4.5: This plot shows how rapidly three functions, often approximated
as x, deviate from that approximation. Furthermore it is an example of a
plot with a two-column legend, positioned below the plot using set key
below. The complete script used to produce the plot can be found on
the PyXPlot website at http://www.pyxplot.org.uk/examples/Manual/
07legends/.

20 CHAPTER 4. ADVANCED PLOTTING

4.8 Colour Plotting

In the with clause of the plot command, the modifier colour, which can be
abbreviated to ‘c’, can be used to manually select the colour in which each
dataset is to be plotted. It should be followed either by an integer, to set a
colour from the present palette, or by a colour name. A list of valid colour
names is given in Section 7.6. For example:

plot sin(x) with c¢ 5
plot sin(x) with colour blue

The colour modifier can also be used when defining linestyles.

PyXPlot has a palette of colours which it assigns sequentially to datasets
when colours are not manually assigned. This is also the palette to which
integers passed to set colour refer — the 5 above, for example. It may be
set using the set palette command, which differs in syntax from Gnuplot.
It should be followed by a comma-separated list of colours, for example:

set palette BrickRed, LimeGreen, CadetBlue

Another way of setting the palette, in a configuration file, is described in
Section 7.2; a list of valid colour names is given in Section 7.6.

4.9 Plotting Many Files at Once

PyXPlot allows the wildcards * and ? to be used in the filenames of data
files supplied to the plot command. For example, the following would plot
all data files in the current directory with a .dat suffix, using the same plot
options:

plot ’*.dat’ with linewidth 2

In the legend, full filenames are displayed, allowing the data files to be
distinguished. As in Gnuplot, a blank filename passed to the plot command
causes the last used data file to be used again, for example:

plot ’data.dat’ using 1:2, ’’ using 2:3

or even:

plot ’*.dat’ using 1:2, ’’ using 2:3

The * and ? wildcards can be used in a similar fashion in the load
command.

4.10. BACKING UP OVER-WRITTEN FILES 51

4.10 Backing Up Over-Written Files

By default, when graphical output is sent to a file — i.e. a postscript file or
a bitmap image — pre-existing files are overwritten if their filenames match
that of the file which PyXPlot generates. This behaviour may be changed
with the set backup command, which has the syntax:

set backup
set nobackup

When this switch is turned on, pre-existing files will be renamed with a
tilde appended to their filenames, rather than being overwritten.

52

CHAPTER 4. ADVANCED PLOTTING

Chapter 5

Labelling Plots and
Producing Galleries

So far, we have talked exclusively about how to plot graphs with PyXPlot.
In this chapter, we discuss how to label graphs and place simple vector
graphics around them.

5.1 Adding Arrows and Text Labels to Plots
This section describes how to put arrows and text labels on plots; the syntax
is similar, though not identical, to that used by Gnuplot. PyXPlot extends

Gnuplot’s syntax to make it possible to to set the colours and styles of arrows
and text labels.

5.1.1 Arrows

Arrows may be placed on plots using the set arrow command. A simple
example would be:

set arrow 1 from 0,0 to 1,1

The number 1 immediately following set arrow specifies an identification
number for the arrow, allowing it to be subsequently removed via the com-
mand:

unset arrow 1
or equivalently, via:

set noarrow 1

53

54 CHAPTER 5. LABELLED PLOTS AND GALLERIES

The set arrow command can be followed by the keyword with to spec-
ify the style of the arrow. For example, the keywords nohead, head and
twohead, placed after the keyword with, can be used to generate arrows
with no arrow heads, normal arrow heads, or two arrow heads. twoway is
an alias for twohead. For example:

set arrow 1 from 0,0 to 1,1 with nohead
Line types and colours can also be specified after the keyword with:

set arrow 1 from 0,0 to 1,1 with nohead \
linetype 1 c blue

As in Gnuplot, the co-ordinates for the start and end points of the arrow
can be specified in a range of co-ordinate systems. The co-ordinate system to
be used should be specified immediately before the co-ordinate value. The
default system, first measures the graph using the z- and y-axes. The
second system uses the x2- and y2-axes. The screen and graph systems
both measure in centimetres from the origin of the graph. In the following
example, we use these specifiers, and specify co-ordinates using variables
rather than doing so explicitly:

x0 = 0.0
y0O = 0.0
x1 =1.0
yl1 =1.0

set arrow 1 from first x0, first yO0 \
to screen x1, screen yl \
with nohead

In addition to these four options, which are those available in Gnuplot,
the syntax ‘axism’ may also be used, to use the nth z- or y-axis — for
example, ‘axis3’. This allows arrows to reference any arbitrary axis on
plots which make use of large numbers of parallel axes (see Section 4.5).

5.1.2 Text Labels

Text labels may be placed on plots using the set label command. As with
all textual labels in PyXPlot, these are rendered in KITEX:

set label 1 ’Hello World’ at 0,0

As in the previous section, the number 1 is a reference number, which
allows the label to be removed by either of the following two commands:

5.1. ADDING ARROWS AND TEXT LABELS TO PLOTS 55

set nolabel 1
unset label 1

The positional co-ordinates for the text label, placed after the at keyword,
can be specified in any of the co-ordinate systems described for arrows above.
A rotation angle may optionally be specified after the keyword rotate, to
rotate text counter-clockwise by a given angle, measured in degrees. For
example, the following would produce upward-running text:

set label 1 ’Hello World’ at axis3 3.0, axis4 2.7 rotate 90

A colour can also be specified, if desired, using the with colour modifier.
For example, the following would produce a green label at the origin:

set label 2 ’This label is green’ at 0, O with colour green

The fontsize of these text labels can be set globally using the set fontsize
command. This applies not only to the set label command, but also to
plot titles, axis labels, keys, etc. The value given should be an integer in
the range —4 < x < 5. The default is zero, which corresponds to ITEX’s
normalsize; —4 corresponds to tiny and 5 to Huge.

The set textcolour command can be used to globally set the colour
of all text output, and applies to all of the text that the set fontsize
command does. It is especially useful when producing plots to be embedded
in presentation slideshows, where bright text on a dark background may be
desired. It should be followed either by an integer, to set a colour from the
present palette, or by a colour name. A list of the recognised colour names
can be found in Section 7.6. For example:

set textcolour 2
set textcolour blue

By default, each label’s specified position corresponds to its bottom left
corner. This alignment may be changed with the set texthalign and set
textvalign commands. The former takes the options left, centre or
right, and the latter takes the options bottom, centre or top, for example:

set texthalign right
set textvalign top

An example of a somewhat unconventional plot containing many labels
and lines can be found in Figure 5.1.

56 CHAPTER 5. LABELLED PLOTS AND GALLERIES

Northern Territory

Queensland

Western Australia

Brisbane
South Australia

New South Wales

Sydney
Canberra

Capital Territory
Adelnide Melbourne

. Victoria 3
AUStI’a/Ia Tasmania

Hobart

Figure 5.1: A map of Australia, plotted using PyXPlot. The data were
obtained from http://www.maproom.psu.edu/dcw/ (for the coastal out-
lines and state boundaries) and http://en.wikipedia.org (for the city
locations). The data files and script used to produce this map can be

downloaded from the PyXPlot website at http://www.pyxplot.org.uk/
examples/Manual/08map/.

5.2. GRIDLINES o7

5.2 Gridlines

Gridlines may be placed on a plot and subsequently removed via the state-
ments:

set grid
set nogrid

respectively. The following commands are also valid:

unset grid
unset nogrid

By default, gridlines are drawn from the major and minor ticks of the default
x- and y-axes (which are the first z- and y-axes unless set otherwise in the
configuration file; see Chapter 7.1). However, the axes which should be used
may be specified after the set grid command:

set grid x2y2
set grid x x2y2

The top example would connect the gridlines to the ticks of the x2- and
y2-axes, whilst the lower would draw gridlines from both the z- and the
r2-axes.

If one of the specified axes does not exist, then no gridlines will be drawn
in that direction. Gridlines can subsequently be removed selectively from
some axes via:

unset grid x2x3

The colours of gridlines can be controlled via the set gridmajcolour
and set gridmincolour commands, which control the gridlines emanating
from major and minor axis ticks respectively. An example would be:

set gridmincolour blue

Any of the colour names listed in Section 7.6 can be used.
A related command is set axescolour, which has a syntax similar to
that above, and sets the colour of the graph’s axes.

5.3 Multi-plotting

Gnuplot has a plotting mode called multiplot which allows many graphs to
be plotted together and displayed side-by-side. The basic syntax of this
mode is reproduced in PyXPlot, but it is hugely extended.

58 CHAPTER 5. LABELLED PLOTS AND GALLERIES

The mode is entered by the command set multiplot. This can be
compared to taking a blank sheet of paper on which to place plots. Plots
are then placed on that sheet of paper, as usual, with the plot command.
The position of each plot is set using the set origin command, which takes
a comma-separated (x,y) co-ordinate pair, measured in centimetres. The
following, for example, would plot a graph of sin(x) to the left of a plot of
cos(z):

set multiplot
plot sin(x)

set origin 10,0
plot cos(x)

The multiplot page may subsequently be cleared with the clear com-
mand, and multiplot mode may be left using the set nomultiplot com-
mand.

5.3.1 Deleting, Moving and Changing Plots

Each time a plot is placed on the multiplot page in PyXPlot, it is allocated
a reference number, which is output to the terminal. Reference numbers
count up from zero each time the multiplot page is cleared. A number of
commands exist for modifying plots after they have been placed on the page,
selecting them by making reference to their reference numbers.

Plots may be removed from the page with the delete command, and
restored with the undelete command:

delete <number>
undelete <number>

The reference numbers of deleted plots are not reused until the page is
cleared, as they may always be restored with the undelete command; plots
which have been deleted simply do not appear.

Plots may also be moved with the move command. For example, the
following would move plot 23 to position (8,8) measured in centimetres:

move 23 to 8,8
In multiplot mode, the replot command can be used to modify the last
plot added to the page. For example, the following would change the title

of the latest plot to ‘foo’, and add a plot of cos(x) to it:

set title ’foo’
replot cos(x)

5.3. MULTI-PLOTTING 29

Additionally, it is possible to modify any plot on the page, by first se-
lecting it with the edit command. Subsequently, the replot command will
act upon the selected plot. The following example would produce two plots,
and then change the colour of the text on the first:

set multiplot
plot sin(x)

set origin 10,0
plot cos(x)

edit O # Select the first plot ...
set textcolour red
replot # ... and replot it.

The edit command can also be used to view the settings which are
applied to any plot on the multiplot page — after executing edit 0, the
show command will show the settings applied to plot zero.

When a new plot is added to the page, the replot command always
switches to act upon this most recent plot.

5.3.2 Listing Items on a Multiplot

A listing of all of the items on a multiplot, giving their reference numbers
and the commands used to produce them, can be obtained using the list
command. For example:

pyxplot> list
ID | Command
0 plot f(x)
d 1 text ’Figure 1: A plot of f(x)’
2 text ’Figure 1: A plot of $f(x)$’

Ttems marked ’d’ are deleted

In this example, the user has plotted a graph of f(x), and added a
caption to it. The ID column lists the reference numbers of each multiplot
item. Item 1 has been deleted, and this is indicated by the d to the left of
its reference number.

5.3.3 Linked Axes

The axes of plots can be linked together, in such a way that they always
share a common scale. This can be useful when placing plots next to one
another, firstly, of course, if it is of intrinsic interest to ensure that they
are on a common scale, but also because the two plots then do not both
need their own axis labels, and space can be saved by one sharing the labels

60 CHAPTER 5. LABELLED PLOTS AND GALLERIES

from the other. In PyXPlot, an axis which borrows its scale and labels from
another is called a linked axis.

Such axes are declared by setting the label of the linked axis to a magic
string such as linkaxis 0. This magic label would set the axis to borrow
its scale from an axis from plot zero. The general syntax is ‘linkaxis n
m’, where n and m are two integers, separated by a comma or whitespace.
The first, n, indicates the plot from which to borrow an axis; the second,
m, indicates whether to borrow the scale of axis x1, 22, x3, etc. By default,
m = 1. The linking will fail, and a warning result, if an attempt is made to
link to an axis which doesn’t exist.

5.3.4 Text Labels, Arrows and Images

In addition to placing plots on the multiplot page, text labels may also be
inserted independently of any plots, using the text command. This has the
following syntax:

text ’This is some text’ at x,y

In this case, the string ‘This is some text’ would be rendered at position
(z,y) on the multiplot. As with the set label command, a colour may
optionally be specified with the with colour modifier, as well as a rotation
angle to rotate text labels through any given angle, measured in degrees
counter-clockwise. For example:

text ’This is some text’ at x,y rotate r with colour red

The commands set textcolour, set texthalignand set textvalign,
which have already been described in the context in the set label com-
mand, can also be used to set the colour and alignment of text produced
with the text command. A useful application of this is to produce centred
headings at the top of multiplots.

As with plots, each text item has a unique identification number, and can
be moved around, deleted or undeleted with the move, delete and undelete
commands.

It should be noted that the text command can also be used outside
of the multiplot environment, to render a single piece of short text instead
of a graph. Omne obvious application is to produce equations rendered as
graphical files for inclusion in talks.

Arrows may also be placed on multiplot pages, independently of any
plots, using the arrow command, which has syntax:

arrow from x,y to x,y

5.3. MULTI-PLOTTING 61

As above, arrows receive unique identification numbers, and can be
deleted and undeleted.

The arrow command may be followed by the with keyword to specify to
style of the arrow. The style keywords which are accepted are identical to
those accepted by the set arrow command (see Section 5.1.1). For example:

arrow from x1,yl to x2,y2 \
with twohead colour red

Bitmap images in jpeg format may be placed on the multiplot using the
jpeg command. This has syntax:

jpeg ’filename’ at x,y width w

As an alternative to the width keyword the height of the image can be
specified, using the analogous height keyword. An optional angle can also
be specified using the rotate keyword; this causes the included image to be
rotated counter-clockwise by a specified angle, measured in degrees.

Vector graphic images in eps format may be placed on to a multiplot us-
ing the eps command, which has a syntax analogous to the jpeg command.
However neither height nor width need be specified; in this case the image
will be included at its native size. For example:

eps ’filename’ at 3,2 rotate 5

will place the eps file with its bottom-left corner at position (3,2)cm from
the origin, rotated counter-clockwise through 5 degrees.

5.3.5 Speed Issues

By default, whenever an item is added to a multiplot, or an existing item
moved or replotted, the whole multiplot is replotted to show the change.
This can be a time consuming process on large and complex multiplots. For
this reason, the set nodisplay command is provided, which stops PyXPlot
from producing any output. The set display command can subsequently
be issued to return to normal behaviour.

This can be especially useful in scripts which produce large multiplots.
There is no point in producing output at each step in the construction of a
large multiplot, and a great speed increase can be achieved by wrapping the
script with:

set nodisplay

[...prepare large multiplot...]
set display

refresh

62 CHAPTER 5. LABELLED PLOTS AND GALLERIES

5.3.6 The refresh command

The refresh command is rather similar to the replot command, but pro-
duces an exact copy of the latest display. This can be useful, for example,
after changing the terminal type, to produce a second copy of a multiplot
page in a different format. But the crucial difference between this command
and replot is that it doesn’t replot anything. Indeed, there could be only
textual items and arrows on the present multiplot page, and no graphs to
replot.

5.4 LaTeX and PyXPlot

The text command can straightforwardly be used to render simple one-
line IXTEX strings, but sometimes the need arises to place more substantial
blocks of text onto a plot. For this purpose, it can be useful to use the ATEX
parbox or minipage environments' For example:

text ’\parbox[t]{6cm}{\setlength{\parindent}{icm} \
\noindent There once was a lady from Hyde, \\ \

Who ate a green apple and died, \\ \

\indent While her lover lamented, \\ \

\indent The apple fermented, \\ \

and made cider inside her inside.}’

If unusual mathematical symbols are required, for example those in the
amsmath package, such a package can be loaded using the set preamble
command. For example:

set preamble \usepackage{marvosym}
text "{\Huge\Dontwash\ \NoIroning\ \NoTumbler}$\;$ Do not \
wash, iron or tumble-dry this plot."

