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1 Introduction

Multiple QTL Mapping (MQM) provides a sensitive approach for mapping quantititive trait
loci (QTL) in experimental populations. MQM adds higher statistical power compared to many
other methods. The theoretical framework of MQM was introduced and explored by Ritsert
Jansen, explained in the ‘Handbook of Statistical Genetics’ (see references), and used effectively
in practical research, with the commercial ‘mapqtl’ software package. Here we present the
first free and open source implementation of MQM, with extra features like high performance
parallelization on multi-CPU computers, new plots and significance testing.

MQM is an automatic three-stage procedure in which, in the first stage, missing data is
‘augmented’. In other words, rather than guessing one likely genotype, multiple genotypes are
modeled with their estimated probabilities. In the second stage important markers are selected
by multiple regression and backward elimination. In the third stage a QTL is moved along the
chromosomes using these pre-selected markers as cofactors, except for the markers in the window
around the interval under study. QTL are (interval) mapped using the most ‘informative’ model
through maximum likelihood. A refined and automated procedure for cases with large numbers
of marker cofactors is included. The method internally controls false discovery rates (FDR) and
lets users test different QTL models by elimination of non-significant cofactors.

R/qtl-MQM has the following advantages:

� Higher power, as long as the QTL explain a reasonable amount of variation

� Protection against overfitting, because it fixes the residual variance from the full model.
For this reason more parameters (cofactors) can be used compared to, for example, CIM

� Prevention of ghost QTL (between two QTL in coupling phase)

� Detection of negating QTL (QTL in repulsion phase)

The current implementation of R/qtl-MQM has the following limitations: (1) MQM is lim-
ited to experimental crosses F2, BC, and selfed RIL, (2) MQM does not treat sex chromosomes
differently from autosomal chromosomes - though one can introduce sex as a cofactor. Fu-
ture versions of R/qtl-MQM may improve on these points. Check the website and change log
(http://www.rqtl.org/STATUS.txt) for updates.

Despite these limitations, MQM 1 is a valuable addition to the QTL mapper’s toolbox. It is
able to deal with QTL in coupling phase and QTL in repulsion phase. MQM handles missing
data and has higher power to detect QTL (linked and unlinked) than other methods. R/qtl’s
MQM is faster than other implementations and scales on multi-CPU systems and computer
clusters. In this tutorial we will show you how to use MQM for QTL mapping.

MQM is an integral part of the free R/qtl package [2, 1, 3] for the R statistical language2.

2 A quick overview of MQM

These are the typical steps in an MQM QTL analysis:
1MQM should not be confused with composite interval mapping (CIM) [13, 14]. The advantage of MQM over

CIM is reduction of type I error (a QTL is indicated at a location where there is no QTL present) and type II
error (a QTL is not detected) for QTL detection [9].

2We assume the reader knows how to load his data into R using the R/qtl read.cross function; see also the
R/qtl tutorials [1] and book [2].
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� Load data into R

� Fill in missing data, using either mqmaugmentdata or fill.geno

� Unsupervised backward elimination to analyse cofactors, using mqmscan

� Optionally select cofactors at markers that are thought to influence QTL at, or near, the
location

� Permutation or simulation analysis to get estimates of significance, using mqmpermutation
or mqmscanfdr

Using maximum likelihood (ML), or restricted maximum likelihood (REML), the algorithm
employs a backward elimination strategy to identify QTL underlying the trait. The algorithm
passes through the following stages:

� Likelihood-based estimation of the full model using all cofactors

� Backward elimination of cofactors, followed by a genome scan for QTL

� If there are no cofactors defined, the backward elimination of cofactors is skipped and a
genome scan for QTL is performed, testing each genetic (interval) location individually.
In this case REML and ML will result in the same QTL profile because there is no full
model.

The results created during the genome scan and the QTL model are returned as an (ex-
tended) R/qtl scanone object. Several special plotting routines are available for MQM results.

3 Data augmentation

In an ideal world all datasets would be complete (with the genotype for every individual at
every marker determined), however in the real world datasets are often incomplete. That is,
genotype information is missing, or can have multiple plausible values. MQM automatically
expands the dataset by adding all potential variants and attaching a probability to each. For
example, information is missing (unknown) at a marker location for one individual. Based on
the values of the neighbouring markers, and the (estimated) recombination rate, a probability
is attached to all possible genotypes. With MQM all possible genotypes with a probability
above the parameter minprob are considered.

When encountering a missing marker genotype (possible genotypes A and B in a RIL),
all possible genotypes at the missing location are created. Thus at the missing location two
‘individuals’ are created in the augmentation step, one with genotype A, and one with genotype
B. A probability is attached to both augmented individuals. The combined probability of all
missing marker locations tells whether a genotype is likely, or unlikely, which allows for weighted
analysis later.

To see an example of missing data with an F2 intercross, we can visualize the genotypes of
the individuals using geno.image. In Figure 1 there are 2% missing values in white. The other
colors are genotypes at a certain position, for a certain individual. Simulate an F2 dataset with
2% missing genotypes as follows:

Simulate a dataset with missing data:
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> library(qtl)

> data(map10)

> simcross <- sim.cross(map10, type = "f2", n.ind = 100, missing.prob = 0.02)

and plot the genotype data using geno.image (Figure 1):

> geno.image(simcross)

Before going to the next step (the QTL genome scan), the data has to be completed (i.e. no
more missing data). There are two possibilities: use (1) the MQM data augmentation routine
mqmaugment or (2) the imputation routine fill.geno. Augmentation tries to analyse all possible
genotypes of interest by leaving them in the solution space. In contrast, the imputation method
selects the most likely genotype, and uses that single individual for further analysis.

