SHOGUN v0.9.0
|
00001 /* 00002 * This program is free software; you can redistribute it and/or modify 00003 * it under the terms of the GNU General Public License as published by 00004 * the Free Software Foundation; either version 3 of the License, or 00005 * (at your option) any later version. 00006 * 00007 * Written (W) 2009 Soeren Sonnenburg 00008 * Copyright (C) 2009 Fraunhofer Institute FIRST and Max-Planck-Society 00009 * 00010 * The MD5 and Murmor hashing functions were integrated from public sources. 00011 * Their respective copyrights follow. 00012 * 00013 * MD5 00014 * 00015 * This code implements the MD5 message-digest algorithm. 00016 * The algorithm is due to Ron Rivest. This code was 00017 * written by Colin Plumb in 1993, no copyright is claimed. 00018 * This code is in the public domain; do with it what you wish. 00019 * 00020 * Equivalent code is available from RSA Data Security, Inc. 00021 * This code has been tested against that, and is equivalent, 00022 * except that you don't need to include two pages of legalese 00023 * with every copy. 00024 * 00025 * To compute the message digest of a chunk of bytes, declare an 00026 * MD5Context structure, pass it to MD5Init, call MD5Update as 00027 * needed on buffers full of bytes, and then call MD5Final, which 00028 * will fill a supplied 16-byte array with the digest. 00029 * 00030 * MurmurHash2 00031 * 00032 * (C) Austin Appleby, released under the MIT License 00033 * 00034 * Note - This code makes a few assumptions about how your machine behaves - 00035 * 00036 * 1. We can read a 4-byte value from any address without crashing 00037 * 2. It will not produce the same results on little-endian and big-endian 00038 * machines. 00039 */ 00040 00041 #include "lib/common.h" 00042 #include "lib/Hash.h" 00043 00044 using namespace shogun; 00045 00046 uint32_t CHash::crc32(uint8_t *data, int32_t len) 00047 { 00048 uint32_t result; 00049 int32_t i,j; 00050 uint8_t octet; 00051 00052 result = 0-1; 00053 for (i=0; i<len; i++) 00054 { 00055 octet = *(data++); 00056 for (j=0; j<8; j++) 00057 { 00058 if ((octet >> 7) ^ (result >> 31)) 00059 { 00060 result = (result << 1) ^ 0x04c11db7; 00061 } 00062 else 00063 { 00064 result = (result << 1); 00065 } 00066 octet <<= 1; 00067 } 00068 } 00069 00070 return ~result; 00071 } 00072 00073 void CHash::MD5(unsigned char *x, unsigned l, unsigned char *buf) 00074 { 00075 struct MD5Context ctx; 00076 00077 MD5Init(&ctx); 00078 MD5Update(&ctx, x, l); 00079 MD5Final(buf, &ctx); 00080 } 00081 00082 #ifndef HIGHFIRST 00083 #define byteReverse(buf, len) /* Nothing */ 00084 #else 00085 void byteReverse(unsigned char *buf, unsigned uint32_t longs); 00086 00087 #ifndef ASM_MD5 00088 /* 00089 * Note: this code is harmless on little-endian machines. 00090 */ 00091 void byteReverse(unsigned char *buf, unsigned uint32_t longs) 00092 { 00093 uint32_t t; 00094 do { 00095 t = (uint32_t) ((unsigned) buf[3] << 8 | buf[2]) << 16 | 00096 ((unsigned) buf[1] << 8 | buf[0]); 00097 *(uint32_t *) buf = t; 00098 buf += 4; 00099 } while (--longs); 00100 } 00101 #endif 00102 #endif 00103 00104 void CHash::MD5Init(struct MD5Context *ctx) 00105 { 00106 ctx->buf[0] = 0x67452301; 00107 ctx->buf[1] = 0xefcdab89; 00108 ctx->buf[2] = 0x98badcfe; 00109 ctx->buf[3] = 0x10325476; 00110 00111 ctx->bits[0] = 0; 00112 ctx->bits[1] = 