'Remember, any valid IXTREX string can be passed to the text command and set label
command.

Chapter 6

Numerical Analysis

In this chapter, we outline the facilities provided for simple numerical anal-
ysis and data processing within PyXPlot.
6.1 Function Splicing

In PyXPlot, as in Gnuplot, user-defined functions may be declared on the
command line:

f(x) = x*sin(x)

It is also possible to declare functions which are valid only over certain
ranges of argument space. For example, the following function would only
be valid within the range —2 < z < 2:1

f(x)[-2:2] = x*sin(x)

The following function would only be valid when all of a,b,c were in the
range —1 — 1:

f(a,b,c)[-1:11[-1:1]1[-1:1] = a+b+c

If an attempt is made to evaluate a function outside of its specified
range, then an error results. This may be useful, for example, for plotting
a function only within some specified range. The following would plot the
function sinc(z), but only in the range —2 < z < T:

f(x)[-2:7] = sin(x)/x
plot £f(x)

!The syntax [-2:2] can also be written [-2 to 2].

63

64 CHAPTER 6. NUMERICAL ANALYSIS

0.5 F

Figure 6.1: A simple example of the use of function splicing to truncate the
function sinc(x) at © = —2 and & = 7. See details in the text.

The output of this particular example can be seen in Figure 6.1. A similar ef-
fect could also have been achieved with the select keyword; see Section 4.3.

It is possible to make multiple declarations of the same function, over dif-
ferent regions of argument space; if there is an overlap in the valid argument
space for multiple definitions, then later declarations take precedence. This
makes it possible to use different functional forms for functions in different
parts of parameter space, and is especially useful when fitting functions to
data, if different functional forms are to be spliced together to fit different
regimes in the data.

Another application of function splicing is to work with functions which
do not have analytic forms, or which are, by definition, discontinuous, such
as top-hat functions or Heaviside functions. The following example would
define f(x) to be a Heaviside function:

f(x) =0
f(x)[0:] =1

The following example would define f(z) to follow the Fibonacci sequence,
though it is not at all computationally efficient, and it is inadvisable to
evaluate it for z 2 8:

f(x) =1
f(x)[2:] = £(x-1) + £(x-2)
plot [0:8] f(x)

6.2. DATAFILE INTERPOLATION: SPLINE FITTING 65

15 T T T T T T T T T T

10

Figure 6.2: An example of the use of function splicing to define a function
which does not have an analytic form — in this case, the Fibonacci sequence.
See the text for details.

The output of this example can be seen in Figure 6.2

6.2 Datafile Interpolation: Spline Fitting

Gnuplot allows data to be interpolated using its csplines plot style, for
example:

plot ’data.dat’ with csplines
plot ’data.dat’ with acsplines

where the upper statement fits a spline through all of the datapoints, and
the lower applies some smoothing to the data first. This syntax also is
supported in PyXPlot, though splines may also be fit through data using a
new, more powerful, spline command. This has a syntax similar to that of
the fit command, for example:

spline f() ’data.dat’ index 1 using 2:3

In this example, the function f(z) now becomes a special function, repre-
senting a spline fit to the given datafile. It can be plotted or otherwise used
in exactly the same way as any other function. This approach is more flex-
ible than Gnuplot’s syntax, as the spline f(x) can subsequently be spliced
together with other functions (see the previous section), or used in any

66 CHAPTER 6. NUMERICAL ANALYSIS

mathematical operation. The following code snippet, for example, would
fit splines through two datasets, and then plot the interpolated differences
between them, regardless, for example, of whether the two datasets were
sampled at exactly the same = co-ordinates:

spline f() ’datal.dat’
spline g() ’data2.dat’
plot f(x)-g(x)
Smoothed splines can also be produced:
spline £() ’datal.dat’ smooth 1.0
where the value 1.0 determines the degree of smoothing to apply; the higher
the value, the more smoothing is applied. The default behaviour is not to
smooth at all — equivalent to smooth 0.0 — and a value of 1.0 corresponds

to the default amount of smoothing applied in Gnuplot’s acsplines plot
style.

6.3 Tabulating Functions and Slicing Data Files

PyXPlot’s tabulate command can be used to produce a text file containing
the values of a function at a set of points. For example, the following would
produce a data file called sine.dat containing a list of values of the sine
function:

set output ’sine.dat’
tabulate [-pi:pi] sin(x)

Multiple functions may be tabulated into the same file, either by using the
using modifier:

tabulate [0:2%pi] sin(x):cos(x):tan(x) u 1:2:3:4
or by placing them in a comma-separated list, as in the plot command:
tabulate [0:2x%pi] sin(x), cos(x), tan(x)

The samples setting can be used to control the number of points that
are inserted into the data file:

set samples 200

6.4. NUMERICAL INTEGRATION AND DIFFERENTIATION 67

If the z-axis is set to be logarithmic then the points at which the functions
are evaluated are spaced logarithmically.

The tabulate command can also be used to select portions of data files
for output into a new file. For example, the following would write out the
third, sixth and ninth columns of the datafile input.dat, but only when the
arcsine of the value in the fourth column is positive:

set output ’filtered.dat’
tabulate ’input.dat’ u 3:6:9 select (asin($4)>0)

The select, using and every modifiers operate in the same manner as with
the plot command.

The format used in each column of the output file is chosen automati-
cally with integers and small numbers treated intelligently to produce output
which preserves accuracy, but is also easily human-readable. If desired, how-
ever, a format statement may be specified using the with format specifier.
The syntax for this is similar to that expected by the Python string sub-
stitution operator (%)2. For example, to tabulate the values of 22 to very
many significant figures one could use:

tabulate x**2 with format "%27.20e"

If there are not enough columns present in the supplied format statement
it will be repeated in a cyclic fashion; e.g. in the example above the single
supplied format is used for both columns.

6.4 Numerical Integration and Differentiation

Special functions are available for performing numerical integration and dif-
ferentiation of expressions: int_dx() and diff_dx(). In each case, the ‘x’
may be replaced with any valid one-letter variable name, to integrate or
differentiate with respect to that dummy variable.

The function int_dx() takes three parameters — firstly the expression
to be integrated, which should be placed in quotes as a string, followed by
the minimum and maximum integration limits. For example, the following
would plot the integral of the function sin(x):

plot int_dt(’sin(t)’,0,x)

The function diff _dx () takes two obligatory parameters plus two further
optional parameters. The first is the expression to be differentiated, which,
as above, should be placed in quotes as a string, followed by the point at
which the differential should be evaluated, followed by optional parameters
€1 and €2 which are described below. The following example would evaluate
the differential of the function cos(x) with respect to x at = 1.0:

2Note that this operator can also be used within PyXPlot; see Section 2.3 for details.

68 CHAPTER 6. NUMERICAL ANALYSIS

print diff_dx(’cos(x)’, 1.0)

Differentials are evaluated by a simple differencing algorithm, and a pa-
rameter e controls the spacing with which to perform the differencing oper-
ation:

df ~ f(xo+¢/2) = flao —¢/2)

de|,_, €

where € = €1 + xey. By default, e; = €5 = 1079, which is appropriate for the
differentiation of most well-behaved functions.

Advanced users may be interested to know that integration is performed
using the quad function of the integrate package of the scipy numerical
toolkit for Python — a general purpose integration routine.

6.5 Histograms

The histogram command takes data from a file and bins it, producing a
function that represents the frequency distribution of the supplied data. A
histogram is defined as a function consisting of discrete intervals, the area
under each of which is equal to the number of points binned in that interval.
For example:

histogram f() ’input.dat’

would bin the points in the first column of the file input.dat into bins of
unit width and produce a function f(), the value of which at any given point
was equal to the number of items in the bin at that point.

Modifiers can be supplied to the histogram command command to con-
trol the bins that it uses. The binwidth modifier sets the width of the bins
used and the binorigin modifier their origin. For example:

histogram wabbitcount() ’rabits.dat’ binorigin 0.5 binwidth 2

bins the rabbit data into bins between 0.5 and 2.5, 2.5 and 4.5, etc. Alter-
natively the bins modifier allows an arbitrary set of bins to be specified.
For example the command:

histogram g() ’input.dat’ bins (1, 2, 4)

would bin the points in the first column of the file input.dat into two bins,
r=1—2andzr=2—4.

A range can be supplied immediately following the command, using the
same syntax as in the plot and fit commands; only points that fall in that
range will then be binned. In the same way as for the plot command, the

6.5. HISTOGRAMS 69

index, every, using and select modifiers can also be used to bin different
portions of a datafile.

Note that, although a histogram is similar to a bar chart, they are subtly
different. A bar chart has the height of the bar equal to the number of points
that it represents; for a histogram the area of the bar is equal to the number
of points. To produce a bar chart use the histogram command and then
multiply by the bin width when plotting.

If the function produced by the histogram command is plotted using the
boxes plot style, box boundaries will be drawn to coincide with the bins
into which the data were sorted.

70

CHAPTER 6. NUMERICAL ANALYSIS

Chapter 7

Configuring PyXPlot

7.1 Overview

As is the case in Gnuplot, PyXPlot can be configured using the set com-
mand — for example:

set output ’foo.eps’

would cause plotted output to be written the file foo.eps. Typing set on
its own returns a list of all recognised configuration parameters of the set
command. The unset command may be used to return settings to their
default values; it recognises a similar set of parameter names, and once
again, typing unset on its own gives a list of them. The show command can
be used to display the values of settings.

7.2 Configuration Files

PyXPlot can also be configured by means of a configuration file, with file-
name .pyxplotrc, which is scanned once upon startup. This file may be
placed either in the user’s current working directory, or in his home directory.
In the event of both files existing, settings in the former override those in
the latter; in the event of neither file existing, PyXPlot uses its own default
settings.

The configuration file should take the form of a series of sections, each
headed by a section heading enclosed in square brackets, and followed by
variables declared using the format:

OUTPUT=foo0.eps

The following sections are used, although they do not all need to be
present in any given file:

71

72

CHAPTER 7. CONFIGURING PYXPLOT

settings — contains parameters similar to those which can be set with
the set command. A complete list is given in Section 7.4 below.

terminal — contains parameters for altering the behaviour and ap-
pearance of PyXPlot’s interactive terminal. A complete list is given
in Section 7.5.

variables — contains variable definitions. Any variables defined in
this section will be predefined in the PyXPlot mathematical environ-
ment upon startup.

functions — contains function definitions.

colours — contains a variable ‘palette’, which should be set to a
comma-separated list of the sequence of colours in the palette used to
plot datasets. The first will be called colour 1 in PyXPlot, the second
colour 2, etc. A list of recognised colour names is given in Section 7.6.

latex — contains a variable ‘preamble’, which is prefixed to the begin-
ning of all WTEX text items, before the \begin{document} statement.
It can be used to define custom IXTEX macros, or to include pack-
ages using the \includepackage{} command. The preamble can be

changed using the set preamble command.

7.3 An Example Configuration File

As an example, the following is a configuration file which would represent

PyXPlot’s default configuration:

[settings]
ASPECT=1.0
AUTOASPECT=0N
AXESCOLOUR=Black
BACKUP=0FF
BAR=1.0
BINORIGIN=0
BINWIDTH=1
BOXFROM=0
BOXWIDTH=0
COLOUR=0N
DATASTYLE=points
DISPLAY=0N
DPI=300
ENLARGE=0FF
FONTSIZE=0

7.3. AN EXAMPLE CONFIGURATION FILE 73

FUNCSTYLE=1ines
GRID=0FF
GRIDAXISX=1
GRIDAXISY=1
GRIDMAJCOLOUR=Grey60
GRIDMINCOLOUR=Grey90
KEY=0N

KEYCOLUMNS=1
KEYPOS=TOP RIGHT
KEY_X0FF=0.0
KEY_YOFF=0.0
LANDSCAPE=0QFF
LINEWIDTH=1.0
MULTIPLOT=0FF
ORIGINX=0.0
ORIGINY=0.0

OUTPUT=
POINTLINEWIDTH=1.0
POINTSIZE=1.0
SAMPLES=250
TERMANTIALIAS=0N
TERMINVERT=0FF
TERMTRANSPARENT=0FF
TERMTYPE=X11_singlewindow
TEXTCOLOUR=Black
TEXTHALIGN=Left
TEXTVALIGN=Bottom
TITLE=

TIT_XOFF=0.0
TIT_YOFF=0.0
WIDTH=8.0

[terminal]
COLOUR=0FF
COLOUR_ERR=Red
COLOUR_REP=Green
COLOUR_WRN=Brown
SPLASH=0N

[variables]
pi = 3.14159265358979

[colours]
palette = Black, Red, Blue, Magenta, Cyan, Brown, Salmon, Gray,

74

CHAPTER 7. CONFIGURING PYXPLOT

Green, NavyBlue, Periwinkle, PineGreen, SeaGreen, GreenYellow,
Orange, CarnationPink, Plum

[1latex]
PREAMBLE=

7.4 Configuration Options: settings section

The following table provides a brief description of the function of each of
the parameters in the settings section of the above configuration file, with
a list of possible values for each:

ASPECT

AUTOASPECT

AXESCOLQOUR

BACKUP

BAR

BINORIGIN

BINWIDTH

Possible values: Any floating-point number.
Analogous set command: set size ratio

Sets the aspect ratio of plots.

Possible values: ON / OFF

Analogous set command: set size ratio

Sets whether plots have the automatic aspect ratio,
which is the golden ratio. If ON, then the above setting
is ignored.

Possible values: Any recognised colour.
Analogous set command: set axescolour

Sets the colour of axis lines and ticks.

Possible values: ON / OFF

Analogous set command: set backup

When this switch is set to ‘ON’, and plot output is being
directed to file, attempts to write output over existing
files cause a copy of the existing file to be preserved,
with a tilde after its old filename (see Section 4.10).
Possible values: Any floating-point number.
Analogous set command: set bar

Sets the horizontal length of the lines drawn at the
end of errorbars, in units of their default length.
Possible values: Any floating-point number
Analogous set command: set binorigin

Sets the point along the x axis from which the bins
used by the histogram command originate.

Possible values: Any floating-point number
Analogous set command: set binwidth

Sets the widths of the bins used by the histogram
command.

7.4. CONFIGURATION OPTIONS: SETTINGS SECTION 75

BOXFROM

BOXWIDTH

COLOUR

DATASTYLE

DISPLAY

DPI

ENLARGE

FONTSIZE

FUNCSTYLE

Possible values: Any floating-point number.
Analogous set command: set boxfrom

Sets the horizontal point from which bars on bar charts
appear to emanate.

Possible values: Any floating-point number.
Analogous set command: set boxwidth

Sets the default width of boxes on barcharts. If
negative, then the boxes have automatically selected
widths, so that the interfaces between bars occur at
the horizontal midpoints between the specified data-
points.

Possible values: ON / OFF

Analogous set command: set terminal

Sets whether output should be colour (ON) or
monochrome (OFF).

Possible values: Any plot style.

Analogous set command: set data style

Sets the plot style used by default when plotting data
files.

Possible values: ON / OFF

Analogous set command: set display

When set to ‘ON’, no output is produced until the set
display command is issued. This is useful for speed-
ing up scripts which produce large multiplots; see Sec-
tion 5.3.5 for more details.

Possible values: Any floating-point number.
Analogous set command: set dpi

Sets the sampling quality used, in dots per inch,
when output is sent to a bitmapped terminal (the
jpeg/gif /png terminals).

Possible values: ON / OFF

Analogous set command: set terminal

When set to ‘ON’ output is enlarged or shrunk to fit
the current paper size.

Possible values: Integers in the range —4 — 5.
Analogous set command: set fontsize

Sets the fontsize of text, varying between IXTEX’s tiny
(—4) and Huge (5).

Possible values: Any plot style.

Analogous set command: set function style
Sets the plot style used by default when plotting func-
tions.

76

GRID

GRIDAXISX

GRIDAXISY

GRIDMAJCOLOUR

GRIDMINCOLOUR

KEY

KEYCOLUMNS

KEYPOS

KEY_XOFF

KEY_YOFF

CHAPTER 7. CONFIGURING PYXPLOT

Possible values: ON / OFF

Analogous set command: set grid

Sets whether a grid should be displayed on plots.
Possible values: Any integer.

