SelfAdjointEigenSolver< _MatrixType > Class Template Reference
[QR module]

Eigen values/vectors solver for selfadjoint matrix. More...

List of all members.

Public Types

enum  { Size }
typedef std::complex< RealScalar > Complex
typedef _MatrixType MatrixType
typedef NumTraits< Scalar >::Real RealScalar
typedef Matrix< RealScalar,
MatrixType::ColsAtCompileTime, 1 > 
RealVectorType
typedef Matrix< RealScalar,
Dynamic, 1 > 
RealVectorTypeX
typedef MatrixType::Scalar Scalar
typedef Tridiagonalization
< MatrixType > 
TridiagonalizationType

Public Member Functions

void compute (const MatrixType &matA, const MatrixType &matB, bool computeEigenvectors=true)
void compute (const MatrixType &matrix, bool computeEigenvectors=true)
RealVectorType eigenvalues (void) const
MatrixType eigenvectors (void) const
MatrixType operatorInverseSqrt () const
MatrixType operatorSqrt () const
 SelfAdjointEigenSolver (const MatrixType &matA, const MatrixType &matB, bool computeEigenvectors=true)
 SelfAdjointEigenSolver (const MatrixType &matrix, bool computeEigenvectors=true)
 SelfAdjointEigenSolver (int size)

Protected Attributes

bool m_eigenvectorsOk
RealVectorType m_eivalues
MatrixType m_eivec

Detailed Description

template<typename _MatrixType>
class Eigen::SelfAdjointEigenSolver< _MatrixType >

Eigen values/vectors solver for selfadjoint matrix.

This is defined in the QR module.

 #include <Eigen/QR> 
Warning:
This is not considered to be part of the stable public API yet. Changes may happen in future releases. See Experimental parts of Eigen
Parameters:
MatrixType the type of the matrix of which we are computing the eigen decomposition
Note:
MatrixType must be an actual Matrix type, it can't be an expression type.
See also:
MatrixBase::eigenvalues(), class EigenSolver

Constructor & Destructor Documentation

SelfAdjointEigenSolver ( const MatrixType &  matrix,
bool  computeEigenvectors = true 
) [inline]

Constructors computing the eigenvalues of the selfadjoint matrix matrix, as well as the eigenvectors if computeEigenvectors is true.

See also:
compute(MatrixType,bool), SelfAdjointEigenSolver(MatrixType,MatrixType,bool)
SelfAdjointEigenSolver ( const MatrixType &  matA,
const MatrixType &  matB,
bool  computeEigenvectors = true 
) [inline]

Constructors computing the eigenvalues of the generalized eigen problem $ Ax = lambda B x $ with matA the selfadjoint matrix $ A $ and matB the positive definite matrix $ B $ . The eigenvectors are computed if computeEigenvectors is true.

See also:
compute(MatrixType,MatrixType,bool), SelfAdjointEigenSolver(MatrixType,bool)

Member Function Documentation

void compute ( const MatrixType &  matA,
const MatrixType &  matB,
bool  computeEigenvectors = true 
) [inline]

Computes the eigenvalues of the generalized eigen problem $ Ax = lambda B x $ with matA the selfadjoint matrix $ A $ and matB the positive definite matrix $ B $ . The eigenvectors are computed if computeEigenvectors is true.

See also:
SelfAdjointEigenSolver(MatrixType,MatrixType,bool), compute(MatrixType,bool)
void compute ( const MatrixType &  matrix,
bool  computeEigenvectors = true 
) [inline]

Computes the eigenvalues of the selfadjoint matrix matrix, as well as the eigenvectors if computeEigenvectors is true.

See also:
SelfAdjointEigenSolver(MatrixType,bool), compute(MatrixType,MatrixType,bool)
RealVectorType eigenvalues ( void   )  const [inline]
Returns:
the computed eigen values
MatrixType eigenvectors ( void   )  const [inline]
Returns:
the computed eigen vectors as a matrix of column vectors
MatrixType operatorInverseSqrt (  )  const [inline]
Returns:
the positive inverse square root of the matrix
Note:
the matrix itself must be positive definite in order for this to make sense.
MatrixType operatorSqrt (  )  const [inline]
Returns:
the positive square root of the matrix
Note:
the matrix itself must be positive in order for this to make sense.

The documentation for this class was generated from the following file:
Generated on Sun Aug 1 22:06:53 2010 for Eigen by  doxygen 1.6.3