The downside of augmentation is that the addition of many possible genotypes can exceed
available computer memory. Currently, augmentation moves an individual to a second aug-
mentation round when it has too many possible genotypes (above the maximum number of
augmented individuals maxaugind). In this second augmentation round the user can specify
what needs to be done with these individuals: (1) Only use the most likely genotype, (2) use
multiple imputation to create multiple possible genotypes (up to maxaugind) or (3) remove
the original genotype/individual from the analysis. Note that you can opt to use fill.geno’s
imputation method on your dataset, instead of augmentation, when too many individuals are
dropped because of missing data.

The function mqmaugment is specific to MQM and the recommended procedure3. In this
tutorial we focus on MQM ’s augmentation. The function mqmaugment fills in missing genotypes
for us. For each missing genotype data, at a marker, it fills in all possible genotypes and
calculates the probability. When the total probability is higher than the minprob parameter
the augmented individual is stored in the new cross object, ready for QTL mapping.

The important parameters are: cross, pheno.col, maxaugind, minprob and verbose (see
also the mqmaugment help page). maxaugind sets the maximum number of augmented genotypes
per individual in a dataset. The default of 82 allows six missing markers per individual in a
BC, and four in an F2. As a result the user has to increase the maxaugind parameter when
there are more missing markers.

The minprob parameter sets the minimum probability of a genotype for inclusion in the
augmented dataset. This genotype probability is calculated for every marker relative to the most
likely genotype of this individual. Note that setting this value too low may result in moving a
lot of individuals to the second augmentation round as the maximum of augmented individuals
(the parameter maxaugind) is quickly reached. Increasing minprob (towards a value of 1.0) can
keep individuals with more missing data inside the first augmentation round; a possible rule
of thumb may be to set minprob to the percentage of data missing. A value of minprob=1.0
makes augmentation behave similar to fill.geno’s imputation method, though with different
resulting genotypes. Use verbose=TRUE to get more feedback on the augmentation routine and
to check how many individuals are moved to the second stage, for imputation or removal4

To start with an example, first run mqmaugment with minprob=1.0 (Figure 2):

Plot augmented data using geno.image:
3Note that after augmentation the resulting object is no longer suitable for the use with other R/qtl mapping

functions, like scanone and cim, because they can not account for duplicated or dropped individuals.
4Augmentation is not always suitable with a lot of missing data, like in the case of selective genotyped datasets

(for example the mouse hyper dataset that comes with R/qtl); these will always be handled with minprob=1.0

(and a warning will be issued).
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Figure 1: Genotype data for a simulated F2 intercross generated with sim.cross, with 100
individuals and 2% missing data. White pixels indicate missing genotypes.
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> augmentedcross <- mqmaugment(simcross, minprob = 1)

Plot the genotype data as follows:

> geno.image(augmentedcross)

With a lower minprob, more augmented individuals are kept, and the resulting augmented
dataset will be larger. Adding (weighted) augmented individuals with all possible genotypes
theoretically leads to a more accurate mapping when dealing with missing values [11]5.

Try augmentation with minprob=0.1 (Figure 3):

> augmentedcross <- mqmaugment(simcross, minprob = 0.1)

Plot the genotype data:

> geno.image(augmentedcross)

An mQTL dataset (multitrait), which contains 24 metabolite traits from a RIL population
of Arabidopsis thaliana, is now distributed with R/qtl (load the data with data(multitrait)).
This is part of the Arabidopsis thaliana RIL selfing experiment with Landsberg erecta (Ler)
and Cape Verde Islands (Cvi) with 162 individuals scored 117 markers [17]. The experiment
concerned empirical untargeted metabolomics using liquid chromatography time of flight mass
spectrometry (LC-QTOF MS). This uncovered many qualitative and quantitative differences
in metabolite accumulation between Arabidopsis thaliana accessions [16].

Simulate missing data by removing some genotype data (5%, 10% and 80%) from the cross
object:

> data(multitrait)

> msim5 <- simulatemissingdata(multitrait, 5)

> msim10 <- simulatemissingdata(multitrait, 10)

> msim80 <- simulatemissingdata(multitrait, 80)

Next use augmentation to fill in the missing genotypes; with more missing data increase
the minprob parameter. When the minprob parameter is set too low it is possible that an
individual cannot be augmented, and is moved to the second round of augmentation (see the
description above).

> maug5 <- mqmaugment(msim5)

> maug10 <- mqmaugment(msim10, minprob = 0.25)

> maug80 <- mqmaugment(msim80, minprob = 0.8)

Taking the 10% missing set, we can try a lower minprob=0.001. The output below shows
that ten augmented individuals miss too many markers to be augmented. By using the impu-
tation strategy these individuals are kept in the set with a single ‘most likely’ genotype.

Augment with an imputation strategy:
5Note again that the augmented dataset can only be used with pure MQM functions. MQM functions

recognise expanded individuals as single entities. Other R/qtl functions, like scanone, assume the augmented
individuals are real individuals.