Analogous set command: None

Sets the default z-axis to which gridlines should at-
tach, if the set grid command is called without spec-
ifying which axes to use.

Possible values: Any integer.

Analogous set command: None

Sets the default y-axis to which gridlines should at-
tach, if the set grid command is called without spec-
ifying which axes to use.

Possible values: Any recognised colour.
Analogous set command: set gridmajcolour
Sets the colour of major grid lines.

Possible values: Any recognised colour.
Analogous set command: set gridmincolour
Sets the colour of minor grid lines.

Possible values: ON / OFF

Analogous set command: set key

Sets whether a legend is displayed on plots.

Possible values: Any integer > 0.

Analogous set command: set keycolumns

Sets the number of columns into which the legends of
plots should be divided.

Possible values: ‘TOP RIGHT’, ‘TOP MID-
DLE’, ‘TOP LEFT’, ‘MIDDLE RIGHT’, ‘MIDDLE
MIDDLE’, ‘MIDDLE LEFT’, ‘BOTTOM RIGHT”,
‘BOTTOM MIDDLE’, ‘BOTTOM LEFT’, ‘BELOW’,
‘OUTSIDE".

Analogous set command: set key

Sets where the legend should appear on plots.
Possible values: Any floating-point number.
Analogous set command: set key

Sets the horizontal offset, in approximate graph-
widths, that should be applied to the legend, relative
to its default position, as set by KEYPOS.

Possible values: Any floating-point number.
Analogous set command: set key

Sets the vertical offset, in approximate graph-heights,
that should be applied to the legend, relative to its
default position, as set by KEYPOS.

7.4. CONFIGURATION OPTIONS: SETTINGS SECTION 7

LANDSCAPE

LINEWIDTH

MULTIPLOT

ORIGINX

ORIGINY

OUTPUT

PAPER_HEIGHT

PAPER_NAME

PAPER_WIDTH

POINTLINEWIDTH

Possible values: ON / OFF

Analogous set command: set terminal

Sets whether output is in portrait orientation (OFF),
or landscape orientation (ON).

Possible values: Any floating-point number.
Analogous set command: set linewidth

Sets the width of lines on plots, as a multiple of the
default.

Possible values: ON / OFF

Analogous set command: set multiplot

Sets whether multiplot mode is on or off.

Possible values: Any floating point number.
Analogous set command: set origin

Sets the horizontal position, in centimetres, of the de-
fault origin of plots on the page. Most useful when
multiplotting many plots.

Possible values: Any floating point number.
Analogous set command: set origin

Sets the vertical position, in centimetres, of the de-
fault origin of plots on the page. Most useful when
multiplotting many plots.

Possible values: Any string.

Analogous set command: set output

Sets the output filename for plots. If blank, the de-
fault filename of pyxplot.foo is used, where ‘foo’ is an
extension appropriate for the file format.

Possible values: Any floating-point number.
Analogous set command: set papersize

Sets the height of the papersize for postscript output
in millimetres.

Possible values: A string matching any of the pa-
persizes listed in Table 3.1.

Analogous set command: set papersize

Sets the papersize for postscript output to one of the
pre-defined papersizes listed in Table 3.1.

Possible values: Any floating-point number.
Analogous set command: set papersize

Sets the width of the papersize for postscript output
in millimetres.

Possible values: Any floating-point number.
Analogous set command: set pointlinewidth
Sets the linewidth used to stroke points onto plots, as
a multiple of the default.

78

POINTSIZE

SAMPLES

TERMANTIALTIAS

TERMINVERT

TERMTRANSPARENT

TERMTYPE

TEXTCOLOUR

TEXTHALIGN

TEXTVALIGN

TITLE

CHAPTER 7. CONFIGURING PYXPLOT

Possible values: Any floating-point number.
Analogous set command: set pointsize

Sets the sizes of points on plots, as a multiple of their
normal sizes.

Possible values: Any integer.

Analogous set command: set samples

Sets the number of samples (datapoints) to be evalu-
ated along the z-axis when plotting a function.
Possible values: ON / OFF

Analogous set command: set terminal

Sets whether jpeg/gif/png output is antialiased, i.e.
whether colour boundaries are smoothed to disguise
the effects of pixelisation.

Possible values: ON / OFF

Analogous set command: set terminal

Sets whether jpeg/gif/png output has normal colours
(OFF), or inverted colours (ON).

Possible values: ON / OFF

Analogous set command: set terminal

Sets whether jpeg/gif/png output has transparent
background (ON), or solid background (OFF).
Possible values: X11_singlewindow,

X11 multiwindow, X11 persist, PS, EPS, PDF, PNG,
JPG, GIF

Analogous set command: set terminal

Sets whether output is sent to the screen or to disk,
and, in the latter case, the format of the output. The
ps option should be used for both encapsulated and
normal postscript output; these are distinguished us-
ing the ENHANCED option, above

Possible values: Any recognised colour.
Analogous set command: set textcolour

Sets the colour of all text output.

Possible values: Left, Centre, Right

Analogous set command: set texthalign

Sets the horizontal alignment of text labels to their
given reference positions.

Possible values: Top, Centre, Bottom

Analogous set command: set textvalign

Sets the vertical alignment of text labels to their given
reference positions.

Possible values: Any string.

Analogous set command: set title

Sets the title to appear at the top of the plot.

7.5. CONFIGURATION OPTIONS: TERMINAL SECTION 79

TIT_XOFF

TIT_YOFF

WIDTH

Possible values: Any floating point number.
Analogous set command: set title

Sets the horizontal offset of the title of the plot from
its default central location.

Possible values: Any floating point number.
Analogous set command: set title

Sets the vertical offset of the title of the plot from its
default location at the top of the plot.

Possible values: Any floating-point number.
Analogous set command: set width / set size
Sets the width of plots in centimetres.

7.5 Configuration Options: terminal section

The following table provides a brief description of the function of each of
the parameters in the terminal section of the above configuration file, with
a list of possible values for each:

COLOUR

COLOUR_ERR

COLOUR_REP

COLOUR_WRN

Possible values: ON / OFF

Analogous command-line switches: -c,
-—colour, -m, ——monochrome

Sets whether colour highlighting should be used in
the interactive terminal. If turned on, output is dis-
played in green, warning messages in amber, and er-
ror messages in red; these colours are configurable, as
described below. Note that not all UNIX terminals
support the use of colour.

Possible values: Any recognised terminal colour.
Analogous command-line switches: None.

Sets the colour in which error messages are displayed
when colour highlighting is used. Note that the list
of recognised colour names differs from that used in
PyXPlot; a list is given at the end of this section.
Possible values: Any recognised terminal colour.
Analogous command-line switches: None.

As above, but sets the colour in which PyXPlot dis-
plays its non-error-related output.

Possible values: Any recognised terminal colour.
Analogous command-line switches: None.

As above, but sets the colour in which PyXPlot dis-
plays its warning messages.

80 CHAPTER 7. CONFIGURING PYXPLOT

SPLASH Possible values: ON / OFF
Analogous command-line switches: -q, --quiet,
-V, -—verbose
Sets whether the standard welcome message is dis-
played upon startup.

The colours recognised by the COLOUR_XXX configuration options above
are: Red, Green, Brown, Blue, Purple, Magenta, Cyan, White, Normal. The
final option produces the default foreground colour of your terminal.

7.6 Recognised Colour Names

The following is a complete list of the colour names which PyXPlot recog-
nises in the set textcolour, set axescolour commands, and in the colours
section of its configuration file. It should be noted that they are case-
insensitive.

GreenYellow, Yellow, Goldenrod, Dandelion, Apricot, Peach, Melon,
YellowOrange, Orange, BurntOrange, Bittersweet, RedOrange, Mahogany,
Maroon, BrickRed, Red, OrangeRed, RubineRed, WildStrawberry, Salmon,
CarnationPink, Magenta, VioletRed, Rhodamine, Mulberry, RedViolet,
Fuchsia, Lavender, Thistle, Orchid, DarkOrchid, Purple, Plum, Violet,
RoyalPurple, BlueViolet, Periwinkle, CadetBlue, CornflowerBlue,
MidnightBlue, NavyBlue, RoyalBlue, Blue, Cerulean, Cyan, ProcessBlue,
SkyBlue, Turquoise, TealBlue, Aquamarine, BlueGreen, Emerald, JungleGreen,
SeaGreen, Green, ForestGreen, PineGreen, LimeGreen, YellowGreen,
SpringGreen, OliveGreen, RawSienna, Sepia, Brown, Tan, Gray, Grey,
Black, White, white, black.

The following further colours provide a scale of shades of grey from dark
to light, also case-insensitive.

grey05, greyl0, greylb, grey20, grey25, grey30, grey35, grey4o0,
grey45, greyb50, greyb5, grey60, grey65, grey70, grey75, grey80,
grey85, grey90, grey95.

The US spelling of grey, “gray”, is also accepted.
For a colour chart, the reader is referred to Appendix A, or to Ap-
pendix B of the PyX Reference Manual.!

"http://pyx.sourceforge.net/manual/colorname . html

Chapter 8

Command Reference

This chapter contains an alphabetically ordered list of all the commands
that PyXPlot understands.

81 7

7 [<help option> ...]

The 7 symbol is a shortcut to the help command.

8.2 !

! <shell command>
‘<shell command>‘

Shell commands can be executed from within PyXPlot by prefixing them
with pling (!) characters, for example:

Imkdir foo

As an alternative, back-quotes (‘) can be used to substitute the output of a
shell command into a PyXPlot command, for example:

set xlabel ‘echo "’" ; 1ls ; echo "’"¢

Note that back-quotes cannot be used inside quote characters, and so the
following would not work:

set xlabel ’‘1s¢’

81

82 CHAPTER 8. COMMAND REFERENCE

8.3 arrow

arrow [from] <x>, <y> [to] <x>, <y> [with <option> ...]

Arrows may be placed on multiplot pages independently of any plots
using the arrow command, which has the syntax:

arrow from x1,yl to x2,y2

The arrow command may be followed by the with keyword to specify the
style of the arrow. The style keywords which are accepted are nohead, head
(default) or twohead, in addition to keywords such as colour, linewidth
or linetype, which have the same syntax and meaning as in the plot com-
mand. An example would be:

arrow from x1,yl to x2,y2 with twohead linetype 2 colour blue

Arrows receive unique multiplot identification numbers which count se-
quentially from one, and which are output to the terminal after the arrow
command is called. By reference to these numbers, they can be deleted and
undeleted subsequently with the delete and undelete commands respec-
tively.

8.4 cd

cd <directory>

PyXPlot’s cd command is very similar to the shell cd command; it
changes the current working directory. For example:

cd foo

8.5 clear

clear

In multiplot mode, the clear command removes all current plots, ar-
rows and text objects from the working page. In single plot mode it is not
especially useful; it removes the current plot to leave a blank page.

The clear command should not be followed by any parameters.

8.6. DELETE 83

8.6 delete

delete <plot number>,

The delete command is part of the multiplot environment; it removes
plots, arrows or text items from a multiplot page. The items to be deleted
should be identified using a comma-separated list of their reference numbers.
Reference numbers count sequentially from zero for the first item created on
a multiplot page, and are displayed on the terminal when items are created.
For example:

delete 1,2,3

would remove item numbers 1, 2 and 3.
Having been deleted, multiplot items can be restored using the undelete
command.

8.7 edit

edit <plot number>

The edit command is part of the multiplot environment; it allows one to
modify the properties of any plot on a multiplot. The desired plot should be
identified using the reference number which it was given when it was created
using the plot command; it would have been displayed on the terminal at
that time. For example, consider the following command sequence:

edit 1
set textcolour red
replot

Here, the edit command is used to select the plot with reference number 1.
The set textcolour red command which follows then changes the settings
of this plot, taking effect when the replot command is called.

The edit command also has the effect of resetting all of PyXPlot’s plot
settings to those used to produce the chosen plot, and so in conjunction with
the show command, can be used to inspect as well as modify the settings of
any plot on a multiplot page. For example:

edit 1
show textcolour

would show the text colour used in plot 1.

Having issued the edit command, no further command needs to be
issued to return to a state of adding plots to a multiplot rather than editing
the existing plots; simply call the plot command rather than the replot
command to do this.

84 CHAPTER 8. COMMAND REFERENCE

8.8 eps

eps ’<filename>’ [at <x>, <y>] [rotate <angle>] [width <width>]
[height <height>]

The eps command inserts an image into the current multiplot from an
encapsulated postscript (eps) file. The at modifier can be used to specify
where the bottom-left corner of the image should be placed; if it is not, then
the image is placed at the origin. The rotate modifier can be used to rotate
the image by any angle, measured in degrees counter-clockwise. The width
or height modifiers can be used to specify the width or height with which the
image should be rendered; both should be specified in centimetres. If neither
is specified then the image will be rendered with the native dimensions
specified within the postscript. The eps command is often useful in multiplot
mode, allowing postscript images to be combined with plots, text labels, etc.

8.9 exec

exec <command>

The exec command can be used to execute PyXPlot commands con-
tained within string variables. For example:

terminal="eps"
exec "set terminal %s"%(terminal)

It can also be used to write obfuscated PyXPlot scripts.

8.10 exit
exit

The exit command can be used to quit PyXPlot. If multiple command
files, or a mixture of command files and interactive sessions, were specified on
PyXPlot’s command line, then PyXPlot moves onto the next command-line
item after receiving the exit command.

PyXPlot may also be quit be pressing CTRL-D or via the quit com-
mand. In interactive mode, CTRL-C terminates the current command, if
one is running. When running a script, CTRL-C terminates execution of it.

8.11 fit

fit [<range specifier> ...] <function> ’<datafile>’
[index <index specifier>] [using <using specifier>]
via <variable>[, <variable>, ...]

8.12. HELP 85

The fit command may be used to fit functional forms to data in files.
A simple example might be:

f(x) = a*x+b
fit £(x) ’data.dat’ index 1 using 2:3 via a,b

The coefficients to be varied are listed after the via keyword; the modifiers
index, every and using have the same meanings as in the plot command.

This is useful for producing best-fit lines and also has applications in
estimating the gradients of datasets. The syntax is essentially identical to
that used by Gnuplot, though a few points, outlined in Section 2.11, are
worth noting.

8.12 help

help [<topic> [<sub-topic> ...]]

The help command provides an hierarchical source of information which
is supplementary to that in the Users’ Guide. To obtain information on any
particular topic, type help followed by the name of the topic. For example:

help commands

provides information on PyXPlot’s commands. Some topics have sub-topics;
these are listed at the end of each help page. To view them, add further
words to the end of your help request — an example might be:

help commands help

Information is arranged with general information about PyXPlot un-
der the heading about and information about PyXPlot’s commands under
commands. Information about the format that input data files should take
can be found under datafile. Other categories are self-explanatory.

To exit any help page, press the q key.

8.13 histogram

histogram [range specification] <function name> ’<datafile>’
[using <using specifier>] [select <select specifier>]
[index <index specifier>] [every <every specifier>]
[binwidth <bin width>] [binorigin <bin origin>]
[bins (x1, x2, ...)]

86 CHAPTER 8. COMMAND REFERENCE

The histogram command takes a data file and counts the number of
points in various bins, producing a function the area under which is equal
to the number of points for each bin. The width and starting position of
the bins can be specified using the binwidth and binorigin modifiers, or a
user-supplied set of bins can be used with the bins modifier. For example:

histogram f() ’output.dat’ u 2 binwidth 2

produces a function f(), which contains the data in the second column of the
output.dat file binned into bins of width 2. A range specifier can be used
to restrict the set of data in the data file that is to be binned; for example:

histogram [0:10] f() ’data.dat’ bins (0,1,3,6,10)

would only bin data between 0 and 10, and would do so into the user-specified
bins.

8.14 history

history [<N>]

The history command outputs the current command-line history to
the terminal. The optional parameter, N, if supplied, causes only the first
N lines to be printed.