0; 00113 } 00114 00115 void CHash::MD5Update(struct MD5Context *ctx, unsigned char const *buf, 00116 unsigned len) 00117 { 00118 uint32_t t; 00119 00120 /* Update bitcount */ 00121 00122 t = ctx->bits[0]; 00123 if ((ctx->bits[0] = t + ((uint32_t) len << 3)) < t) 00124 ctx->bits[1]++; /* Carry from low to high */ 00125 ctx->bits[1] += len >> 29; 00126 00127 t = (t >> 3) & 0x3f; /* Bytes already in shsInfo->data */ 00128 00129 /* Handle any leading odd-sized chunks */ 00130 00131 if (t) { 00132 unsigned char *p = (unsigned char *) ctx->in + t; 00133 00134 t = 64 - t; 00135 if (len < t) { 00136 memcpy(p, buf, len); 00137 return; 00138 } 00139 memcpy(p, buf, t); 00140 byteReverse(ctx->in, 16); 00141 MD5Transform(ctx->buf, (uint32_t *) ctx->in); 00142 buf += t; 00143 len -= t; 00144 } 00145 /* Process data in 64-byte chunks */ 00146 00147 while (len >= 64) { 00148 memcpy(ctx->in, buf, 64); 00149 byteReverse(ctx->in, 16); 00150 MD5Transform(ctx->buf, (uint32_t *) ctx->in); 00151 buf += 64; 00152 len -= 64; 00153 } 00154 00155 /* Handle any remaining bytes of data. */ 00156 00157 memcpy(ctx->in, buf, len); 00158 } 00159 00160 void CHash::MD5Final(unsigned char digest[16], struct MD5Context *ctx) 00161 { 00162 unsigned count; 00163 unsigned char *p; 00164 00165 /* Compute number of bytes mod 64 */ 00166 count = (ctx->bits[0] >> 3) & 0x3F; 00167 00168 /* Set the first char of padding to 0x80. This is safe since there is 00169 always at least one byte free */ 00170 p = ctx->in + count; 00171 *p++ = 0x80; 00172 00173 /* Bytes of padding needed to make 64 bytes */ 00174 count = 64 - 1 - count; 00175 00176 /* Pad out to 56 mod 64 */ 00177 if (count < 8) { 00178 /* Two lots of padding: Pad the first block to 64 bytes */ 00179 memset(p, 0, count); 00180 byteReverse(ctx->in, 16); 00181 MD5Transform(ctx->buf, (uint32_t *) ctx->in); 00182 00183 /* Now fill the next block with 56 bytes */ 00184 memset(ctx->in, 0, 56); 00185 } else { 00186 /* Pad block to 56 bytes */ 00187 memset(p, 0, count - 8); 00188 } 00189 byteReverse(ctx->in, 14); 00190 00191 /* Append length in bits and transform */ 00192 ((uint32_t *) ctx->in)[14] = ctx->bits[0]; 00193 ((uint32_t *) ctx->in)[15] = ctx->bits[1]; 00194 00195 MD5Transform(ctx->buf, (uint32_t *) ctx->in); 00196 byteReverse((unsigned char *) ctx->buf, 4); 00197 memcpy(digest, ctx->buf, 16); 00198 memset(ctx, 0, sizeof(ctx)); /* In case it's sensitive */ 00199 } 00200 00201 #ifndef ASM_MD5 00202 00203 /* The four core functions - F1 is optimized somewhat */ 00204 00205 /* #define F1(x, y, z) (x & y | ~x & z) */ 00206 #define F1(x, y, z) (z ^ (x & (y ^ z))) 00207 #define F2(x, y, z) F1(z, x, y) 00208 #define F3(x, y, z) (x ^ y ^ z) 00209 #define F4(x, y, z) (y ^ (x | ~z)) 00210 00211 /* This is the central step in the MD5 algorithm. */ 00212 #ifdef __PUREC__ 00213 #define MD5STEP(f, w, x, y, z, data, s) \ 00214 ( w += f /*(x, y, z)*/ + data, w = w<<s | w>>(32-s), w += x ) 00215 #else 00216 #define MD5STEP(f, w, x, y, z, data, s) \ 00217 ( w += f(x, y, z) + data, w = w<<s | w>>(32-s), w += x ) 00218 #endif 00219 00220 void CHash::MD5Transform(uint32_t buf[4], uint32_t const in[16]) 00221 { 00222 register uint32_t a, b, c, d; 00223 00224 a = buf[0]; 00225 b = buf[1]; 00226 c = buf[2]; 00227 d = buf[3]; 00228 00229 #ifdef __PUREC__ /* PureC Weirdness... (GG) */ 