libstdc++
|
00001 // The template and inlines for the -*- C++ -*- slice_array class. 00002 00003 // Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2004, 2005, 2006, 2009 00004 // Free Software Foundation, Inc. 00005 // 00006 // This file is part of the GNU ISO C++ Library. This library is free 00007 // software; you can redistribute it and/or modify it under the 00008 // terms of the GNU General Public License as published by the 00009 // Free Software Foundation; either version 3, or (at your option) 00010 // any later version. 00011 00012 // This library is distributed in the hope that it will be useful, 00013 // but WITHOUT ANY WARRANTY; without even the implied warranty of 00014 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 00015 // GNU General Public License for more details. 00016 00017 // Under Section 7 of GPL version 3, you are granted additional 00018 // permissions described in the GCC Runtime Library Exception, version 00019 // 3.1, as published by the Free Software Foundation. 00020 00021 // You should have received a copy of the GNU General Public License and 00022 // a copy of the GCC Runtime Library Exception along with this program; 00023 // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see 00024 // <http://www.gnu.org/licenses/>. 00025 00026 /** @file slice_array.h 00027 * This is an internal header file, included by other library headers. 00028 * You should not attempt to use it directly. 00029 */ 00030 00031 // Written by Gabriel Dos Reis <Gabriel.Dos-Reis@DPTMaths.ENS-Cachan.Fr> 00032 00033 #ifndef _SLICE_ARRAY_H 00034 #define _SLICE_ARRAY_H 1 00035 00036 #pragma GCC system_header 00037 00038 _GLIBCXX_BEGIN_NAMESPACE(std) 00039 00040 /** 00041 * @addtogroup numeric_arrays 00042 * @{ 00043 */ 00044 00045 /** 00046 * @brief Class defining one-dimensional subset of an array. 00047 * 00048 * The slice class represents a one-dimensional subset of an array, 00049 * specified by three parameters: start offset, size, and stride. The 00050 * start offset is the index of the first element of the array that is part 00051 * of the subset. The size is the total number of elements in the subset. 00052 * Stride is the distance between each successive array element to include 00053 * in the subset. 00054 * 00055 * For example, with an array of size 10, and a slice with offset 1, size 3 00056 * and stride 2, the subset consists of array elements 1, 3, and 5. 00057 */ 00058 class slice 00059 { 00060 public: 00061 /// Construct an empty slice. 00062 slice(); 00063 00064 /** 00065 * @brief Construct a slice. 00066 * 00067 * @param o Offset in array of first element. 00068 * @param d Number of elements in slice. 00069 * @param s Stride between array elements. 00070 */ 00071 slice(size_t, size_t, size_t); 00072 00073 /// Return array offset of first slice element. 00074 size_t start() const; 00075 /// Return size of slice. 00076 size_t size() const; 00077 /// Return array stride of slice. 00078 size_t stride() const; 00079 00080 private: 00081 size_t _M_off; // offset 00082 size_t _M_sz; // size 00083 size_t _M_st; // stride unit 00084 }; 00085 00086 // _GLIBCXX_RESOLVE_LIB_DEFECTS 00087 // 543. valarray slice default constructor 00088 inline 00089 slice::slice() 00090 : _M_off(0), _M_sz(0), _M_st(0) {} 00091 00092 inline 00093 slice::slice(size_t __o, size_t __d, size_t __s) 00094 : _M_off(__o), _M_sz(__d), _M_st(__s) {} 00095 00096 inline size_t 00097 slice::start() const 00098 { return _M_off; } 00099 00100 inline size_t 00101 slice::size() const 00102 { return _M_sz; } 00103 00104 inline size_t 00105 slice::stride() const 00106 { return _M_st; } 00107 00108 /** 00109 * @brief Reference to one-dimensional subset of an array. 00110 * 00111 * A slice_array is a reference to the actual elements of an array 00112 * specified by a slice. The way to get a slice_array is to call 00113 * operator[](slice) on a valarray. The returned slice_array then permits 00114 * carrying operations out on the referenced subset of elements in the 00115 * original valarray. For example, operator+=(valarray) will add values 00116 * to the subset of elements in the underlying valarray this slice_array 00117 * refers to. 00118 * 00119 * @param Tp Element type. 00120 */ 00121 template<typename _Tp> 00122 class slice_array 00123 { 00124 public: 00125 typedef _Tp value_type; 00126 00127 // _GLIBCXX_RESOLVE_LIB_DEFECTS 00128 // 253. valarray helper functions are almost entirely useless 00129 00130 /// Copy constructor. Both slices refer to the same underlying array. 