8.15 jpeg

jpeg ’<filename>’ [at <x>, <y>] [rotate <angle>] [width <width>]
[height <height>]

The jpeg command inserts an image into the current multiplot from a
jpeg file in disk. The at modifier can be used to specify where the bottom-
left corner of the image should be placed; if it is not, then the image is placed
at the origin. The rotate modifier can be used to rotate the image by any
angle, measured in degrees counter-clockwise. The width or height modi-
fiers can be used to specify the width or height with which the image should
be rendered; both should be specified in centimetres. If neither is specified
then the image will be rendered with the native dimensions specified within
the jpeg file (if any). The jpeg command is often useful in multiplot mode,
allowing images to be combined with plots, text labels, etc.

8.16. LIST 87

8.16 list
list

The list command outputs a listing of all of the items on a multiplot,
giving their reference numbers and the commands used to produce them.
For example:

pyxplot> list
ID | Command
0 plot f(x)
d 1 text ’Figure 1: A plot of f(x)’
2 text ’Figure 1: A plot of $f(x)$’

Items marked ’d’ are deleted

In this example, the user has plotted a graph of f(z), and added a
caption to it. The ID column lists the reference numbers of each multiplot
item. Item 1 has been deleted, and this is indicated by the d to the left of
its reference number.

8.17 load

load ’<filename>’

The load command executes a PyXPlot command script file, just as if
its contents had been typed into the current terminal. For example:

load ’foo’

would have the same effect as typing the contents of the file foo into the
present session.

Wildcards can be used in the load command, in which case all command
files matching the given wildcard are executed, for example:

load ’*.script’

8.18 move
move <plot number> to <x>, <y>

The move command is part of the multiplot environment; it can be used
to move items around on a multiplot page. The item to be moved should be
specified using the reference number which it was given when it was created;
it would have been displayed on the terminal at that time. For example:

88 CHAPTER 8. COMMAND REFERENCE

move 23 to 8,8

This would move multiplot item 23 to position (8,8) centimetres. If this
item were a plot, the end result would be the same as if the command set
origin 8,8 had been called before it had originally been plotted.

8.19 plot

plot [<range specifier> ...] (’<filename>’|<function>)
[using <using specifier>] [axes <axis specifier>]
[select <select specifier>]
[index <index specifier>]
[every <every specifier>]
[with <style> [<style modifier> ...]]

The plot command is the main workhorse command of PyXPlot, which
is used to produce all plots. For example to plot the sine function:

plot sin(x)

Ranges for the axes of a graph can be specified by placing them in square
brackets before the name of the function to be plotted. An example of this
syntax would be:

plot [-pi:pil sin(x)

which would plot the function sin(z) between —m and 7.

Data files may also be plotted as well as functions, in which case the
filename of the data file to be plotted should be enclosed in apostrophes.
An example of this syntax would be:

plot ’data.dat’ with points

which would plot the file called data.dat. Section 2.6 should be studied for
further details of the format that is expected of input data files, and how
PyXPlot may be directed to plot only certain portions of data files.

Multiple datasets can be plotted on a single graph by listing them with
commas separating them:

plot sin(x) with colour blue, cos(x) with linetype 2

8.19.1 axes

In plots which have multiple parallel axes — for example, an z-axis along its
lower edge and an z2-axis along its upper edge — the pair of axes against
which data should be plotted should be specified using the modifier axes
following the name of the function or data file to be plotted, for example:

plot sin(x) axes x2yl

8.19. PLOT 89

8.19.2 with

The style in which data should be plotted may be specified following the
modifier with, with the following syntax:

plot sin(x) with points

The following plot styles are recognised: lines, points, linespoints,
dots, boxes, wboxes, impulses, steps, histeps, fsteps, xerrorbars,
yerrorbars, xyerrorbars, xerrorrange, yerrorrange, xyerrorrange,
arrows_head, arrows_nohead, arrows_twohead, csplines, acsplines.

In addition, 1p and pl are recognised as abbreviations for linespoints;
errorbars is recognised as an abbreviation for yerrorbars; errorrange
is recognised as an abbreviation for yerrorrange; and arrows_twoway is
recognised as an alternative for arrows_twohead.

As well as plot styles, the with modifier can also be followed by the
following keywords:

linetype — specifies the line type (e.g. dotted) used by the lines plot style.
linewidth — specifies the width of line, in pt, used by the lines plot style.

pointsize — specifies the size of data points, relative to the default size,
used by the points plot style.

pointlinewidth — as above, but specifies the linewidth, in pt (1pt =
1/72inch), used to render the crosses, circles, etc, used to mark data
points.

linestyle — this can be used in conjunction with the set linestyle com-
mand to save default plot styles.

colour — specifies the colour used to plot the dataset, either by one of the
recognised colour names or by an integer, to use one from the current

palette.

fillcolour — relevant to the boxes and wboxes plot styles, specifies a
colour with which bar charts should be filled.

An example using several of these keywords would be:

plot sin(x) axes x2yl with colour blue linetype 2 \
linewidth 5

90 CHAPTER 8. COMMAND REFERENCE

8.20 print

print <expression>

The print command outputs the value of a mathematical expression to
the terminal. It is most often used to find the value of a variable, though it
can also be used to produce formatted output from a PyXPlot script. For
example:

print a

would print the value of the variable a.

8.21 pwd

pwd

The pwd command prints the location of the current working directory.

8.22 quit
quit

The quit command can be used to exit PyXPlot. See exit for more
details.

8.23 refresh

refresh

The refresh command produces an exact copy of the latest display.
This can be useful, for example, after changing the terminal type, to pro-
duce a second copy of a plot in a different graphic format. It differs from
the replot command in that it doesn’t replot anything; use of the set com-
mand since the previous plot command has no effect on the output. The
refresh command is also especially useful in the multiplot environment: it
can be used to produce second copies of multiplot pages where there need
not necessarily even be any plots; there might perhaps only be textual items
and arrows.

8.24. REPLOT 91

8.24 replot

replot [<plot number>]

In single plot mode, the replot command causes the most recent plot
command to be re-run. This can be useful to replot a data file which has
changed in the meantime, but also to change some aspect of a plot within
PyXPlot itself. Uses of the set command between the original plot com-
mand and the calling of the replot command are applied to the new plot.
For example:

plot sin(x)
set textcolour red
replot

In multiplot mode, the replot command acts by default upon the last
plot item which was added to the multiplot page, and causes that to be
replotted. It is possible to change this behaviour by first calling the edit
command, in which case any given plot within a multiplot can be modified
and replotted.

Specifying a function or data file after the replot command causes that
function or data file to be added to the plot. The syntax here is the same
as for the plot command. For example:

replot sin(x) axes x2yl with linespoints

will add a plot of the function sin(z) to the current plot.

8.25 reset

reset

The reset command returns the values of all settings that have been
changed with the set command back to their default values.

8.26 save

save ’<filename>’

The save command saves a list of all of the commands which have been
executed in the current interactive PyXPlot session into a given file. The
filename of the desired location for this file should be placed in quotes, for
example:

save ’foo’

would save a command history into the file named foo.

92 CHAPTER 8. COMMAND REFERENCE

8.27 set

set <option> <value>

The set command sets the value of various operational parameters
within PyXPlot. For example:

set pointsize 2

would sets the default point size to 2. The basic syntax always follows that
above: the set command should be followed by some keyword specifying
which setting it is which should be set. Settings which work in an on/off
fashion tend to take a syntax along the lines of:

set key Set option ON

set nokey Set option OFF
More details of the functions of each individual setting can be found in
the subsections below, which forms a complete list of the recognised setting
keywords.

The reader should also see the show command, which can be used to dis-
play the current values of settings, and the unset command, which returns
settings to their default values. Section 7.2 describes how commonly used
settings can be saved into a configuration file.

8.27.1 arrow

set arrow <arrow number> from [<co-ordinate>] <x>,
[<co-ordinate>] <y> to [<co-ordinate>] <x>,
[<co-ordinate>] <y> [with <modifier>]

<co-ordinate> = (first | second | screen | graph |
axis<axisnumber>)

The set arrow command causes an arrow to be added to a plot. An
example of its syntax would be:

set arrow 1 from 0,0 to 1,1

which would cause an arrow to be drawn between the points (0,0) and
(1,1), as measured on the z and y axes. The tag 1 immediately following
the arrow keyword is an identification number, and allows the arrow to be
removed later with the unset arrow command. By default the co-ordinates
are measured relative to the first z- and y-axes, but can be specified in a
range of co-ordinate systems. These are specified as follows:

set arrow 1 from first 0, second O to axis3 1, axis4 1

8.27. SET 93

As can be seen, the name of the desired co-ordinate system precedes the
position value in that co-ordinate system. The co-ordinate system first,
the default, measures the graph using the z- and y-axes. second uses the
x2- and y2-axes. screen and graph both measure in centimetres from the
origin of the graph. The syntax axisn may also be used, to use the n th -
or y-axis; for example, axis3 above.

The set arrow command can be followed by the keyword with, to spec-
ify the style of the arrow. For example, the specifiers nohead, head and
twohead, after the keyword with, can be used to make arrows with no ar-
row heads, normal arrow heads, or two arrow heads. twoway is an alias for
twohead. Normal line type modifiers can also be used here. For example:

set arrow 2 from first O, second 2.5 to axis3 O,
axis4 2.5 with colour blue nohead

8.27.2 autoscale
set autoscale <axis>[<axis>...]

The autoscale setting causes PyXPlot to choose the scaling for an axis
automatically based on the data and/or functions to be plotted against it.
As an example of the syntax:

set autoscale x1

would cause the size of the first x-axis to be scaled to fit the data. Multiple
axes can be specified, viz.:

set autoscale x1y3

Note that ranges explicitly specified in a plot command will override
the autoscale setting.

8.27.3 axescolour

set axescolour <colour>

The axescolour setting changes the colour of the plot’s axes. For ex-
ample:

set axescolour blue

changes the axes to be blue. Any of the recognised colour names listed in
Section 7.6 can be used.

94 CHAPTER 8. COMMAND REFERENCE

8.27.4 axis

set axis <axis>,
The command:
set axis x2

may be used to add a second z-axis to a plot, with default settings. In
general, there is no practical reason to use this command, as a second x-axis
would implicitly be created by any of the following statements:

set x2label ’foo’ \\
set x2ticdir outwards \\
plot sin(x) axes x2y1l

Of more practical use is the unset x2 command, which is used to remove
an axis once it has been added to a plot. After executing:

set x2label ’foo’

for example, the only way to tell PyXPlot to subsequently produce a plot
without a second z-axis would be to delete this axis with the following
command:

unset axis x2

Note that in this case, the unset x2label command would be sufficient
to remove the label ‘foo’ placed on the new axis, but not sufficient to delete
the new axis that the set x2label command implicitly created. Multiple
axes can be deleted in a single unset axis statement, for example:

unset axis x2x4x5

In the special cases of unset axis x1 or unset axis y1, these axes
cannot be deleted; a plot must have at least one x- and one y-axis. Instead,
the unset axis command restores these axes to their default configurations,
removing any set titles or ranges that they might have been given.

8.27.5 backup

set backup

The setting backup changes PyXPlot’s behaviour when it detects that a
file which it is about to write is going to overwrite an existing file. Whereas
by default the existing file would be overwritten by the new one, when the
backup setting is turned on, it is renamed, placing a tilde at the end of

8.27. SET 95

its filename. For example, suppose that a plot were to be written with
filename out.ps, but such a file already existed. With the backup setting
turned on the existing file would be renamed out.ps~ to save it from being
overwritten.

The setting may be turned off via set nobackup.

8.27.6 bar
set bar (large | small | <barsize>)

The bar setting changes the size of the bar on the end of the error bars,
relative to the current point size. For example:

set bar 2

sets the bars to be twice the size of the points. The options large and small
are equivalent to 1 (the default) and 0 (no bar) respectively.

8.27.7 binorigin

set binorigin <bin origin>

The binorigin setting changes the position on the x axis from whence
the bins used by the histogram command originate.

8.27.8 binwidth

set binwidth <bin width>

The binwidth setting changes the width of the bins used by the his-
togram command.

8.27.9 boxfrom

set boxfrom <value>

The boxfromsetting alters PyXPlot’s behaviour when plotting bar charts.
It changes the horizontal line (vertical point; y-axis value) from which the
boxes of bar charts appear to emanate. The default value is zero (i.e. boxes
extend from the line of the y-axis). An example of its syntax would be:

set boxfrom 2

which would make the boxes of a barchart emanate vertically from the line
y = 2.

96 CHAPTER 8. COMMAND REFERENCE

8.27.10 boxwidth

set boxwidth <width>

The boxwidth setting alters PyXPlot’s behaviour when plotting bar
charts. It sets the default width of the boxes used, in graph z-axis units.
If the specified width is negative then, as happens by default, the boxes
have automatically selected widths, such that the interfaces between them
occur at the horizontal midpoints between their specified x-positions. For
example:

set boxwidth 2
would set all boxes to be two units wide.
set boxwidth -2

would set all of the bars to have differing widths, centred upon their specified
x-positions, such that their interfaces occur at the horizontal midpoints
between them.

8.27.11 data style

See set style data.

8.27.12 display

set [noldisplay

By default, whenever an item is added to a multiplot, or an existing item
moved or replotted, the whole multiplot is replotted to show the change.
This can be a time-consuming process on large and complex multiplots. For
this reason, the set nodisplay command is provided, which stops PyXPlot
from producing any output. The set display command can subsequently
be issued to return to normal behaviour.

This can be especially useful in scripts which produce large multiplots.
There is no point in producing output at each step in the construction of a
large multiplot, and so a great speed increase can be achieved by wrapping
the script with:

set nodisplay

[...prepare large multiplot...]
set display

refresh

8.27. SET 97

8.27.13 dpi

set dpi <value>

When PyXPlot is set to produce bitmapped graphics output, using the
gif, jpg or png terminals (see the set terminal command), the dpi set-
ting changes the number of dots per inch with which these graphics files
are produced. That is to say, it changes the image resolution of these file
formats:

set dpi 100

sets the output to a resolution of 100 dots per inch. Higher dpi values yield
better quality images, but larger file sizes.

8.27.14 fontsize
set fontsize <value>

The fontsize setting changes the size of the fount! used to render all
text labels which appear on a plot, including keys, axis labels, etc. The
value specified should be an integer in the range -4 to 5, corresponding to
KTEX’s tiny (-4) and Huge (5) sizes, for example:

set fontsize 2

The default value is zero, WTEX’s normal fount size. As an alternative,
fount sizes can be specified directly in the ITEX text of labels, for example:

set xlabel ’\Large This is a BIG label’

8.27.15 function style

See set style function.

8.27.16 grid

set [nolgrid <axis> ...

The grid setting controls whether a grid is placed behind a plot or not.
Issuing the command:

set grid

IThis is not a spelling mistake. ‘font’, by contrast, would be a spelling mistake. See
the Oxford English Dictionary.

98 CHAPTER 8. COMMAND REFERENCE

would cause a grid to be drawn with its grid lines connecting to the ticks of
the default axes (usually the first z- and y-axes). Conversely, issuing:

set nogrid

would remove from the plot all grid lines associated with the ticks of any
axes. One or more axes can be specified for the set grid command; a grid
will then be drawn to connect with the ticks of these axes. An example of
this syntax would be:

set grid x1 y3

which would cause gridlines to be drawn from ticks of the first x- and third
y-axes.

It is possible, though not always aesthetically very pleasing, to draw
gridlines from multiple parallel axes, for example:

set grid x1x2x3

8.27.17 gridmajcolour

set gridmajcolour <colour>

The gridmajcolour setting changes the colour that is used to plot the
gridlines (see the set grid command) which are associated with the major
ticks of axes (i.e. major gridlines). For example:

set gridmajcolour purple

would cause the major grid lines to be drawn in purple. Any of the recog-
nised colour names listed in Section 7.6 can be used.
See also the set gridmincolour command.

8.27.18 gridmincolour
set gridmincolour <colour>
The gridmincolour setting changes the colour that is used to plot the

gridlines (see the set grid command) which are associated with the minor
ticks of axes (i.e. minor gridlines). For example:

set gridmincolour purple
would cause the minor grid lines to be drawn in purple. Any of the recognised

colour names listed in Section 7.6 can be used.
See also the set gridmajcolour command.