6



50 100 150

20

40

60

80

100

Markers

In
di

vi
du

al
s

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 1819
Genotype data

Figure 2: Genotypes, as visualized with geno.image, of 100 filled individuals (mqmaugment with
minprob=1.0. With missing data only a ‘most likely’ individual is used and no real expansion
of the dataset takes place, with similar results as fill.geno’s imputation method).
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Figure 3: Genotypes, as visualized with geno.image of the augmented genotypes of 100 in-
dividuals. There are a total of 348 ‘expanded’ individuals in this plot, because MQM fills in
missing markers with all likely genotypes (an average expansion of 3.5 per individual).
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> maug10minprob <- mqmaugment(msim10, minprob = 0.001, verbose = TRUE)

INFO: Received a valid cross file type: riself .
INFO: Number of individuals: 162 .
INFO: Number of chr: 5 .
INFO: Number of markers: 117 .
# Unique individuals before augmentation:162
# Unique selected individuals:162
# Marker p individual:117
# Individuals after augmentation:4012
INFO: DATA-Augmentation took: 23.995 seconds

> maug10minprobImpute <- mqmaugment(msim10, minprob = 0.001, strategy = "impute",

+ verbose = TRUE)

INFO: Received a valid cross file type: riself .
INFO: Number of individuals: 162 .
INFO: Number of chr: 5 .
INFO: Number of markers: 117 .
# Unique individuals before augmentation:162
# Unique selected individuals:162
# Marker p individual:117
# Individuals after augmentation:4822
INFO: DATA-Augmentation took: 31.289 seconds

> nind(maug10minprob)

[1] 4012

> nind(maug10minprobImpute)

[1] 4822

Next, scan for QTL inside the cross objects with mqmscan and the single-QTL mapping
function scanone (for reference). The effect of increasing the amount of missing data on QTL
mapping, using default values, can be seen in Figure 4.

> mqm5 <- mqmscan(maug5)

> mqm10 <- mqmscan(maug10)

> mqm80 <- mqmscan(maug80)

> msim5 <- calc.genoprob(msim5)

> one5 <- scanone(msim5)

> msim10 <- calc.genoprob(msim10)

> one10 <- scanone(msim10)

> msim80 <- calc.genoprob(msim80)

> one80 <- scanone(msim80)
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Figure 4: Arabidopsis thaliana RIL mQTL dataset (multitrait) with 24 metabolites as phe-
notypes [16]. Effect of missing data on mqmscan after augmentation (green=5%, blue=10%,
red=80%) and scanone (black), after fill.geno imputation.
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Figure 5: Arabidopsis thaliana RIL mQTL dataset (multitrait) with 24 metabolites as pheno-
types [16] comparing MQM (mqmscan in green) and single QTL mapping (scanone in black).
MQM shows similar results as single QTL mapping, when used without augmentation (minprob
is 1.0), and with default parameters.

4 Multiple-QTL Mapping (MQM)

The multitrait dataset, distributed with R/qtl, contains 24 metabolite traits from a RIL
population of Arabidopsis thaliana[16] (see also section 3 and help(multitrait) in R).

Here we analyse the multitrait dataset using both scanone (single-QTL analysis) and
mqmscan (Multiple-QTL Mapping). First augment the data using the mqmaugment function
with minprob=1.0, to compare against scanone with imputation (see also section 3).

Scan for QTL with mqmscan, after filling missing data with mqmaugment minprob=1.0:

> data(multitrait)

> maug_min1 <- mqmaugment(multitrait, minprob = 1)

> mqm_min1 <- mqmscan(maug_min1)

We compare mqmscan with scanone. For scanone one first calculates conditional QTL
genotype probabilities via calc.genoprob.

> mgenop <- calc.genoprob(multitrait, step = 5)

> m_one <- scanone(mgenop)

Figure 5 shows that, without augmentation, the results from MQM are similar to scanone.

mqmscan after augmentation, without cofactor selection:

> maug <- mqmaugment(multitrait)

> mqm <- mqmscan(maug)
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By default MQM introduces fictional markers, or ‘pseudo markers’, at fixed intervals. A
pseudo marker has a name like c7.loc25, which is the pseudo marker at 25 cM on chromo-
some 7. (Note that this reflects the standard naming used in R/qtl.) Each chromosome is
divided into evenly spaced pseudo markers, step.size cM apart. A LOD score for underlying
QTL is calculated at these pseudo markers. A small step.size allows for smoother profiles
compared with a pure marker-based mapping approach. The real markers are listed between
the pseudo markers. In the result you can remove the pseudo markers by using the function
mqmextractmarkers, as follows:

> real_markers <- mqmextractmarkers(mqm)

For model selection in MQM, first supply the algorithm with an initial model. This initial
model can be produced in two ways: by (1) building a model by hand (forward stepwise), or (2)
by unsupervised backward elimination on a large number of markers (discussed in Section 5).

First build this initial model by hand using a forward stepwise approach. (Note that the
automated procedure is preferred, both for theoretical and practical reasons.) A model consists
of a set of markers we want to account for. We can start building the initial model by adding
cofactors at markers with high LOD scores scored by using mqmscan with default values. Figure 5
displayed a large QTL peak on chromosome 5 at 35 cM. So we account for that by setting a
cofactor at the marker nearest to the peak on chromosome 5 and running mqmscan again. (See
Figures 6 and 7.)