00230 MD5STEP(F1(b, c, d), a, b, c, d, in[0] + 0xd76aa478L, 7); 00231 MD5STEP(F1(a, b, c), d, a, b, c, in[1] + 0xe8c7b756L, 12); 00232 MD5STEP(F1(d, a, b), c, d, a, b, in[2] + 0x242070dbL, 17); 00233 MD5STEP(F1(c, d, a), b, c, d, a, in[3] + 0xc1bdceeeL, 22); 00234 MD5STEP(F1(b, c, d), a, b, c, d, in[4] + 0xf57c0fafL, 7); 00235 MD5STEP(F1(a, b, c), d, a, b, c, in[5] + 0x4787c62aL, 12); 00236 MD5STEP(F1(d, a, b), c, d, a, b, in[6] + 0xa8304613L, 17); 00237 MD5STEP(F1(c, d, a), b, c, d, a, in[7] + 0xfd469501L, 22); 00238 MD5STEP(F1(b, c, d), a, b, c, d, in[8] + 0x698098d8L, 7); 00239 MD5STEP(F1(a, b, c), d, a, b, c, in[9] + 0x8b44f7afL, 12); 00240 MD5STEP(F1(d, a, b), c, d, a, b, in[10] + 0xffff5bb1L, 17); 00241 MD5STEP(F1(c, d, a), b, c, d, a, in[11] + 0x895cd7beL, 22); 00242 MD5STEP(F1(b, c, d), a, b, c, d, in[12] + 0x6b901122L, 7); 00243 MD5STEP(F1(a, b, c), d, a, b, c, in[13] + 0xfd987193L, 12); 00244 MD5STEP(F1(d, a, b), c, d, a, b, in[14] + 0xa679438eL, 17); 00245 MD5STEP(F1(c, d, a), b, c, d, a, in[15] + 0x49b40821L, 22); 00246 00247 MD5STEP(F2(b, c, d), a, b, c, d, in[1] + 0xf61e2562L, 5); 00248 MD5STEP(F2(a, b, c), d, a, b, c, in[6] + 0xc040b340L, 9); 00249 MD5STEP(F2(d, a, b), c, d, a, b, in[11] + 0x265e5a51L, 14); 00250 MD5STEP(F2(c, d, a), b, c, d, a, in[0] + 0xe9b6c7aaL, 20); 00251 MD5STEP(F2(b, c, d), a, b, c, d, in[5] + 0xd62f105dL, 5); 00252 MD5STEP(F2(a, b, c), d, a, b, c, in[10] + 0x02441453L, 9); 00253 MD5STEP(F2(d, a, b), c, d, a, b, in[15] + 0xd8a1e681L, 14); 00254 MD5STEP(F2(c, d, a), b, c, d, a, in[4] + 0xe7d3fbc8L, 20); 00255 MD5STEP(F2(b, c, d), a, b, c, d, in[9] + 0x21e1cde6L, 5); 00256 MD5STEP(F2(a, b, c), d, a, b, c, in[14] + 0xc33707d6L, 9); 00257 MD5STEP(F2(d, a, b), c, d, a, b, in[3] + 0xf4d50d87L, 14); 00258 MD5STEP(F2(c, d, a), b, c, d, a, in[8] + 0x455a14edL, 20); 00259 MD5STEP(F2(b, c, d), a, b, c, d, in[13] + 0xa9e3e905L, 5); 00260 MD5STEP(F2(a, b, c), d, a, b, c, in[2] + 0xfcefa3f8L, 9); 00261 MD5STEP(F2(d, a, b), c, d, a, b, in[7] + 0x676f02d9L, 14); 00262 MD5STEP(F2(c, d, a), b, c, d, a, in[12] + 0x8d2a4c8aL, 20); 00263 00264 MD5STEP(F3(b, c, d), a, b, c, d, in[5] + 0xfffa3942L, 4); 00265 MD5STEP(F3(a, b, c), d, a, b, c, in[8] + 0x8771f681L, 11); 00266 MD5STEP(F3(d, a, b), c, d, a, b, in[11] + 0x6d9d6122L, 16); 00267 MD5STEP(F3(c, d, a), b, c, d, a, in[14] + 0xfde5380cL, 23); 00268 MD5STEP(F3(b, c, d), a, b, c, d, in[1] + 0xa4beea44L, 4); 00269 MD5STEP(F3(a, b, c), d, a, b, c, in[4] + 0x4bdecfa9L, 11); 00270 MD5STEP(F3(d, a, b), c, d, a, b, in[7] + 0xf6bb4b60L, 16); 00271 MD5STEP(F3(c, d, a), b, c, d, a, in[10] + 0xbebfbc70L, 23); 00272 MD5STEP(F3(b, c, d), a, b, c, d, in[13] + 0x289b7ec6L, 4); 00273 MD5STEP(F3(a, b, c), d, a, b, c, in[0] + 0xeaa127faL, 11); 00274 MD5STEP(F3(d, a, b), c, d, a, b, in[3] + 0xd4ef3085L, 16); 00275 MD5STEP(F3(c, d, a), b, c, d, a, in[6] + 0x04881d05L, 23); 00276 MD5STEP(F3(b, c, d), a, b, c, d, in[9] + 0xd9d4d039L, 4); 00277 MD5STEP(F3(a, b, c), d, a, b, c, in[12] + 0xe6db99e5L, 11); 00278 MD5STEP(F3(d, a, b), c, d, a, b, in[15] + 0x1fa27cf8L, 16); 00279 MD5STEP(F3(c, d, a), b, c, d, a, in[2] + 0xc4ac5665L, 23); 00280 00281 MD5STEP(F4(b, c, d), a, b, c, d, in[0] + 0xf4292244L, 6); 00282 MD5STEP(F4(a, b, c), d, a, b, c, in[7] + 0x432aff97L, 10); 00283 MD5STEP(F4(d, a, b), c, d, a, b, in[14] + 0xab9423a7L, 15); 