8.27. SET 99
8.27.19 key
set key [<position> ...] [<xoffset>, <yoffset>]

The setting key determines whether a legend is placed on a plot, and if
so, where it should be located on the plot. Issuing the command:

set key

simply causes a legend to be added to the plot in its default position, usually
the plot’s upper-right corner. The converse action is achieved by:

set nokey
or:
unset key

both of which cause a plot to have no legend. A position for the key may
also be specified after the set key command, for example:

set key bottom left

Recognised positions are top, bottom, left, right, below, above, outside,
xcentre and ycentre. In addition, if none of these quite achieved the de-
sired result, a positional offset may be specified after one of the position
keywords above. The first value is assumed to be an z-offset, and the sec-
ond a y-offset, in centimetres. For example:

set key bottom left 0.0, -0.5

would display a key below the bottom left corner of the graph.

8.27.20 keycolumns

set keycolumns <value>

The keycolumns settings sets how many columns the legend of a plot
should be arranged into. By default, all of the entries in the legends of
plots are arranged in a single vertical list. However, for plots with very
large number of datasets, it may be preferably to split this list into several
columns. The set keycolumns command can be followed by any positive
integer, for example:

set keycolumns 3

100 CHAPTER 8. COMMAND REFERENCE

8.27.21 label

set label <label number> ’<text>’ [<co-ordinate>] <x>,
[<co-ordinate>] <y>
[rotate <angle>]
[with colour <colour>]

<co-ordinate> = (first | second | screen | graph |
axis<axisnumber>)

The set label command can be used to place text labels onto a plot.
For example:

set label 1 ’Hello’ 0, O

would place the word ‘Hello’ at plot co-ordinates (0,0), as measured on the
x- and y-axes. The tag 1 immediately following the label keyword is an
identification number, and allows the label to be removed later with the
unset label command. By default the position co-ordinates of the label
are measured relative to the first - and y-axes, but can be specified in a
range of co-ordinate systems. These are specified as follows:

set label 1 ’Hello’ first O, second O

As can be seen, the name of the desired co-ordinate system precedes the
position value in that co-ordinate system. Following Gnuplot’s nomencla-
ture, the co-ordinate system first the default, measures the graph using
the - and y-axes. second uses the x2- and y2-axes. screen and graph both
measure in centimetres from the origin of the graph. The syntax axisn may
also be used, to use the n th x- or y-axis; for example, axis3:

set label 1 ’Hello’ axis3 1, axis4d 1

A rotation angle may optionally be specified after the keyword rotate
to produce text rotated to any arbitrary angle, measured in degrees counter-
clockwise. The following example would produce upward-running text:

set label 1 ’Hello’ 1.2, 2.5 rotate 90

By default the labels are black; however, an arbitrary colour may be
specified using the with colour modifier. For example:

set label 3 ’A purple label’ 0, O with colour purple

will place a purple label at the origin.

8.27. SET 101

8.27.22 linestyle

set linestyle <style number> <style specifier> ...

At times, the string of style keywords following the with modifier in plot
commands can grow rather unwieldily long. For clarity, frequently used plot
styles can be stored as 1inestyles; this is true of styles involving points as
well as lines. The syntax for setting a line style is:

set linestyle 2 points pointtype 3

where the 2 is the identification number of the line style. In a subsequent
plot statement, this line style can be recalled as follows:

plot sin(x) with linestyle 2
8.27.23 linewidth
set linewidth <value>

Sets the default line width, in units of pt (1 pt = 1/72inch), of the lines
used to plot datasets onto graphs with the 1ines plot style. For example in
the following statement:

set linewidth 3
plot sin(x) with lines

lines of three times the default thickness are plotted. The set linewidth
setting only affects plot statements where no line width is manually specified.

8.27.24 logscale
set logscale [<axis> ...] [<base>]

The logscale setting causes an axis to be laid out with logarithmically,
rather than linearly, spaced intervals. For example, issuing the command:

set log

would cause all of the axes of a plot to be scaled logarithmically. Alterna-
tively only one, or a selection of axes, can be set to scale logarithmically as
follows:

set log x1 y2

This would cause the first z- and second y-axes to be scaled logarithmi-
cally. Linear scaling can be restored to all axes via:

102 CHAPTER 8. COMMAND REFERENCE

set nolog
or:
unset log
and to only one, or a selection of axes, via:
set nolog x1 y2
or:
unset log x1y2
Optionally, a base may be specified at the end of the set logscale
command, to produce axes labelled in logarithms of arbitrary bases. The
default base is 10.
8.27.25 multiplot
set multiplot
Issuing the command:
set multiplot

causes PyXPlot to enter multiplot mode, which allows many graphs to be
plotted together and displayed side-by-side. See Section 5.3 for a full dis-
cussion of multiplot mode.

8.27.26 mxtics

See set xtics.

8.27.27 mytics

See set xtics.

8.27.28 noarrow

set noarrow [<arrow number>]
Issuing the command:

set noarrow

removes all arrows produced with the set arrow command from the current
plot. Alternatively, individual arrows can be removed using the syntax:

set noarrow 2

where the tag 2 here is the identification number given to the arrow to be
removed when it was initially specified with the set arrow command.

8.27. SET 103

8.27.29 noaxis

set noaxis <axis specification>,

The set noaxis command is equivalent to the unset axis command.
It should be followed by a comma-separated lists of axes, which are to be
removed from the current axis configuration.

8.27.30 nobackup

See backup.

8.27.31 nodisplay
See display.

8.27.32 nogrid
set nogrid [<axis> ...]

Issuing the command set nogrid removes gridlines from the current
plot. On its own, the command removes all gridlines from the plot, but
alternatively, those gridlines connected to the ticks of certain axes can se-
lectively be removed. The syntax for doing this is as follows:

set nogrid x1 y2

8.27.33 nokey

set nokey

Issuing the command set nokey causes plots to be generated with no
legend. See the command set key for more details.

8.27.34 nolabel

set nolabel [<label number> ...]
Issuing the command:
set nolabel

removes all text labels, as set using the set label command, from the cur-
rent plot. Alternatively, individual labels can be removed using the syntax:

set nolabel 2

where the tag 2 here is the identification number given to the label to be
removed when it was initially set using the set label command.

104 CHAPTER 8. COMMAND REFERENCE

8.27.35 nolinestyle

set nolinestyle <style number>

The nolinestyle setting deletes a line style. For example, the com-
mand:

set nolinestyle 3

would delete the third line style, if defined. See the command set linestyle
for more details.

8.27.36 nologscale

set nologscale [<axis> ...]

The logscale setting causes an axis to be laid out with logarithmically,
rather than linearly, spaced intervals. Conversely, the nologscale setting
is used to restore linear scaling. For example, issuing the command:

set nolog

would cause all of the axes of a plot to be scaled linearly. Alternatively only
one, or a selection of axes, can be set to scale linearly as follows:

set nologscale x1 y2

This would cause the first z- and second y-axes to be scaled linearly.

8.27.37 nomultiplot

set nomultiplot

Issuing the command set nomultiplot places PyXPlot into single plot-
ting mode. See above for a detailed discussion of PyXPlot’s multiplot and
single plot modes. Broadly speaking, single plot mode is used to produce
single graphs on their own; multiplot mode is used to produce galleries of
many plots side-by-side.

8.27.38 notitle

set notitle

Issuing the command set notitle will cause graphs to be produced
with no title at the top.

8.27. SET 105

8.27.39 noxtics

set no<axis specification>tics

This command causes graphs to be produced with no tick marks along
their z-axes.

8.27.40 noytics

Similar to the set noxtics command, but acts on the y-axis.

8.27.41 origin
set origin <x>, <y>

The origin setting controls the default location of graphs on a multiplot.
For example, the command:

set origin 3,5

would cause the next graph to be plotted at position (3,5) centimetres on the
multiplot page. The set origin command is of little use outside multiplot
mode.

8.27.42 output

set output ’<filename>’

The output setting controls the name of the file that is produced for non-
interactive terminals (postscript, eps, jpeg, gif and png). For example:

set output ’myplot.eps’

causes the output to be written to the file myplot.eps.

8.27.43 palette

set palette <colour>, [<colour> ...]

PyXPlot has a palette of colours which it assigns sequentially to datasets
when colours are not manually assigned. This is also the palette to which
reference is made if the user issues a command such as:

plot sin(x) with colour 5

requesting the fifth colour from the palette. By default, this palette contains
a range of distinctive colours. However, the user can choose to substitute his
own list of colours using the set palette command. It should be followed
by a comma-separated list of colour names, for example:

106 CHAPTER 8. COMMAND REFERENCE

set palette red,green,blue

If, after issuing this command, the following plot statement were to be
executed:

plot sin(x), cos(x), tan(x), exp(x)

the first function would be plotted in red, the second in green, and the third
in blue. Upon reaching the fourth, the palette would cycle back to red.
Any of the recognised colour names listed in Section 7.6 can be used.

8.27.44 papersize

set papersize (size | <height>,<width>)

The papersize option sets the size of output produced by the postscript
terminal. This can take the form of either a recognised paper size name —
a list of these is given below — or a (height, width) pair of values, both
measured in millimetres. For example:

set papersize a4
set papersize letter
set papersize 200,100

A list of recognised papersizes can be found in Figure 3.1.

8.27.45 pointlinewidth

set pointlinewidth <value>

The pointlinewidth setting changes the width of the lines that are used
to plot data points. For instance:

set pointlinewidth 20

would cause points to be plotted with lines 20 times the default thickness.
Note that pointlinewidth can be abbreviated as plw.

8.27.46 pointsize

set pointsize <value>

The pointsize setting changes the size at which points are plotted rela-
tive to their default size. It should be followed by a single value, the relative
size, which can be any positive number. For example:

set pointsize 1.5

would cause points to be plotted 1.5 times the default size.

8.27. SET 107

8.27.47 preamble

set preamble <text>

The preamble setting changes the preamble that is prepended to each
item of text rendered using IATEX. This allows, for example, different pack-
ages to be loaded by default and user-defined macros to be set up.

8.27.48 samples

set samples <value>

The samples setting determines the number of values along the z-axis
at which functions are evaluated when they are plotted. For example:

set samples 100

causes 100 points to be evaluated. Increasing this value will cause functions
to be plotted more smoothly, but also more slowly, and the postscript files
generated will also be larger.

When functions are plotted with the points plot style, this setting con-
trols the number of points plotted.

8.27.49 size

set size (<width>|ratio <ratio>|noratiolsquare)

The setting size is deprecated: use set width instead. It sets the width
of the plot in centimetres. However, the command set size, when followed
by the keyword ratio, is still used to set the aspect ratio of plots. See the
ratio setting below for details.

noratio

set size noratio
Running:
set size noratio

resets PyXPlot to produce plots with its default aspect ratio, which is the
golden section. Other aspect ratios can be set with the set size ratio
command.

108 CHAPTER 8. COMMAND REFERENCE

ratio
set size ratio <ratio>

This command sets the aspect ratio of plots produced by PyXPlot. The
height of resulting plots will equal the plot width, as set by the set width
command, multiplied by this aspect ratio. For example:

set size ratio 2.0

would cause PyXPlot to produce plots that are twice as high as they are
wide. The default aspect ratio which PyXPlot uses is a golden ratio of

2/(1 +/5).

square

set size square
The command:
set size square

sets PyXPlot to produce square plots, i.e. with unit aspect ratio. Other
aspect ratios can be set with the set size ratio command.

8.27.50 style

set style { data | function } <style modifier> ...

The set style data command affects the default style with which data
from files is plotted. Likewise the set style function command changes
the default style with which functions are plotted. Any valid style modifier
can be used. For example:

set style data points
set style function lines linestyle 1

would cause data files to be plotted by default using points and functions
using lines with the first defined line style.

8.27.51 terminal

set terminal <terminal type> [<option> ...]

Syntax:

8.27. SET 109

set terminal { X11_singlewindow | X11_multiwindow | X11_persist |
postscript | eps | pdf | gif | png | jpg }

colour | color | monochrome }

portrait | landscape }

invert | noinvert }

transparent | solid }

antialias | noantialias }

enlarge | noenlarge }

A Am A A A A

The set terminal command controls the graphic format in which PyX-
Plot should output plots, for example setting whether it should output plots
to files or display them in a window on the screen. Various options can also
be set within many of the graphic formats which PyXPlot supports using
this command.

The following graphic formats are supported: X11_singlewindow,

X11 multiwindow, X11 persist, postscript, eps, pdf, gif, jpeg, png. To
select one of these formats, simply type the name of the desired format
after the set terminal command. To obtain more details on each, see the
subtopics below.

The following settings, which can also be typed following the set terminal
command, are used to change the options within some of these graphic for-
mats: colour, monochrome, enhanced, noenhanced, portrait, landscape,
invert, noinvert, transparent, solid, enlarge, noenlarge. Details of
each of these can be found below.

antialias

The antialias terminal option causes plots produced with the bitmap (gif,
jpg and png) terminals to be antialiased; this is the default behaviour.
colour

The colour terminal option causes plots to be produced in colour; this is
the default behaviour.

color

The color terminal option is provided for the convenience of users unable
to spell colour.

enlarge

The enlarge terminal option causes the complete plot to be enlarged or
shrunk to fit the current paper size.

110 CHAPTER 8. COMMAND REFERENCE

eps

Sends output to eps files. The filename to which output is to be sent should
be set using the set output command; the default is pyxplot.eps. This
terminal produces encapsulated postscript suitable for including in, for ex-
ample, INTEXdocuments.

gif

The gif terminal renders output as gif files. The filename to which output
is to be sent should be set using the set output command; the default
is pyxplot.gif. The number of dots per inch used can be changed using
the dpi option; the filename using set output. Transparent gifs can be

produced with the transparent option. Also of relevance is the invert
option for producing gifs with inverted colours.

invert

The invert terminal option causes the bitmap terminals (gif, jpeg, png)
to produce output with inverted colours. This is useful for producing plots
for slideshows, where bright colours on a dark background may be desired.

jpeg

The jpeg terminal renders output as jpeg files. The filename to which
output is to be sent should be set using the set output command; the
default is pyxplot. jpg. The number of dots per inch used can be changed
using the dpi option. Of relevance is the invert option for producing jpegs
with inverted colours.

landscape

The landscape terminal option causes PyXPlot’s output to be displayed in
rotated orientation. This is useful for printing as you get more on your sheet
of paper that way around; probably less useful for plotting things on screen.

monochrome

The monochrome terminal option causes plots to be rendered in black and
white; by default, different dash styles are used to differentiate between lines
on plots with several datasets.

noantialias

The noantialias terminal option causes plots produced with the bitmap
(gif, jpg and png) terminals not to be antialiased.

8.27. SET 111

noenlarge

The noenlarge terminal option causes the output not to be scaled (the
opposite of enlarge above).

noinvert

The noinvert terminal option causes the bitmap terminals (gif, jpeg,
png) to produce normal output without inverted colours. The converse of
inverse.

pdf

The pdf terminal options causes pdf format output files to be produced.

png

The png terminal renders output as png files. The filename to which output
is to be sent should be set using the set output command; the default
is pyxplot.png. The number of dots per inch used can be changed using
the dpi option; the filename using set output. Transparent pngs can be
produced with the transparent option. Also of relevance is the invert
option for producing pngs with inverted colours.

portrait

The portrait terminal option causes PyXPlot’s output to be displayed in
upright (normal) orientation.

postscript

Sends output to postscript files. The filename to which output is to be sent
should be set using the set output command; the default is pyxplot.ps.
This terminal produces non-encapsulated postscript suitable for sending di-
rectly to a printer.

solid

The solid option causes the gif and png terminals to produce output with
a non-transparent background, the converse of transparent.

transparent

The transparent terminal option causes the gif and png terminals to pro-
duce output with a transparent background.

112 CHAPTER 8. COMMAND REFERENCE

X11_multiwindow

Displays plots on the screen (in X11 windows, using Ghostview). Each
time a new plot is generated it appears in a new window, and the old plots
remain visible. As many plots as may be desired can be left on the desktop
simultaneously.

X11_persist

Displays plots on the screen in X11 windows, using Ghostview. Each time a
new plot is generated it appears in a new window, and the old plots remain
visible. When PyXPlot is exited the windows remain in place until they are
closed manually.