Add marker GH.117C (chromosome 5, at 35 cM) as a cofactor:

> max(mqm)

chr pos (cM) LOD X3.Hydroxypropyl info LOD*info
c5.loc35 5 35 10.6 0.523 5.55

> find.marker(maug, chr = 5, pos = 35)

[1] "GH.117C"

> multitoset <- find.markerindex(maug, "GH.117C")

> setcofactors <- mqmsetcofactors(maug, cofactors = multitoset)

> mqm_co1 <- mqmscan(maug, setcofactors)

The function find.marker identifies the name of the marker closest to 35 cM. The func-
tion find.markerindex translates the marker name into a cofactor number. The function
mqmsetcofactors sets up a cofactor list for use with mqmscan.

Plot the results of the genome scan after adding a single cofactor (Figure 6):

> par(mfrow = c(2, 1))

> plot(mqmgetmodel(mqm_co1))

> plot(mqm_co1)

Plot the mqmscan results with scanone results as follows (Figure 7):

> plot(m_one, mqm_co1, col = c("black", "green"), lty = 1:2)

> legend("topleft", c("scanone", "MQM"), col = c("black", "green"),

+ lwd = 1)
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Figure 6: Arabidopsis thaliana RIL mQTL dataset (multitrait) with 24 metabolites as phe-
notypes [16]. mqmscan after a cofactor is added at the top scoring marker of chromosome 5.
During the analysis it is kept in the model.
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Figure 7: Arabidopsis thaliana RIL mQTL dataset (multitrait) with 24 metabolites as pheno-
types [16] after introducing a cofactor on chromosome 5 (GH.117C). mqmscan (green, dashed)
differs from scanone (black).

Figures 6 and 7 show the effect of setting a single marker as a cofactor related to the QTL
on chromosome 5, followed by an MQM scan. The marker is not dropped and it passes initial
thresholding to account for the cofactor.significance level. LOD scores are expected to
change slightly, because of variation already explained by the QTL on chromosome 5 (Figure 7).

Figure 7 shows the second peak on chromosome 4 at 10 cM increases. Add a cofac-
tor to the model and check if the model with both cofactors changes the QTL. Combining
find.markerindex with find.marker, adds the new cofactor to the cofactor already in mul-
titoset (see Figure 8):

> multitoset <- c(multitoset, find.markerindex(maug, find.marker(maug,

+ 4, 10)))

> setcofactors <- mqmsetcofactors(maug, cofactors = multitoset)

> mqm_co2 <- mqmscan(maug, setcofactors)

Plot after adding second cofactor on chromosome 4 at 10 cM:

> par(mfrow = c(2, 1))

> plot(mqmgetmodel(mqm_co2))

> plot(mqm_co1, mqm_co2, col = c("blue", "green"), lty = 1:2)

> legend("topleft", c("one cofactor", "two cofactors"), col = c("blue",

+ "green"), lwd = 1)

Plot the results with 0, 1 and 2 cofactors as follows:

> plot(mqm, mqm_co1, mqm_co2, col = c("green", "red", "blue"),

+ lty = 1:3)

> legend("topleft", c("no cofactors", "one cofactor", "two cofactors"),

+ col = c("green", "red", "blue"), lwd = 1)

14



120
100
80
60
40
20
0

Chromosome

Lo
ca

tio
n 

(c
M

)

1 2 3 4 5

Genetic map

GA1
GH.117C

0

5

10

15

20

Chromosome

LO
D

 X
3.

H
yd

ro
xy

pr
op

yl

1 2 3 4 5

one cofactor
two cofactors

Figure 8: Arabidopsis thaliana RIL mQTL dataset (multitrait) with 24 metabolites as phe-
notypes [16] using an added cofactor on chromosome 5 (blue), versus two cofactors, using an
additional cofactor on chromosome 4 (green).
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Figure 9: Arabidopsis thaliana RIL mQTL dataset (multitrait) with 24 metabolites as pheno-
types [16]. Comparison of MQM adding 0 (green), 1 (red) and 2 (blue) cofactor(s) (note that
adding more cofactors does not improve the two QTL model).

When using the functions mqmsetcofactors, or the automated mqmautocofactor (described
in the next section), the number of cofactors is compared against the number of individuals
inside the cross object. If there is a danger of setting too many cofactors, an error message is
shown.

MQM also verifies the cofactor.significance level specified by the user. In the example
the marker on chromosome 1 was informative enough, and included into the model. This way
a new initial model consisting of cofactors on chromosome 4 and 5 was created. This (forward)
selection of cofactors can continue until there are no more informative markers.

Manually determining the markers to set a cofactor can be very time consuming in the case
of many QTL underlying a trait. It is also prone to overfitting. Furthermore, manual fitting
is generally not feasible for a large number of traits. Fortunately MQM provides unsupervised
backward elimination, which is described in the next section.
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5 Unsupervised cofactor selection through backward elimina-
tion

MQM provides unsupervised backward elimination on a large number of markers by selecting
cofactors automatically. Normally the number of markers in a dataset is much larger than the
number of individuals. MQM allows using any number of cofactors simultaneously. This can
be as low as 0 cofactors up to a maximum of the number of individuals minus 12 (Inds− 12),
as described in the Handbook of Statistical Genetics[4].

The functions: ”mqmsetcofactor” and ”mqmautocofactors” both create lists of cofactors
that can be used for backward elimination. mqmautocofactor accounts for the underlying
marker density and is therefore suitable for datasets with few individuals. See Figure 11 for a
comparison on the multitrait dataset, using the mqmsetcofactors function to set cofactors
every 5th marker and mqmautocofactor to set 50 cofactors across the genome. After cofactor
selection MQM analyses and drops the least informative cofactor from the model. This step is
repeated until a limited number of informative cofactors remain. When taking marker density
into account, an extra cofactor is introduced on chromosome 1 (see Figure 11).