00284 MD5STEP(F4(c, d, a), b, c, d, a, in[5] + 0xfc93a039L, 21); 00285 MD5STEP(F4(b, c, d), a, b, c, d, in[12] + 0x655b59c3L, 6); 00286 MD5STEP(F4(a, b, c), d, a, b, c, in[3] + 0x8f0ccc92L, 10); 00287 MD5STEP(F4(d, a, b), c, d, a, b, in[10] + 0xffeff47dL, 15); 00288 MD5STEP(F4(c, d, a), b, c, d, a, in[1] + 0x85845dd1L, 21); 00289 MD5STEP(F4(b, c, d), a, b, c, d, in[8] + 0x6fa87e4fL, 6); 00290 MD5STEP(F4(a, b, c), d, a, b, c, in[15] + 0xfe2ce6e0L, 10); 00291 MD5STEP(F4(d, a, b), c, d, a, b, in[6] + 0xa3014314L, 15); 00292 MD5STEP(F4(c, d, a), b, c, d, a, in[13] + 0x4e0811a1L, 21); 00293 MD5STEP(F4(b, c, d), a, b, c, d, in[4] + 0xf7537e82L, 6); 00294 MD5STEP(F4(a, b, c), d, a, b, c, in[11] + 0xbd3af235L, 10); 00295 MD5STEP(F4(d, a, b), c, d, a, b, in[2] + 0x2ad7d2bbL, 15); 00296 MD5STEP(F4(c, d, a), b, c, d, a, in[9] + 0xeb86d391L, 21); 00297 #else 00298 MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7); 00299 MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12); 00300 MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17); 00301 MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22); 00302 MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7); 00303 MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12); 00304 MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17); 00305 MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22); 00306 MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7); 00307 MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12); 00308 MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17); 00309 MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22); 00310 MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7); 00311 MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12); 00312 MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17); 00313 MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22); 00314 00315 MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5); 00316 MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9); 00317 MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14); 00318 MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20); 00319 MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5); 00320 MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9); 00321 MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14); 00322 MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20); 00323 MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5); 00324 MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9); 00325 MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14); 00326 MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20); 00327 MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5); 00328 MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9); 00329 MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14); 00330 MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20); 00331 00332 MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4); 00333 MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11); 00334 MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16); 00335 MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23); 00336 MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4); 00337 MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11); 00338 MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16); 00339 MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23); 00340 MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4); 00341 MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11); 00342 MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16); 00343 MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23); 00344 MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4); 00345 MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11); 00346 MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16); 00347 MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23); 00348 00349 MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6); 00350 MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10); 00351 MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15); 00352 MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21); 00353 MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6); 00354 MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10); 00355 MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15); 00356 MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21); 00357 MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6); 00358 MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10); 00359 MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15); 00360 MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21); 00361 MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6); 00362 MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10); 00363 MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15); 00364 MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21); 00365 #endif 00366 00367 buf[0] += a; 00368 buf[1] += b; 00369 buf[2] += c; 00370 buf[3] += d; 00371 } 00372 #endif 00373 00374 uint32_t CHash::MurmurHash2(uint8_t* data, int32_t len, uint32_t seed) 00375 { 00376 // 'm' and 'r' are mixing constants generated offline. 00377 // They're not really 'magic', they just happen to work well. 00378 00379 const uint32_t m = 0x5bd1e995; 00380 const int32_t r = 24; 00381 00382 // Initialize the hash to a 'random' value 00383 00384 uint32_t h = seed ^ len; 00385 00386 // Mix 4 bytes at a time into the hash 00387 00388 while(len >= 4) 00389 { 00390 uint32_t k = *(uint32_t *)data; 00391 00392 k *= m; 00393 k ^= k >> r; 00394 k *= m; 00395 00396 h *= m; 00397 h ^= k; 00398 00399 data += 4; 00400 len -= 4; 00401 } 00402 00403 // Handle the last few bytes of the input array 00404 00405 switch(len) 00406 { 00407 case 3: h ^= data[2] << 16; 00408 case 2: h ^= data[1] << 8; 00409 case 1: h ^= data[0]; 00410 h *= m; 00411 }; 00412 00413 // Do a few final mixes of the hash to ensure the last few 00414 // bytes are well-incorporated. 00415 00416 h ^= h >> 13; 00417 h *= m; 00418 h ^= h >> 15; 00419 00420 return h; 00421 } 00422 00423 uint32_t CHash::IncrementalMurmurHash2(uint8_t data, uint32_t h) 00424 { 00425 // 'm' and 'r' are mixing constants generated offline. 00426 // They're not really 'magic', they just happen to work well. 00427 00428 const uint32_t m = 0x5bd1e995; 00429 00430 h ^= data; 00431 h *= m; 00432 00433 // Do a few final mixes of the hash to ensure the last few 00434 // bytes are well-incorporated. 00435 00436 h ^= h >> 13; 00437 h *= m; 00438 h ^= h >> 15; 00439 00440 return h; 00441 }