X11_singlewindow

Displays plots on the screen (in X11 windows, using Ghostview). Each time
a new plot is generated it replaces the old one, preventing the desktop from
becoming flooded with old plots. This terminal is the default when running
interactively.

8.27.52 textcolour

set textcolour <colour>

The textcolour setting changes the colour of all text displayed on a
plot. For example:

set textcolour red

causes all text labels, including the labels on graph axes and legends, etc. to
be rendered in red. Any of the recognised colour names listed in Section 7.6
can be used, as can a number which indexes into the current palette.

8.27.53 texthalign

set texthalign (left | centre | right)

The texthalign setting controls how text labels, placed on plots using
the set label command, and upon multiplots using the text command,
are justified horizontally with respect to their specified positions. Three
options are available:

set texthalign left
set texthalign centre
set texthalign right

8.27. SET 113

8.27.54 textvalign

set textvalign (bottom | centre | top)

The textvalign setting controls how text labels, placed on plots using
the set label command, and upon multiplots using the text command, are
justified vertically with respect to their specified positions. Three options
are available:

set textvalign bottom
set textvalign centre
set textvalign top

8.27.55 title
set title ’<title>’

The title setting can be used to set a title for a plot, to be displayed
above it. For example, the command:

set title ’foo’

would cause a title ‘foo’ to be displayed above a graph. The easiest way to
remove a title, having set one, is via:

unset title
8.27.56 width
set width <value>
The width setting controls the size of a graph. For example:
set width 10

sets output to be 10 centimetres in width. For the bitmap terminals (gif,
jpg and png) this setting, in conjunction with the dpi setting, controls the
number of pixels across the final image.

8.27.57 xlabel
set xlabel ’<text>’

The xlabel setting controls the label placed on the z-axis (abscissa).
For example:

set xlabel ’x°

114 CHAPTER 8. COMMAND REFERENCE

sets the label on the z-axis to ‘z’. Labels can be placed on higher axes by
inserting their number after the ‘x’, for example:

set x10label ’foo’

would label the tenth x axis.
Similarly, labels can be placed on y-axes as follows:

set ylabel ’y’
set y2label ’foo’

8.27.58 xrange

set x[<axisnumber>]range ’<text>’

The xrange setting controls the range of values along the x-axes of plots.
For function plots, this is also the domain across which the function will be
evaluated. For example:

set xrange [0:10]

sets the first z axis to be between 0 and 10. Higher numbered axes may
be referred to be inserting their number after the z; y-axes similarly be
replacing the x with a y. Hence:

set y23range [-5:5]

sets the range of the 23rd y-axis to be between -5 and 5. To request a range
to be automatically scaled an asterix can be used. The following command:

set xrange [:10] [*:x]

would set the z-axis to have an upper limit of 10, but does not affect the
lower limit; its range remains at its previous setting. The first y-axis is
automatically scaled on both its upper and lower limits.

8.27.59 xticdir

set (xl|y) [<axisnumber>]ticdir (inward|outward|both)

The xticdir setting can be used to set whether the ticks along the z-
axis of a plot point inwards, towards the graph, as by default, or outwards,
towards the numeric labels along the axis. They can also be set to point in
both directions simultaneously. The syntax for this is as follows:

8.27. SET 115

set xticdir inward
set xticdir outward
set xticdir both

The same setting can also be made on higher numbered axes, by inserting
their numbers after the ‘x’, for example:

set x10ticdir outward

Similarly, the ‘x’ can be substituted with a ‘y’ to set the directions of
ticks on vertical axes:

set yticdir inward
set ylOticdir both

8.27.60 xtics

set [m]x[<axisnumber>]tics
[axis|border|inward|outward|both]

[auto

| [<minimum>,] <increment[, <maximum>]
| (’<label>’ <position> ...)

]

The xtics option specifies the positions of tick marks on the z-axis
(similarly, ytics acts on the y-axis). One can specify:

e The axis to modify; if none is specified, then the command acts upon
all axes.

e mxtics to alter the placement of minor tic marks.

e The keywords inward, outward and both, which alter the directions
of the tics. axis is an alias for inward, border for outward.

e The autofreq keyword restores automatic placement of the tics

e If minimum, increment, maximum are specified, then ticks are placed
at evenly spaced intervals between the specified limits. In the case of
logarithmic axes, increment is applied multiplicatively.

e The final form allows ticks to be placed on an axis manually with
individual labels.

Two examples:

set xtics 2 1 5

116 CHAPTER 8. COMMAND REFERENCE

will set tick marks on the z-axis at positions 2, 3, 4 and 5.
set x2tics ("a" 2, "b" 3)

will set tick marks on the second x-axis at positions 2 and 3 reading ‘a’ and
‘b’ respectively.
8.27.61 ylabel

See xlabel.

8.27.62 yrange

See xrange.

8.27.63 yticdir

See xticdir.

8.27.64 ytics

See xtics.

8.28 show

show (all | settings | axes | variables | functions |
<parameter> ...)

The show command displays the values of PyXPlot’s internal parameters.
For example:

show pointsize

will display the current default point size.

Details of the various settings that can be shown can be found under the
set command; any keyword which can follow the set command can also
follow the show command.

In addition, show all shows the configuration state of all aspects of
PyXPlot. The command show settings shows all of PyXPlot’s settings,
as distinct from variables, functions and axes. show axes shows the config-
uration of all of PyXPlot’s axes. show variables lists all of the currently
defined variables. And finally, show functions lists all of the current user-
defined functions.

8.29. SPLINE 117

8.29 spline

spline [<range specification>] <function name> ’<filename>’
[index <index specification>] [every <every specification>]
[using <using specification>]

The spline command fits a spline to a data file. A special function is
created that represents the spline fit and can be used in the same way as
any other user-defined function. For example:

spline f() ’data.1’

would create a function f(x) that is a fit to the data in the file data.1. By
default, the spline command uses the first two columns of a data file in
a manner analogous to the plot command. The index, every and using
modifiers can be used in the same way as in the plot command to select
which parts of the data file should be used; see the datafile section for
more details.

Note that trying to generate splines of multi-valued functions will not,
in general, produce useful results.

8.30 tabulate

tabulate [<range specification>] (<expression> | <filename>)
[index <index specification>] [every <every specification>]
[using <using specification>] [select <select specifier>]
[with <output format>]

The tabulate commands produces a text file containing the values of
a function at a set of points. For example, to produce a data file called
sine.dat with the principal values of the sine function:

set output ’sine.dat’
tabulate [-pi:pil] sin(x)

The tabulate command can also be used to select portions of data files.
For example, to select the third, sixth and ninth columns of the data file
data.dat, but only when the arcsine of the value in the fourth column is
positive:

set output ’filtered.dat’
tabulate ’data.dat’ u 3:6:9 select (asin($4)>0)

118 CHAPTER 8. COMMAND REFERENCE

The format used in each column of the output file is chosen automati-
cally with integers and small numbers treated intelligently to produce output
which preserves accuracy, but is also easily human-readable. If desired, how-
ever, a format statement may be specified using the with format specifier.
The syntax for this is similar to that expected by the Python string sub-
stitution operator (%)2. For example, to tabulate the values of 22 to very
many significant figures one could use:

tabulate x**2 with format "%27.20e"

If there are not enough columns present in the supplied format statement
it will be repeated in a cyclic fashion; e.g. in the example above the single
supplied format is used for both columns.

The index, every, using and select modifiers work in the same way as
for the plot command. For example multiple functions may be tabulated
into the same file with the using modifier:

tabulate [0:2x%pi] sin(x):cos(x):tan(x) u 1:2:3:4

The samples setting can be used to control the number of points that
are inserted into the data file. If the z-axis is set to be logarithmic then the
points at which the functions are evaluated are spaced logarithmically.

8.31 text

text ’<text string>’ [at <x>, <y>] [rotate <angle>]
[with colour <colour>]

The text command is used to add blocks of text to a multiplot. An
example would be:

text ’Hello World!’ at 0,2

which would render the text ‘Hello World!” at position (0,2), measured in
centimetres. The alignment of the text item with respect to this position
can be set using the set texthalign and set textvalign commands.

A rotation angle may optionally be specified after the keyword rotate
to produce text rotated to any arbitrary angle, measured in degrees counter-
clockwise. The following example would produce upward-running text:

text ’Hello’ at 1.5, 3.6 rotate 90

By default the text is black; however, an arbitrary colour may be speci-
fied using the with colour modifier. For example:

2Note that this operator can also be used within PyXPlot; see Section 2.3 for details.

8.32. UNDELETE 119

text ’A purple label’ at 0, O with colour purple

would add a purple label at the origin of the multiplot.

Outside of multiplot mode, the text command can be used to produce
images consisting simply of one single text item. This can be useful for
importing IATEXed equations as gif images into slideshow programs such as
Microsoft Powerpoint which are incapable of producing such neat mathe-
matical notation by themselves.

8.32 undelete
undelete <item number>,

The undelete command is part of the multiplot environment; it can
be used to reverse the effect of deleting a multiplot item with the delete
command. The desired item to be undeleted should be identified using the
reference number which it was given when it was created; it would have been
displayed on the terminal at that time. For example:

undelete 1

will cause the previously deleted item numbered 1 to reappear.

8.33 wunset
unset <setting>

The unset command causes a setting that has been changed using the
set command to be returned to its default value. For example:

unset linewidth

returns the linewidth to its default value.
The list of keywords which can follow the unset command are essentially
the same as those which can follow the set command.

120 CHAPTER 8. COMMAND REFERENCE

Appendix A

Colour Tables

Figures A.1, A.2 and A.3 show the named colours which PyXPlot recognises.
These figures exclude the various shades of grey which PyXPlot recognises,
the names of which are as follows, sorted with darkest first:

grey05, greyl0, greylb5, grey20, grey25, grey30, grey35, grey4o0,

grey4b5, greyb0, greybb, grey60, grey65, grey70, grey75, grey80,
grey85, grey90, grey95.

121

122

Apricot
Aquamarine
Bittersweet
Black

Blue
BlueGreen
BlueViolet
BrickRed
Brown
BurntOrange
CadetBlue
CarnationPink
Cerulean
CornflowerBlue
Cyan
Dandelion
DarkOrchid
Emerald
ForestGreen
Fuchsia

Goldenrod
Gray

Green
GreenYellow
Grey
JungleGreen
Lavender
LimeGreen
Magenta
Mahogany
Maroon
Melon
MidnightBlue
Mulberry
NavyBlue
OliveGreen
Orange
OrangeRed
Orchid
Peach

APPENDIX A. COLOUR TABLES

Periwinkle
PineGreen
Plum
ProcessBlue
Purple
RawSienna
Red
RedOrange
RedViolet
Rhodamine
RoyalBlue
RoyalPurple
RubineRed
Salmon
SeaGreen
Sepia
SkyBlue
SpringGreen
Tan
TealBlue

Thistle
Turquoise
Violet
VioletRed
White
WildStrawberry
Yellow
YellowGreen
YellowOrange
black

white

Figure A.1: A list of the named colours which PyXPlot recognises, sorted

alphabetically.

shown.

The numerous shades of grey which it recognises are not

RawSienna
Maroon
BrickRed

Red

Brown
Mahogany
Sepia

Salmon
OrangeRed
WildStrawberry
RubineRed
Lavender
Rhodamine
VioletRed
Magenta
CarnationPink
RedViolet
Thistle
DarkOrchid
Mulberry

Plum

Orchid
Fuchsia
Purple
RoyalPurple
Violet
BlueViolet
Blue
Periwinkle
CadetBlue
NavyBlue
RoyalBlue
MidnightBlue
CornflowerBlue
Cerulean
ProcessBlue
Cyan
SkyBlue
Turquoise

Aquamarine

BlueGreen
TealBlue
Emerald
JungleGreen
SeaGreen
PineGreen
OliveGreen
ForestGreen
Green
YellowGreen
LimeGreen
SpringGreen
Green Yellow
Yellow
Goldenrod
Dandelion

YellowOrange
BurntOrange

Apricot

Tan

123

Orange
Peach
RedOrange
Melon
Bittersweet
White
white

Gray

Grey

black
Black

Figure A.2: A list of the named colours which PyXPlot recognises, sorted
by hue. The numerous shades of grey which it recognises are not shown.

124 APPENDIX A. COLOUR TABLES

RedOra ntOrange ~
¢ lmmg’Omngy

ellowOrange

Peach Dandelion
ubineRed
Salmon Goldenrod
Tagenta Melon Apricot oldenro Yellow
hodamine
edVioletWVioletRed
CarnationPink
Lavender
Thistle GreenYellow
Mul orr, QarkOrchid SpringGreen
Prof@rebg . @:chia White LimeGree
YellowGreen

epiawinkle
.GralPurple ‘ UadetBlue
iolet

QlueViolet
lue SeaGree’ OliveGree

CornﬂowerBlu’ SkyBluS

QaVyBlue BlueGree’

Teal Blu
JungleGre

Figure A.3: The named colours which PyXPlot recognises, arranged in HSB
colour space, with the brightness axis orientated into the page. Some colours
are not shown as they lie too close to others.

Appendix B

Line and Point Types

The table below shows the appearance of each numbered line and point type:

x Point type 1 ——— Line type 1
+ Point type 2=~ == -=---- Line type 2
* Point type 3 seeeeeenns Line type 3
o Point type 4 - -=.—- Line type 4
A Point type 5 —--—-- Line type 5
o Point type 6 —- -—- - Line type 6
0 Point type 7 @000 ———== Line type 7
" Point type 8 — — — Line type 8

A Point type 9
° Point type 10
¢+ Point type 11
T Point type 12

t Point type 13

125

126 APPENDIX B. LINE AND POINT TYPES

Appendix C

Other Applications of
PyXPlot

In this chapter, we present a short cookbook, describing a few applications
which we have found for PyXPlot which are not directly related to the
plotting of graphs.

C.1 Conversion of JPEG Images to Postscript

Users of the XTEX typesetting system will have experienced frustration if
they have ever tried to incorporate bitmap images — for example, those
in jpeg format — into INTEX documents. Whilst A TEX’s includegraphics
command allows for the easy incorporation of encapsulated postscript im-
ages into documents, bitmap images must be converted into postscript before
they can be imported. ImageMagick’s convert command can perform such
a conversion, but it does not produce efficient postscript, and the resulting
postscript file sizes are often excessively large. PyXPlot’s jpeg command
can perform much more efficient conversion:

set output image.eps
jpeg ’image.jpg’ width 10

C.2 Inserting Equations in Powerpoint Presenta-
tions

The two tools most commonly used for presenting talks — Microsoft Power-
point and OpenOffice Impress — have no facility for importing text rendered
in ATEX into slides. This is a frustration for those who work in mathemat-
ical disciplines, where it is necessary for talks to include equations. More
generally, it is a frustration for anyone who works in a field with notation
which makes use of non-standard characters. Powerpoint does include its

127

128 APPENDIX C. OTHER APPLICATIONS OF PYXPLOT

own Fquation Editor, but its output is considerably less professional than
that produced by KTEX.

It is possible to import graphic images into Powerpoint, but it cannot
read images in postscript format, the format in which ETEX produces its
output.

PyXPlot’s gif and png terminals provide a fix for this problem, as the
following example demonstrates:

set term transparent noantialias gif ; set dpi 300
set output ’equation.gif’ ; set multiplot

Render the Planck blackbody formula in LaTeX

set textcolour yellow

text ’$B_\nu = \frac{8\pi h}{c"3} \

\frac{\nu"3}{\exp \left(h\nu / kT \right) -1 }$’ at 0,0
text ’The Planck Blackbody Formula:’ at 0 , 0.75

The result is a gif image of the desired equation, with yellow text on a
transparent background. This can readily be imported into Powerpoint and
re-scaled to the desired size.

C.3 Delivering Talks in PyXPlot

Going one step further, PyXPlot can be used as a stand-alone tool for design-
ing slides for talks; it has several advantages over other presentation tools.
All of the text which is placed on slides is rendered neatly in I¥TEX. Images
can be placed on slides using the jpeg and eps commands, and placed at
any arbitrary co-ordinate position on the slide. In comparison with pro-
grams such as Microsoft Powerpoint and OpenOffice Impress, the text looks
much neater, especially if equations or unusual characters are required. In
comparison with TEX-based programs such as Foil TEX, it is much easier to
incorporate images around text to create colourful slides which will keep an
audience attentive.