After unsupervised backward elimination mqmscan scans each chromosome using the model
with the remaining set of cofactors. For example, starting with 50 cofactors using mqmautoco-
factor and mqmsetcofactors, map QTL for the various traits in multitrait, which contains
24 metabolite traits from a RIL population of Arabidopsis thaliana as described in section
3. The QTL LOD scores differ between MQM and single QTL mapping with scanone (see
Figures 12 and 13).

Unsupervised cofactor selection through backward elimination:

> autocofactors <- mqmautocofactors(maug, 50)

> mqm_auto <- mqmscan(maug, autocofactors)

> setcofactors <- mqmsetcofactors(maug, 5)

> mqm_backw <- mqmscan(maug, setcofactors)

Visual inspection of the initial models:

> par(mfrow = c(2, 1))

> mqmplot.cofactors(maug, autocofactors, justdots = TRUE)

> mqmplot.cofactors(maug, setcofactors, justdots = TRUE)

Plot results:

> par(mfrow = c(2, 1))

> plot(mqmgetmodel(mqm_backw))

> plot(mqmgetmodel(mqm_auto))

> par(mfrow = c(2, 1))

> plot(mqmgetmodel(mqm_backw))

> plot(mqm_backw)

The mqmgetmodel function returns the final model from the output of mqmscan. This model
can be further investigated using the fitqtl and fitqtl routines from R/qtl. mqmgetmodel
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Figure 10: Arabidopsis thaliana RIL mQTL dataset (multitrait) with 24 metabolites as pheno-
types [16]. mqmsetcofactor after introducing cofactors at every fifth marker (top) and mqmau-
tocofactor automatic marker selection (bottom). Automatic selection takes the underlying
marker density into consideration.
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Figure 11: Arabidopsis thaliana RIL mQTL dataset (multitrait) with 24 metabolites as phe-
notypes [16]. mqmsetcofactor after introducing cofactors at every fifth marker (top) and mq-
mautocofactor automatic marker selection (bottom). mqmautocofactor places an additional
cofactor at chromosome 1 (see also Figure 10). After backward elimination this extra marker
remains informative.
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Figure 12: Arabidopsis thaliana RIL mQTL dataset (multitrait) with 24 metabolites as pheno-
types [16]. Unsupervised cofactor selection through backward elimination using mqmsetcofac-
tor after introducing cofactors at every fifth marker. QTL mapped for trait X3.Hydroxypropyl
on chromosome 4 and 5.
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Figure 13: Arabidopsis thaliana RIL mQTL dataset (multitrait) with 24 metabolites as pheno-
types [16]. Compare QTL mapping of MQM after introducing cofactors at every fifth marker
and unsupervised backward elimination of cofactors (green, dashed), and scanone (black).

can only be used after backward elimination produces a significant model. The resulting model
can also be used to obtain the location and name of the significant cofactors.

Plot result of MQM, using unsupervised backward elimination, against that of scanone:

> plot(m_one, mqm_backw, col = c("black", "green"), lty = 1:2)

> legend("topleft", c("scanone", "MQM"), col = c("black", "green"),

+ lwd = 1)

> plot(m_one, mqm_backw, col = c("black", "green"), lty = 1:2)

> legend("topleft", c("scanone", "MQM"), col = c("black", "green"),

+ lwd = 1)

MQM QTL mapping may result in many significant (informative) cofactors. Figure 13
shows at cofactor.significance=0.02 chromosomes 4 and 5 are involved. Lowering the
significance level from 0.02 to 0.002 may yield a smaller model. In biology extensive models
are sometimes preferred, but in general a simpler model is easier to understand and, perhaps,
validated. Depending on the trait, and the sample size, increasing cofactor.significance can
reduce the number of significant QTL in the model. In this example we have already have a
small model, so we don’t really expect to lose the two QTL on chromosome 4 and chromosome
5. When decreasing the cofactor.significance no additional cofactors are dropped from the
model (See Figure 5)
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Plot with lowered cofactor.significance:

> mqm_backw_low <- mqmscan(maug, setcofactors, cofactor.significance = 0.002)

> par(mfrow = c(2, 1))

> plot(mqmgetmodel(mqm_backw_low))

> plot(mqm_backw, mqm_backw_low, col = c("blue", "green"), lty = 1:2)

> legend("topleft", c("Significance=0.02", "Significance=0.002"),

+ col = c("blue", "green"), lwd = 1)

QTL mapped with different cofactor.significance=0.002, using the same starting mark-
ers as Figure 12. As can be seen from the plot the models selected are similar. This means the
QTL found significant at 0.02 are still significant at a more restrictive cutoff.:

When comparing the MQM scan in Figure 14 with the original scanone result in Figure 13
there are some notable differences. Some QTL show higher significance (LOD scores) and some
others show lower significance and are, therefore, estimated to be less likely involved in this
trait.

Figures can be reconstructed from the result of mqmscan using the mqmplot.singletrait
function (see, for example, Figure 15). Here the model and QTL profile are retrieved. These
functions can only be used with mqmscan functions, as they require the additional information
about the inferred QTL model. The results also contain the estimated information content per
marker.