As an additional advantage, graphs can be plotted within the scripts
describing each slide, directly from data files in your local filesystem. If you
receive new data shortly before giving a talk, it is a simple matter to re-run
the PyXPlot scripts and your slides will automatically pick up the new data
files.

Below, we outline our recipe for designing slides in PyXPlot. There are
many steps, but they do not take much time; many simply involve pasting
text into various files. Readers of the printed version of the manual may
find it easier to copy these files from the HTML version of this manual on
the PyXPlot website.

C.3. DELIVERING TALKS IN PYXPLOT 129

C.3.1 Setting up Infrastructure

First, a bit of infrastructure needs to be set up. Note that once this has been
done for one talk, the infrastructure can be copied directly from a previous
talk.

1. Make a new directory in which to put your talk:

mkdir my_talk
cd my_talk

2. Make a directory into which you will put the PyXPlot scripts for your
individual slides:

mkdir scripts

3. Make a directory into which you will put any graphic images which
you want to put into your talk to make it look pretty:

mkdir images

4. Make a directory into which PyXPlot will put graphic images of your
slides:

mkdir slides

5. Design a background for your slides. Open a paint programme such as
the gimp, create a new image which measures 1024 x 768 pixels, and fill
it with colour. My preference tends to be for a blue colour gradient,
running from bright blue at the top to dark blue at the bottom, but
you may be more inventive than me. You may wish to add institutional
and/or project logos in the corners. Alternatively, you can download
a ready-made background image from the PyXPlot website: http:
//foo. You should store this image as images/background. jpg.

6. We need a simple PyXPlot script to set up a slide template. Paste the
following text into the file scripts/slide_init; there’s a bit of black
magic in the arrow commands in this script which it isn’t necessary
to understand at this stage:

scale = 1.25 ; inch = 2.54 # cm
width = 10.24%*scale ; height = 7.68%*scale
x = width/100.0 ; vy = height/100.0

set term gif ; set dpi (1024.0/width) * inch
set multiplot ; set nodisplay

130

10.

APPENDIX C. OTHER APPLICATIONS OF PYXPLOT

set texthalign centre ; set textvalign centre
set textcolour yellow

jpeg "images/background. jpg" width width

arrow -x* 25,-y* 25 to -x* 25, y*125 with nohead
arrow —x* 25, y*125 to x*125, y*125 with nohead
arrow x*125, y*125 to x*125,-y* 25 with nohead
arrow x*125,-y* 25 to —-x* 25,-y* 25 with nohead

We also need a simple PyXPlot script to round off each slide. Paste
the following text into the file scripts/slide finish:

set display ; refresh

Paste the following text into the file compile. This is a simple shell
script which instructs pyxplot_watch to compile your slides using
PyXPlot every time you edit any of the them:

#!/bin/bash
pyxplot_watch --verbose scripts/0*

Paste the following text into the file make _slides. This is a simple
shell script which crops your slides to measure exactly 1024 x 768 pixels,
cropping any text boxes which may go off the side of them. It links
up with the black magic of Step 6:

#!/bin/bash

mkdir -p slides_cropped

for all in slides/*.gif ; do

convert $all -crop 1024x768+261+198 ‘echo $all | \
sed ’s@slides@slides_cropped@’ | sed ’s@gif@jpgl’‘
done

Make the scripts compile and make_slides executable:

chmod 755 compile make_slides

C.3.2 Writing A Short Example Talk

The infrastructure is now completely set up, and you are ready to start
designing slides. As an example, we will now design a short talk which
might be presented to by the Principal Conductor of the International Feline
Chamber Chorus.

1.

Run the script compile and leave it running in the background. PyX-
Plot will then re-run the scripts describing your slides whenever you
edit them.

C.3. DELIVERING TALKS IN PYXPLOT 131

2. As an example, we will now make a title slide. Paste the following
script into the file scripts/0001:

set output ’slides/0001.gif’
load ’scripts/slide_init’

text ’\parbox[t]{10cm}{\center \LARGE \bf \
An Experiment in the Training \\ \
of Cats to Sing Bach Chorales \
} ’ at x*50, y*75
text ’\Large \bf Sir Archibald Dribbles’ at x*50, y*45
text ’\parbox[t]{9cm}{\center \
Principal Conductor, \\ \
International Feline Chamber Chorus \
} ’ at x*50, y*38
text ’Annual Lecture, 1st January 2008’ at x*50, y*22

load ’scripts/slide_finish’

Note that the variables x and y are defined to be 1 per cent of the width
and height of your slides respectively, such that the bottom-left of each
slide is at (0,0) and the top-right of each slide is at (100 * x, 100 * y).

3. Next we will make a second slide with a series of bullet points. Paste
the following script into the file scripts/0002:

set output ’slides/0002.gif’
load ’scripts/slide_init’

text ’\Large \textbf{Talk Overviewl}’ at x*50, y*92
text "\parbox[t]{9cm}{\begin{itemize} \
\item Teaching cats to use their head voices. \
\item The Suzuki Method, as adapted to cats. \
\item Case Study I: {\it Wachet auf, das Katzenfutter \
ist angerichtet!}, BWV~140. \
\item Rhythmical Devices: Synchronised Purring. \
\item Case Study II: {\it Was eine Katze will, das \
g’scheh’ allzeit}, BWV™92. \
\item Conclusion. \
\end{itemize} \
} " at x*x50 , y*60

set textcol cyan
text ’{\bf With thanks to my collaborator, \

132

APPENDIX C. OTHER APPLICATIONS OF PYXPLOT

Pebbles Poofslop.}’ at x*50,y*15

load ’scripts/slide_finish’

Finally, we will make a third slide with a graph on it. Paste the
following script into the file scripts/0003:

set output ’slides/0003.gif’
load ’scripts/slide_init’

text ’\Large \bf The Results of Our Model’ at x*50, y*92
set axescolour yellow ; set nogrid

set origin x*17.5, y*20 ; set width x*70

set xrange [0.01:0.7]

set xlabel ’x’

set yrange [0.01:0.7]

set ylabel ’$f(x)$’

set palette Red, Green, Orange, Purple

set key top left
plot x t ’Model 1’, exp(x)-1 t ’Model 2°, \
log(x+1) t ’Model 3’, sin(x) t ’Model 4’

load ’scripts/slide_finish’

To view your slides, run the script make_slides. Afterwards, you
will find your slides as a series of 1024 x 768 pixel jpeg images in the
directory slides_cropped. If you have the Quick Image Viewer (qiv)
installed, then you can view them as follows:

qiv slides_cropped/*

If you're in a hurry, you can skip the step of running the script
make_slides and view your slides as images in the slides directory,
but note that the slides in here may not be properly cropped. This
approach is generally preferable when viewing your slides in a semi-live
fashion as you are editing them.

If you’d like to make the text on your slides larger or smaller, you can
do so by varying the scale parameter in the file scripts/slide_init.

The three slides which we have designed can been seen in Figures 77, 77

and 77.

C.3. DELIVERING TALKS IN PYXPLOT 133

C.3.3 Delivering your Talk

There are two straightforward ways in which you can give your talk. The
quickest way is simply to use the Quick Image Viewer (qiv):

qiv slides_cropped/*

Press the left mouse button to move forward through your talk, and the
right mouse button to go back a slide.

This method does lack some of the niceties of Microsoft Powerpoint — for
example, the ability to jump to any arbitrary slide number, compatibility
with wireless remote controls to advance your slides, and the ability to use
animated slide transitions. It may be preferably, therefore, to paste the jpeg
images of your slides into a Powerpoint or OpenOffice Impress presentation
before you give your talk.

134 APPENDIX C. OTHER APPLICATIONS OF PYXPLOT

Appendix D

The fit Command:
Mathematical Details

In this section, the mathematical details of the workings of the £it command
are described. This may be of interest in diagnosing its limitations, and
also in understanding the various quantities that it outputs after a fit is
found. This discussion must necessarily be a rather brief treatment of a
large subject; for a fuller account, the reader is referred to D.S. Sivia’s Data
Analysis: A Bayesian Tutorial.

D.1 Notation

I shall assume that we have some function f(), which takes ny parameters,
x0..-Tn,—1, the set of which may collectively be written as the vector x. We
are supplied a datafile, containing a number nq of datapoints, each consisting
of a set of values for each of the ny parameters, and one for the value which
we are seeking to make f(x) match. I shall call of parameter values for the
1th datapoint x;, and the corresponding value which we are trying to match
fi- The datafile may contain error estimates for the values f;, which I shall
denote o;. If these are not supplied, then I shall consider these quantities
to be unknown, and equal to some constant og.a.

Finally, I assume that there are n, coefficients within the function f()
that we are able to vary, corresponding to those variable names listed af-
ter the via statement in the fit command. I shall call these coefficients
ug...Un, —1, and refer to them collectively as u.

I model the values f; in the supplied datafile as being noisy Gaussian-
distributed observations of the true function f(), and within this framework,
seek to find that vector of values u which is most probable, given these
observations. The probability of any given u is written P (u|{x;, fi,0:}).

135

136 APPENDIX D. DETAILS OF THE FIT COMMAND

D.2 The Probability Density Function

Bayes’ Theorem states that:

P ({7} [{00} P (4] {1, 0:])
B (/)] (x00)) (B

Since we are only seeking to maximise the quantity on the left, and the
denominator, termed the Bayesian evidence, is independent of u, we can
neglect it and replace the equality sign with a proportionality sign. Further-
more, if we assume a uniform prior, that is, we assume that we have no prior
knowledge to bias us towards certain more favoured values of u, then P (u)
is also a constant which can be neglected. We conclude that maximising
P (u|{xi, fi,oi}) is equivalent to maximising P ({ f;} |u, {x;, 0:}).

P (u|{x;, fi,0i}) =

Since we are assuming f; to be Gaussian-distributed observations of the
true function f(), this latter probability can be written as a product of nq
Gaussian distributions:

ng—1 1 <_ [fz _ fu(xz)]2>
p ({fl} |ua {Xi’ O-Z}) = €X (D2)
H) oV 2T P 201‘2

The product in this equation can be converted into a more computa-
tionally workable sum by taking the logarithm of both sides. Since loga-
rithms are monotonically increasing functions, maximising a probability is
equivalent to maximising its logarithm. We may write the logarithm L of

P (u] {x;, fi,0i}) as:

ng—1

202
i=0 i

where k is some constant which does not affect the maximisation process.
It is this quantity, the familiar sum-of-square-residuals, that we numerically
maximise to find our best-fitting set of parameters, which I shall refer to

from here on as u.

D.3 Estimating the Error in u’

To estimate the error in the best-fitting parameter values that we find, we
assume P (u| {x;, fi,0;}) to be approximated by an n,-dimensional Gaussian
distribution around u®. Taking a Taylor expansion of L(u) about u’, we
can write:

D.3. ESTIMATING THE ERROR IN U° 137

el oL
Lu) = L")+ > (u—uf) o
i=0 !

+ (D.4)

uo

Zero at u® by definition

et (=) (w —wf) g
2 auzﬁu]

+(9(u—u0)3

i=0 j=0 uod

Since the logarithm of a Gaussian distribution is a parabola, the quadratic
terms in the above expansion encode the Gaussian component of the prob-
ability distribution P (u| {x;, f;,0;}) about u’.! We may write the sum of
these terms, which we denote (), in matrix form:

Q= % (u—uO)TA(u—uO) (D.5)

where the superscript T represents the transpose of the vector displacement
from u’, and A is the Hessian matrix of L, given by:

0*L
8ulau] uo

Aij =VVL = (D.6)

This is the Hessian matrix which is output by the fit command. In gen-
eral, an ny-dimensional Gaussian distribution such as that given by equa-
tion (D.4) yields elliptical contours of equiprobability in parameter space,
whose principal axes need not be aligned with our chosen co-ordinate axes
— the variables ug...u,,—1. The eigenvectors e; of A are the principal axes
of these ellipses, and the corresponding eigenvalues A; equal 1 /03, where
o; is the standard deviation of the probability density function along the
direction of these axes.

This can be visualised by imagining that we diagonalise A, and expand
equation (D.5) in our diagonal basis. The resulting expression for L is a
sum of square terms; the cross terms vanish in this basis by definition. The
equations of the equiprobability contours become the equations of ellipses:

Q = — Z Aii (uz — u?)Q =k (D.?)

where k is some constant. By comparison with the equation for the loga-
rithm of a Gaussian distribution, we can associate A;; with —1 /ai2 in our
eigenvector basis.

IThe use of this is called Gauss’ Method. Higher order terms in the expansion repre-
sent any non-Gaussianity in the probability distribution, which we neglect. See MacKay,
D.J.C., Information Theory, Inference and Learning Algorithms, CUP (2003).

138 APPENDIX D. DETAILS OF THE FIT COMMAND

The problem of evaluating the standard deviations of our variables u; is
more complicated, however, as we are attempting to evaluate the width of
these elliptical equiprobability contours in directions which are, in general,
not aligned with their principal axes. To achieve this, we first convert our
Hessian matrix into a covariance matrix.

D.4 The Covariance Matrix

The terms of the covariance matrix V;; are defined by:

Vig = {(wi =) (w; —) (D-8)

Its leading diagonal terms may be recognised as equalling the variances of
each of our n, variables; its cross terms measure the correlation between the
variables. If a component V;; > 0, it implies that higher estimates of the
coefficient u; make higher estimates of u; more favourable also; if V;; < 0,
the converse is true.

It is a standard statistical result that V = (—A)~!. In the remainder of
this section we prove this; readers who are willing to accept this may skip
onto Section D.5.

Using Aw; to denote (ul — u?), we may proceed by rewriting equa-
tion (D.8) as:

Vij = / cee / AuiAujP (u[{Xi, fi, Uz}) d™u (D.9)

f .. fuo;’:7oo AuiAuj exp(—Q) d™u
f o fifioi—oo eXp(—Q) dnuu

The normalisation factor in the denominator of this expression, which
we denote as Z, the partition function, may be evaluated by n,-dimensional
Gaussian integration, and is a standard result:

Z = // exp (%AuTAAu> d™u (D.10)

(2m)"/2
Det(—A)

Differentiating log,(Z) with respect of any given component of the Hes-
sian matrix A;; yields:

-2

0A;; [log.(Z)] = %//Z:C><> Au;Auj exp(—Q) d™u (D.11)

D.5. THE CORRELATION MATRIX 139

which we may identify as equalling V;;:

Vij = =2

o1 los.(2) (D12)

= -2

2 o7)

0
= 2—— [log.(Det(—A
g1 lom.(Det(~A))
This expression may be simplified by recalling that the determinant of a

matrix is equal to the scalar product of any of its rows with its cofactors,
yielding the result:

5, Det(-A)] = —aj (D.13)

where a;; is the cofactor of A;;. Substituting this into equation (D.12) yields:
Det(—A)

Recalling that the adjoint AT of the Hessian matrix is the matrix of
cofactors of its transpose, and that A is symmetric, we may write:

Vi = (D.14)

—Af
Vij = ————
Det(—A)
which proves the result stated earlier.

=(—A)"! (D.15)

D.5 The Correlation Matrix

Having evaluated the covariance matrix, we may straightforwardly find the
standard deviations in each of our variables, by taking the square roots of
the terms along its leading diagonal. For datafiles where the user does not
specify the standard deviations o; in each value f;, the task is not quite
complete, as the Hessian matrix depends critically upon these uncertainties,
even if they are assumed the same for all of our f;. This point is returned
to in Section D.6.
The correlation matrix C, whose terms are given by:

‘/i .

O'Z'O'j

Cl'j =

(D.16)

may be considered a more user-friendly version of the covariance matrix for
inspecting the correlation between parameters. The leading diagonal terms
are all clearly equal unity by construction. The cross terms lie in the range
—1 < (5 <1, the upper limit of this range representing perfect correlation
between parameters, and the lower limit perfect anti-correlation.

140 APPENDIX D. DETAILS OF THE FIT COMMAND

D.6 Finding o;

Throughout the preceding sections, the uncertainties in the supplied target
values f; have been denoted o; (see Section D.1). The user has the option
of supplying these in the source datafile, in which case the provisions of the
previous sections are now complete; both best-estimate parameter values
and their uncertainties can be calculated. The user may also, however, leave
the uncertainties in f; unstated, in which case, as described in Section D.1,
we assume all of the data values to have a common uncertainty ogata, which
is an unknown.

In this case, where o; = 0qata V¢, the best fitting parameter values are
independent of o4ata, but the same is not true of the uncertainties in these
values, as the terms of the Hessian matrix do depend upon cgat,. We must
therefore undertake a further calculation to find the most probable value
of 0data, given the data. This is achieved by maximising P (0qata| {Xi, fi})-
Returning once again to Bayes’ Theorem, we can write:

P ({fl} |O-dataa {Xl}) P (Udata| {Xz})
P}) (D-17)

As before, we neglect the denominator, which has no effect upon the
maximisation problem, and assume a uniform prior P (0gata| {x;}). This
reduces the problem to the maximisation of P ({f;} |0gata, {Xi}), which we
may write as a marginalised probability distribution over u:

P (Udata| {Xi’ fZ}) =

[e.e]
P({fi} o) = [[P owa b} w x (D8)

—0o0

P (u|ogata, {x:}) d™u

Assuming a uniform prior for u, we may neglect the latter term in the in-
tegral, but even with this assumption, the integral is not generally tractable,
as P ({fi} |odata, {xi} , {u;}) may well be multimodal in form. However, if
we neglect such possibilities, and assume this probability distribution to be

approximate a Gaussian globally, we can make use of the standard result for
an ny-dimensional Gaussian integral:

//Z exp (%UTAu> ™ = % (D.19)

We may thus approximate equation (D.18) as:

p ({fz} |Udataa {Xl}) ~ P ({fz} |Jdataa {Xz}) uO) X (D20)

)"/2
P (u0|o-data’ {Xi’ fl}) %

D.6. FINDING o; 141

As in Section D.2, it is numerically easier to maximise this quantity via
its logarithm, which we denote Lo, and can write as:

ng—1 12
L, = Y <_[fz Juo (%)) _1oge(27r,/—adata)>+ (D.21)

2
i=0 2Jdata

(2m)m/?
108 (Det (—A))

This quantity is maximised numerically, a process simplified by the fact
that u® is independent of ogata.

142 APPENDIX D. DETAILS OF THE FIT COMMAND

Appendix E

ChangeLog

2009 Nov 17: PyXPlot 0.7.1
Summary:

This release has no major new features, but fixes several serious bugs in
version 0.7.0.

Detalils:

e The exec command did not work in PyXPlot 0.7.0; this issue has been
resolved.

e The xyerrorrange plot style did not work in PyXPlot 0.7.0; this issue
has been resolved.

e PyXPlot 0.7.0 produces large numbers of python deprecation error
messages when run under python 2.6; the code has been updated to
remove references to deprecated python functions.

Details — Change of System Requirements:

e In order to fix some of the bugs listed above, it has been necessary to
fix bugs in the PyX graphics library as well as those in PyXPlot. As
a result, and to ensure that these bugfixes reach users as quickly as
possible, we have opted to ship our own modified version of PyX 0.10,

called dcfPyX with PyXPlot.

2008 Oct 14: PyXPlot 0.7.0
Summary:

Third PyXPlot beta-release. The code has undergone significant streamlin-
ing, and now runs approximately twice as fast as version 0.6.3 when handling
large datafiles. Memory usage has also been radically reduced. Two new

143

144 APPENDIX E. CHANGELOG

data processing commands have been introduced. The tabulate command
can be used to produce textual datafiles, allowing the user to read data in
from files, apply some analysis, and then write the processed data back to
file. The histogram command can be used to estimate the frequency den-
sities of sets of data points, either by binning them into a bar chart, or by
fitting a functional form to their frequency density.

Details — New and Extended Commands:
e tabulate
e histogram
e set label and text commands extended to allow a colour to be spec-
ified.
Details — API changes
e diff dx() and int_dx() functions — the function to be differentiated
or integrated must now be placed in quotation marks.
Details — Change of System Requirements:

e Requirement of PyX version 0.9 has been updated to PyX version 0.10.
Note that new versions of the PyX graphics library are not generally
backwardly compatible.

2007 Feb 26: PyXPlot 0.6.3

Summary:

Second PyXPlot beta-release. The most significant change is the introduc-
tion of a new command-line parser, with greatly improved handling of com-
plex expressions and much more meaningful syntax error messages. Multi-
platform compatibility has also been massively improved, and dependencies
loosened. A small number of new commands have been added; most no-
table among them are the jpeg and eps commands, which embed images in
multiplots.

Details — New and Extended Commands:
* jpeg
e eps
e set xtics and set mxtics

e text and set label commands extended to allow text rotation.

145

e set log command extended to allow the use of logarithms with bases
other than 10.

e set preamble
e set term enlarge | noenlarge
e set term pdf

e set term xl1l persist

Details — Eased System Requirements:

e Requirement on Python 2.4 minimum eased to version 2.3 minimum.

e Requirements on scipy and readline eased; PyXPlot will now work
in reduced form when they are absent, though they are still strongly
recommended.

e dvips and ghostscript are no longer required.

Details — Removed Commands:

Due to a general refinement of PyXPlot’s API, some of the less sensible
pieces of syntax from Version 0.5 are no longer supported. The author
apologises for any inconvenience caused.

e The delete_arrow, delete_text, move_text, undelete_arrow and
undelete_text commands have been removed from the PyXPlot API.
The move, delete and undelete commands should now be used to act
upon all types of multiplot objects.

e The set terminal command no longer accepts the enhanced and
noenhanced modifiers. The postscript and eps terminals should
be used instead.

e The select modifier, used after the plot, replot, fit and spline
command can now only be used once; to specify multiple select cri-
teria, use the and logical operator.

2006 Sep 09: PyXPlot 0.5.8

First beta-release.

Index

=~ operator, 32
? command, 81
% operator, 9, 32, 67, 118

above keyword, 48
accented characters, 11
acsplines plot style, 65
Adobe Acrobat, 16
alignment

text, 55
amsmath package, 62
arrow command, 60, 61, 82
arrows, 53
arrows plot style, 36
autofreq keyword, 46
axes

colour, 57

removal, 43

reserved labels, 45, 60

setting ranges, 19
axes modifier, 43
axis keyword, 46

backquote character, 23
backslash character, 11
backup files, 51
bar charts, 38
below keyword, 48
best fit lines, 21, 65
binorigin modifier, 68
bins modifier, 68
binwidth modifier, 68
bitmap output
resolution, 29
border keyword, 46
both keyword, 46

bottom keyword, 48, 55
boxes plot style, 38, 41, 69

cd command, 23, 82
centre keyword, 55
Changel.og, 143
clear command, 58, 82
co-ordinate systems
axisn, 54
first, 54
graph, 54
screen, H4
second, 54
colour keyword, 82
colour output, 28
colours
axes, 57
charts, 121
configuration file, 80
grid, 57
inverting, 28
setting for datasets, 50
setting the palette, 50
shades of grey, 80, 121
text, 55
columns keyword, 42
command line syntax, 25
command scripts
comment lines, 8
command-line syntax, 7
comment lines, 8
configuration file
colours, 80
configuration files, 72
correlation matrix, 139
covariance matrix, 138

146

INDEX

csplines plot style, 65
csv files, 9

datafile format, 12
datafiles

globbing, 50

horizontal, 42
Debian Linux, 3
delete command, 58, 60, 83
diff_dx() function, 67
differentiation, 67
discontinuous modifier, 42
DISPLAY environment variable, 29
dots plot style, 35

edit command, 59, 83
encapsulated postscript, 28
enlarging output, 29

eps command, 61, 84, 128
errorbars, 37

errorbars plot style, 37
errorrange plot style, 38
escape characters, 11
every modifier, 15, 20, 42, 67, 69, 85
exec command, 34, 84
exit command, 7, 8, 84

fillcolour modifier, 40
fit command, 3, 20, 65, 84, 135
fontsize, 55
fsteps plot style, 41
fsteps plot style, 38
function splicing, 63
functions
pre-defined, 12
unsetting, 9

General Public License, 5

Gentoo Linux, 4

Ghostview, 3, 30

gif output, 28
transparency, 29

globbing, 50

gnuplot, 1

grid, 57

147

colour, 57
gzip, 9

head keyword, 54, 82

height keyword, 61

help command, 22, 85

Hessian matrix, 137

hidden axes, 43

histeps plot style, 41

histeps plot style, 38
histogram command, 68, 74, 85
history command, 26, 86
horizontal datafiles, 42

image resolution, 29
ImageMagick, 3, 127
impulses plot style, 41
impulses plot style, 38
index modifier, 15, 20, 69, 85
installation, 4
system-wide, 4
under Debian, 3
under Gentoo, 4
under Ubuntu, 3, 4
user-level, 4
int_dx() function, 67
integration, 67
invisible keyword, 45
inward keyword, 46

jpeg command, 61, 86, 127, 128
jpeg images, 127
jpeg output, 28

keys, 46
Kuhn, Marcus, 30

landscape orientation, 28

latex, 3, 62

left keyword, 48, 55
legends, 46
Lehmann, Jorg, 5
license, 5

lines plot style, 18, 35, 42
linespoints plot style, 18, 35

148

linetype keyword, 82
linetype plot style, 18
linewidth keyword, 82
linewidth modifier, 36
list command, 59, 87
load command, 8, 50, 87
lower-limit datapoints, 36

MacOS X, 3

magic axis labels, 45, 60
Maple, 1

Mathematica, 1
MatPlotLib, 2

Microsoft Excel, 9
Microsoft Powerpoint, 127, 128
monochrome output, 28
move command, 58, 60, 87
multiple windows, 27
multiplot, 57

nohead keyword, 54, 82
nolabels keyword, 45
nolabelstics keyword, 45

Not So Short Guide to INTEX2¢, The,

3

OpenOffice, 127, 128
operators, 12
outside keyword, 48
outward keyword, 46
overwriting files, 51

palette, 50

paper sizes, 30

pdf format, 16

pdf output, 28

Pgplot, 1

plot axes command, 88

plot command, 8, 19, 50, 88, 93

plot styles
acsplines, 65
arrows, 36
boxes, 38, 41, 69
csplines, 65
dots, 35

INDEX

errorbars, 37
errorrange, 38
fsteps, 41
histeps, 41
impulses, 41
lines, 18, 35, 42
linespoints, 18, 35
linetype, 18
points, 18, 35
pointtype, 18
steps, 41
vectors, 36
wboxes, 39, 41
xerrorbars, 37
xerrorrange, 38
xyerrorbars, 37
xyerrorrange, 38
yerrorbars, 18, 37
yerrorrange, 38
plot with command, 89
png output, 28
transparency, 29
pointlinewidth modifier, 36
points plot style, 18, 35
pointsize modifier, 35
pointtype plot style, 18
portrait orientation, 28
postscript
encapsulated, 28
postscript output, 28
presentations, 60, 127
print command, 9, 90
pwd command, 23, 90
python, 3
Python Library Reference, 9, 33
PyX, 2,5
pyxplot_watch, 30

Quick Image Viewer, 132, 133
quit command, 7, 8, 90
quote characters, 11

refresh command, 62, 90
regular expressions, 32

INDEX

removing axes, 43

replot command, 17, 58, 59, 62, 91
replotting, 62

reset command, 11, 91

right keyword, 48, 55

rotate keyword, 55, 60, 61

rows keyword, 42

save command, 8, 26, 91

Schindler, Michael, 5

scipy, 3, 68

sed shell command, 32

select modifier, 20, 42, 67, 69

arrow command, 53, 54, 92

autoscale command, 19, 93

axescolour command, 57, 74,
93

axis command, 43, 94

backup command, 51, 74, 94

bar command, 74, 95

binorigin command, 74, 95

binwidth command, 74, 95

boxfrom command, 40, 75, 95

boxwidth command, 39, 75, 96

command, 71, 92

data style command, 75, 96

display command, 61, 75, 96

dpi command, 29, 75, 97

fontsize command, 55, 75, 97

function style command, 75,
97

grid command, 57, 76, 97

set
set
set

set
set
set
set
set
set
set
set
set
set
set
set
set

set
set

98
set

98
set key command, 48, 76, 99
set keycolumns command, 48, 76,

99
label command, 54, 60, 62, 100
linestyle command, 101
linewidth command, 77, 101
logscale command, 19, 101
multiplot command, 58, 77, 102

set
set
set
set
set

gridmajcolour command, 57, 76, set

gridmincolour command, 57, 76, set

149

mxtics command, 46, 102

mytics command, 102

noarrow command, 53, 102

noaxis command, 103

nobackup command, 103

nodisplay command, 61, 103

nogrid command, 103

nokey command, 48, 103

nolabel command, 103

nolinestyle command, 104

nologscale command, 19, 104

nomultiplot command, 58, 104

notitle command, 104

noxtics command, 45, 105

noytics command, 105

origin command, 58, 77, 105

output command, 16, 77, 105

palette command, 50, 105

papersize command, 29, 31, 77,
106

pointlinewidth command, 77,
106

pointsize command, 78, 106

preamble command, 62, 72, 107

samples command, 18, 66, 78,
107

set size command

noratio modifier, 107

ratio modifier, 108

square modifier, 108

size command, 17, 79, 107

size ratio command, 17, 74

size square command, 17

style command, 108

style function command, 18

set terminal command

antialias modifier, 109

color modifier, 109

colour modifier, 109

enlarge modifier, 109

eps modifier, 110

gif modifier, 110

invert modifier, 110

jpeg modifier, 110

set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set

set

set

set
set

set
set

set

150 INDEX

landscape modifier, 110 string operators
monochrome modifier, 110 concatenation, 32
noantialias modifier, 110 search and replace, 32
noenlarge modifier, 111 substitution, 9, 32, 67, 118
noinvert modifier, 111 SuperMongo, 1

pdf modifier, 111 system requirements, 3

png modifier, 111

portrait modifier, 111 tabulate command, 66, 117
postscript modifier, 111 text

solid modifier, 111 alignment, 55
transparent modifier, 111 colour, 55

X11 multiwindow modifier, 112 size, 55

X11_persist modifier, 112 text command, 60, 62, 118

X11_singlewindow modifier, 112 title modifier, 46
set terminal command, 16, 17, 26, Tobias Oetiker, 3

27, 75, 77, 78, 108 top keyword, 48, 55
set textcolour command, 55, 60, transparent terminal, 29
78, 112 twohead keyword, 54, 82
set texthalign command, 55, 60, twoway keyword, 54
78, 112 '
set textvalign command, 55, 60, Ubuntu Linux, 3, 4
78, 113 undelete command, 58, 60, 119

unset axis command, 43

unset command, 11, 71, 119
unsetting variables, 9

upper-limit datapoints, 36

using columns modifier, 42

using modifier, 12, 20, 66, 67, 69, 85
using rows modifier, 42

set title command, 78, 79, 113
set width command, 17, 79, 113
set xlabel command, 113
set xrange command, 19, 43, 114
set xticdir command, 46, 114
set xtics command, 45, 115
set ylabel command, 116
set yrange command, 116
set yticdir command, 116
set ytics command, 116
shell commands

executing, 23

substituting, 23
show command, 59, 71, 116

van Rossum, Guido, 9, 33
variables

string, 32

unsetting, 9
vectors plot style, 36
via keyword, 20, 85

Solaris, 3 watching scripts, 30
special characters, 11 wboxes plot style, 39, 41
splicing functions, 63 width keyword, 61
spline command, 3, 65, 117 wildcards, 50

splot command, 24 with modifier, 18, 61, 82

spreadsheets, importing data from, 9 Wobst, André, 5
steps plot style, 41
steps plot style, 38 X11 terminal, 27

INDEX

xcentre keyword, 48
xerrorbars plot style, 37
xerrorrange plot style, 38
xyerrorbars plot style, 37
xyerrorrange plot style, 38

ycentre keyword, 48
yerrorbars plot style, 18, 37
yerrorrange plot style, 38

151