> mqmplot.singletrait(mqm_backw_low, extended = TRUE)

The information content info in the result is calculated from the deviation of the ‘ideal
marker distribution’. For example, with a dataset of 100 individuals, when comparing two
distinct phenotypes at a marker location, we have most power when both groups are equally
divided 50/50. A marker has virtually no power when one group containing 1 individual versus
a group of 99. We can multiply the estimated QTL effect by this information content to
‘clean’ the QTL profile by giving less weight to less informative markers. Please note that the
sample size already plays a role in calculating QTL. Meanwhile it allows (informal) further
weighting/exploring information content (Figure 15).

6 MQM effect plots

The function mqmplot.directedqtl is used to plot LOD curves with an indication of the sign
of the estimated QTL effects. This function because it uses internal R/qtl functions cannot
handle augmented cross objects. An error will occur when the object supplied is augmented
using mqmaugment. This requires using mqmscan with parameter outputmarkers=TRUE (default).

Create a directed QTL plot (Figure 16):

> dirresults <- mqmplot.directedqtl(multitrait, mqm_backw_low)

The results in Figure 14 imply that QTL on chromosomes 4 and 5 are associated with the
metabolite X3.Hydroxypropyl. If we want to investigate the effects of the QTL, we can use
the functions plot.pxg and effectplot. The following plots show these for markers GH.117C
(main effect, Figure 17) and the interaction between GH.117C and GA1 (Figure 18).

The initial scans for X3.Hydroxypropyl (Figure 12) show two possible QTL on chromosome
4 and 5. We can investigate interactions between these main effect QTL using the effectplot

22



120
100
80
60
40
20
0

Chromosome

Lo
ca

tio
n 

(c
M

)

1 2 3 4 5

Genetic map

GA1
GH.117C

0
5

10
15
20
25

Chromosome

LO
D

 X
3.

H
yd

ro
xy

pr
op

yl

1 2 3 4 5

Significance=0.02
Significance=0.002

Figure 14: Arabidopsis thaliana RIL mQTL dataset (multitrait) with 24 metabolites as phe-
notypes [16]. QTL mapped with different cofactor.significance. With the lower cofac-
tor.significance=0.002 the model does not change.
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> mqmplot.singletrait(mqm_backw_low, extended = TRUE)
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Figure 15: Arabidopsis thaliana RIL mQTL dataset (multitrait) with 24 metabolites as phe-
notypes [16]. Plot using mqmplot.singletrait of the first metabolic trait. The information
content per marker (red) and the mapped QTL (black).
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Figure 16: Arabidopsis thaliana RIL mQTL dataset (multitrait) with 24 metabolites as pheno-
types [16]. Like Figure 15, but with LOD scores multiplied by ±1 according to the sign of the
estimated QTL effect.
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Figure 17: Arabidopsis thaliana RIL mQTL dataset (multitrait) with 24 metabolites as pheno-
types [16]. Main effect plot, with plot.pgx, of marker GH.117C on trait X3.Hydroxypropyl.
For each marker genotype the individual phenotype is plotted, with the mean of genotype AA
(red) and BB (blue).
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Figure 18: Arabidopsis thaliana RIL mQTL dataset (multitrait) with 24 metabolites as phe-
notypes [16]. Explore epistatic interaction, using effectplot, between markers GH.117C and
GA1. GA1 appears to obscure the effect of GH.117C. An individual that has BB at GA1 has
no difference in expression between being AA or BB at GH.117C. However when an individual
is AA at GA1 there is clear difference between the two genotype means ( 1.500 BB versus 12000
when AA) at GH.117C.

function. To investigate the possible epistatic interaction, select markers GA1 (significant in
Figure 12 and Figure 13) and GH.117C (significant in Figure 13 and 15). See Figure 18.

> effectplot(multitrait, mname1 = "GH.117C", mname2 = "GA1")

Likewise, in case we are interested in the interactions between the first small hump on
chromosomes 1 (marker: PVV4 not significant) and the main efect on 5 (GH.117C), we could
make interaction plots between these two markers with a high LOD score on those chromosomes.
See Figure 19.

> effectplot(multitrait, mname1 = "PVV4", mname2 = "GH.117C")

Meanwhile, Figure 19 shows no evidence for an interaction between the two markers GH.117C
and PVV4, as the lines are close to parallel.
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Figure 19: Arabidopsis thaliana RIL mQTL dataset (multitrait) with 24 metabolites as phe-
notypes [16]. effectplot shows no epistatic effects between markers GH.117C and PVV4, ths
can be seen because the two lines run in parallel, the genotype on one location (PVV4) does
not affect the effect of the expression on GH.117C other location.
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7 QTL significance

To estimate the significance of QTL and perhaps further exclude markers from a model, per-
mutation testing is provided by the function mqmpermutation. This step is computationally
expensive6 as the same test is repeated many times on shuffled data. Each test calculates LOD
scores for non associated (randomly ordered) data.

MQM provides parametric and non-parametric bootstrapping to estimate QTL significance.
Select the type with the bootmethod parameter. If you have are lucky enough to have mul-
tiple CPUs on your computer you can use the SNOW package [6, 5], which allows parallel
computations on multiple CPU/cores.

SNOW is available through the Internet R archive CRAN. For example, with Rgui SNOW
can be installed by selecting from the menu: ‘Packages’ and ‘Install Package(s)‘ from the drop
down menu. Select a CRAN mirror near you and select the SNOW package. Rgui will start
downloading the package, and install any dependencies needed. Linux users can download a
copy of SNOW from http://cran.r-project.org/web/packages/snow/index.html. Once
the package has finished downloading the tar.gz file can be installed using R CMD INSTALL
snow.tar.gz

To summarize results from mqmpermutation, mqmprocespermutation makes the output
comparable to scanone when using the n.perm parameter for permutation.

Calculate significance - using SNOW parallelization parameters:

> require(snow)

> results <- mqmpermutation(maug, scanfunction = mqmscan, cofactors = setcofactors,

+ n.cluster = 2, n.perm = 25, batchsize = 25)

> resultsrqtl <- mqmprocesspermutation(results)

> summary(resultsrqtl)

LOD thresholds (25 permutations)
LOD X3.Hydroxypropyl

5% 2.64
10% 2.18

For small datasets, with a limited amount of classical traits, mqmpermutation is nice. How-
ever, for large expression studies (eQTL) using microarrays, use mqmscanfdr instead, which
estimates false discovery rates (FDR) across the entire dataset at LOD cutoff, as described by
Breitling et al.[18].

To estimate the FDR, mqmscanfdr permutes whole genome information, taking correlation
between traits into account and giving an unbiased estimate of FDR at different (user specified)
thresholds. The function scans the traits and counts observed QTL with a LOD above x,
setting a certain threshold. It permutes all the data leaving the correlation structure between
traits intact. Below, very high FDR estimates are calculated because of a small amount of
permutations and high correlation between traits. We discover many QTL that map to the
same location. This can normally only happen with information sparse marker(s), or correlated
traits, as seen in microarray experiments.

Calculate FDR:
6In the tutorial, for all examples, 25 permutations are used. A real experiment should use over 1000 permu-

tation tests.

28



> mqmplot.permutations(results)
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Figure 20: Arabidopsis thaliana RIL mQTL dataset (multitrait) with 24 metabolites as phe-
notypes [16]. QTL significance calculated through permutation using mqmpermutation. Esti-
mate by permuting a single trait (X3.Hydroxypropyl) with randomly distributing trait values
amongst individuals, which gives an indication of LOD scores found by chance. QTL with a
LOD higher than 2.5 can be considered significant (at cofactor.significance=0.05 (green)
or cofactor.significance=0.10 (blue)). Chromosome are marked by the gray vertical grid
lines.
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> data(multitrait)

> m_imp <- fill.geno(multitrait)

> mqmscanfdr(m_imp, mqmscanall, cofactors = setcofactors, n.cluster = 2)

above.in.real.res above.in.perm.res
1 1349 879.6 0.6520385
2 837 556.0 0.6642772
3 654 441.3 0.6747706
4 547 371.6 0.6793419
5 450 304.8 0.6773333
7 345 216.8 0.6284058
10 247 125.2 0.5068826
15 181 65.9 0.3640884
20 139 33.8 0.2431655

In contrast, the function mqmpermutation does single trait permutations, and does not take
correlation between the traits into account. The advantage is that a permutation threshold is
determined for each trait. This leads to different significance levels per trait and could lead
to certain QTL being significant at their trait cut-off, which are not significant when a single
cut-off. The MQM output needs to be converted to the standard R/qtl format using the
mqmprocesspermutation function. The resulting object is of class scanoneperm and can be
used by the standard R/qtl functions for further analysis.

To parallelize calculations n.cluster sets the number of CPU cores to use. A batch consists
of a number of traits to analyze on one core. A large(r) batchsize (default 10) can also be set
to improve efficiency. Every time a batch is sent a new instance of R is started, so it pays to
have as few batches as possible.

8 Parallelized xQTL analysis

MQM can handle high throughput xQTL data - the name coined for the family of expression
QTL, or eQTL [7], metabolite QTL (mQTL) and pQTL (protein QTL), where measurements
like gene expression on microrray probes are treated as phenotypes. MQM analyses traits si-
multaneously using parallel computing on multiple CPU/cores, and even computer clusters.
xQTLdatasets (expression eQTL, metabolite mQTL) usually contain a large amount of pheno-
types with known locations on the genome. These locations can be used for detecting cis/trans
regulation, for example. For QTL mapping every phenotype requires one or more calls to
mqmscan. In addition special plots are presented for xQTLstudies.

Our example, the mQTL dataset multitrait, an Arabidopsis thaliana RIL cross, containing
24 metabolites measured as phenotypes. Of these 24 phenotypes we will only scan the first five
phenotypes by setting the pheno.col parameter. To map back the regulatory locations of these
metabolites one can use plain scanning of all metabolites (initially without cofactors). Next,
we plot all the profiles in a heatmap (see Figure 21). In this heatmap the colors represent the
LOD score, on the x-axis the marker number and on the y-axis the metabolite. The traits are
numbered in the plot. Plot heatmap without cofactors and then the heatmap with cofactors and
backward elimination. Figure 22 shows improvement over Figure 21 because of an improved
signal to noise ratio.

> data(multitrait)

> m_imp <- fill.geno(multitrait)

> mqm_imp5 <- mqmscan(m_imp, pheno.col = c(1, 2, 3, 4, 5), n.cluster = 2)
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> mqmplot.multitrait(mqm_imp5, type = "image")
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Figure 21: Arabidopsis thaliana RIL mQTL dataset (multitrait) with 24 metabolites as phe-
notypes [16]. Heatmap of five metabolite expression traits, with profiles created using MQM
without preselected cofactors. The colors represent the LOD score, on the x-axis the marker
number and on the y-axis the metabolite.
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> cofactorlist <- mqmsetcofactors(m_imp, 3)

> mqm_imp5 <- mqmscan(m_imp, pheno.col = c(1, 2, 3, 4, 5), cofactors = cofactorlist,

+ n.cluster = 2)

Use mqmplot.multitrait for more graphical output. (Unfortunately this does not show in
the generated PDF, but in R it shows the trait profiles)

> mqmplot.multitrait(mqm_imp5, type = "lines")

Next is mqmplot.circle. The circle plot shows a circular representation of the genome.
After using automatic backward selection certain marker/cofactors are found to be significant.
These are highlighted and colored. The cofactor size can be scaled, based on significance (see
Figures 23 and 24).

The plot can be tweaked. For example, highlight a specific trait, and calculate interactions
between the significant cofactors. All other traits are grayed out, but remain partly visible, in
this way it is possible to see if significant QTL for this trait are also colocated with other traits.
Parameter interactstrength: highlights interactions between significant markers. However
they are only drawn (and reported in the output) if the effect change is larger than inter-
actstrength multiplied by the summed standard deviation. Parameter spacing sets space
between the chromosomes in Cm.

Next a cis-trans plot with mqmplot.cistrans. This plot is only available when genomic
locations of the traits are known, e.g. the genomic probe locations in microarray eQTL studies.
By default the R/qtl cross object does not store this data. So the user has to add this informa-
tion to the cross object using the addloctocross function. After this operation the cis-trans
plot can be created for QTL with associated genome locations.

The two axis of the cis-trans plot both show the genetic location. The X-axis is, normally,
the QTL location and the Y-axis the locations of the trait.

When having locations we can, again, use the mqmplot.circle function, now with the extra
information:
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> mqmplot.multitrait(mqm_imp5, type = "image")
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Figure 22: Arabidopsis thaliana RIL mQTL dataset (multitrait) with 24 metabolites as phe-
notypes [16]. Heatmap of metabolite expression traits, with profiles created using MQM with
cofactors at each third marker. The colors represent the LOD score, on the x-axis the marker
number and on the y-axis the metabolite.
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> mqmplot.circle(m_imp, mqm_imp5)
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Figure 23: Arabidopsis thaliana RIL mQTL dataset (multitrait) with 24 metabolites as pheno-
types [16]. Circle plot 1 - Multiple metabolic traits without known locations. Four traits are in
the centre connected by a colored spline to their QTL. Significant QTL locations are depicted
as solid square circles. A lower LOD score is closer to the center. A ’hotspot’ of QTL is visible
on chromosome 5.
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> mqmplot.circle(m_imp, mqm_imp5, highlight = 2)
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Figure 24: Arabidopsis thaliana RIL mQTL dataset (multitrait) with 24 metabolites as phe-
notypes [16]. Circle plot 2 - Multiple metabolic traits without known locations. Highlight the
second trait. The significant QTL locations are depicted as solid red square circles. The splines
show epistatic interactions (see also Figure 18). The blue lines are locations which are modu-
lating expression (higher or lower), the green lines show a flip in effect. To explain this: with
two markers, having AA at marker one shows trait mean AA > trait mean BB at marker two
however when the individual has BB at marker one the effect at marker two is reversed AA <
BB.
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> data(locations)

> multiloc <- addloctocross(m_imp, locations)

> mqmplot.cistrans(mqm_imp5, multiloc, 5, FALSE, TRUE)
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Figure 25: Arabidopsis thaliana RIL mQTL dataset (multitrait) with 24 metabolites as phe-
notypes [16]. mqmplot.cistrans can be drawn when QTL have associated genome locations.
QTL are plotted against the position on the genome they were measured (here mQTL for Ara-
bidopsis thaliana), cutoff is at LOD=5. Normally these plots are created using 10.000 + traits.
However because this tutorial is automatically generated we only use 5 traits to illustrate.
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> mqmplot.circle(multiloc, mqm_imp5, highlight = 2)
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Figure 26: Arabidopsis thaliana RIL mQTL dataset (multitrait) with 24 metabolites as pheno-
types [16]. Circle plot 3 - Multiple metabolic traits with known locations. Highlight the second
trait. The significant QTL locations are depicted as solid red square circles. The known loca-
tion of the trait is a red triangle. The splines show epistatic interactions (see also Figure 18).
The blue lines are locations which are modulating expression (higher or lower), the green lines
show a flip in effect.
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9 Overview of all MQM functions

Table 1: Added functionality
mqmaugment: data augmentation
mqmscan: MQM modelling and scanning
mqmsetcofactors: Set cofactors at markers (or at fixed locations)
find.markerindex: Change marker numbering into mqmformat
mqmscanall: mqmscanall scans all traits using MQM
mqmpermutation: Single trait permutation
mqmscanfdr: Genome wide False Discovery Rates (FDR)
mqmprocesspermutation: Creates an R/qtl permutationobject

from the output of the mqmpermutation function
mqmplot.multitrait: plot multiple traits (MQMmulti object)
mqmplot.directedqtl: plot of single trait with added QTL effect
mqmplot.permutations: plot to show single trait permutations
mqmplot.singletrait: plot of single trait analysis with information content
mqmplot.circle: Genome plot of QTL in a circle (optional: Use of location information)
mqmplot.cistrans: Genomewide plot of cis- and trans-QTL, above a threshold
addloctocross: Adding genetic locations for traits
mqmtestnormal: Test normality of a trait
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