00131 slice_array(const slice_array&); 00132 00133 /// Assignment operator. Assigns slice elements to corresponding 00134 /// elements of @a a. 00135 slice_array& operator=(const slice_array&); 00136 00137 /// Assign slice elements to corresponding elements of @a v. 00138 void operator=(const valarray<_Tp>&) const; 00139 /// Multiply slice elements by corresponding elements of @a v. 00140 void operator*=(const valarray<_Tp>&) const; 00141 /// Divide slice elements by corresponding elements of @a v. 00142 void operator/=(const valarray<_Tp>&) const; 00143 /// Modulo slice elements by corresponding elements of @a v. 00144 void operator%=(const valarray<_Tp>&) const; 00145 /// Add corresponding elements of @a v to slice elements. 00146 void operator+=(const valarray<_Tp>&) const; 00147 /// Subtract corresponding elements of @a v from slice elements. 00148 void operator-=(const valarray<_Tp>&) const; 00149 /// Logical xor slice elements with corresponding elements of @a v. 00150 void operator^=(const valarray<_Tp>&) const; 00151 /// Logical and slice elements with corresponding elements of @a v. 00152 void operator&=(const valarray<_Tp>&) const; 00153 /// Logical or slice elements with corresponding elements of @a v. 00154 void operator|=(const valarray<_Tp>&) const; 00155 /// Left shift slice elements by corresponding elements of @a v. 00156 void operator<<=(const valarray<_Tp>&) const; 00157 /// Right shift slice elements by corresponding elements of @a v. 00158 void operator>>=(const valarray<_Tp>&) const; 00159 /// Assign all slice elements to @a t. 00160 void operator=(const _Tp &) const; 00161 // ~slice_array (); 00162 00163 template<class _Dom> 00164 void operator=(const _Expr<_Dom, _Tp>&) const; 00165 template<class _Dom> 00166 void operator*=(const _Expr<_Dom, _Tp>&) const; 00167 template<class _Dom> 00168 void operator/=(const _Expr<_Dom, _Tp>&) const; 00169 template<class _Dom> 00170 void operator%=(const _Expr<_Dom, _Tp>&) const; 00171 template<class _Dom> 00172 void operator+=(const _Expr<_Dom, _Tp>&) const; 00173 template<class _Dom> 00174 void operator-=(const _Expr<_Dom, _Tp>&) const; 00175 template<class _Dom> 00176 void operator^=(const _Expr<_Dom, _Tp>&) const; 00177 template<class _Dom> 00178 void operator&=(const _Expr<_Dom, _Tp>&) const; 00179 template<class _Dom> 00180 void operator|=(const _Expr<_Dom, _Tp>&) const; 00181 template<class _Dom> 00182 void operator<<=(const _Expr<_Dom, _Tp>&) const; 00183 template<class _Dom> 00184 void operator>>=(const _Expr<_Dom, _Tp>&) const; 00185 00186 private: 00187 friend class valarray<_Tp>; 00188 slice_array(_Array<_Tp>, const slice&); 00189 00190 const size_t _M_sz; 00191 const size_t _M_stride; 00192 const _Array<_Tp> _M_array; 00193 00194 // not implemented 00195 slice_array(); 00196 }; 00197 00198 template<typename _Tp> 00199 inline 00200 slice_array<_Tp>::slice_array(_Array<_Tp> __a, const slice& __s) 00201 : _M_sz(__s.size()), _M_stride(__s.stride()), 00202 _M_array(__a.begin() + __s.start()) {} 00203 00204 template<typename _Tp> 00205 inline 00206 slice_array<_Tp>::slice_array(const slice_array<_Tp>& a) 00207 : _M_sz(a._M_sz), _M_stride(a._M_stride), _M_array(a._M_array) {} 00208 00209 // template<typename _Tp> 00210 // inline slice_array<_Tp>::~slice_array () {} 00211 00212 template<typename _Tp> 00213 inline slice_array<_Tp>& 00214 slice_array<_Tp>::operator=(const slice_array<_Tp>& __a) 00215 { 00216 std::__valarray_copy(__a._M_array, __a._M_sz, __a._M_stride, 00217 _M_array, _M_stride); 00218 return *this; 00219 } 00220 00221 template<typename _Tp> 00222 inline void 00223 slice_array<_Tp>::operator=(const _Tp& __t) const 00224 { std::__valarray_fill(_M_array, _M_sz, _M_stride, __t); } 00225 00226 template<typename _Tp> 00227 inline void 00228 slice_array<_Tp>::operator=(const valarray<_Tp>& __v) const 00229 { std::__valarray_copy(_Array<_Tp>(__v), _M_array, _M_sz, _M_stride); } 00230 00231 template<typename _Tp> 00232 template<class _Dom> 00233 inline void 00234 slice_array<_Tp>::operator=(const _Expr<_Dom,_Tp>& __e) const 00235 { std::__valarray_copy(__e, _M_sz, _M_array, _M_stride); } 00236 00237 #undef _DEFINE_VALARRAY_OPERATOR 00238 #define _DEFINE_VALARRAY_OPERATOR(_Op,_Name) \ 00239 template<typename _Tp> \ 00240 inline void \ 00241 slice_array<_Tp>::operator _Op##=(const valarray<_Tp>& __v) const \ 00242 { \ 00243 _Array_augmented_##_Name(_M_array, _M_sz, _M_stride, _Array<_Tp>(__v));\ 00244 } \ 00245 \ 00246 template<typename _Tp> \ 00247 template<class _Dom> \ 00248 inline void \ 00249 slice_array<_Tp>::operator _Op##=(const _Expr<_Dom,_Tp>& __e) const\ 00250 { \ 00251 _Array_augmented_##_Name(_M_array, _M_stride, __e, _M_sz); \ 00252 } 00253 00254 00255 _DEFINE_VALARRAY_OPERATOR(*, __multiplies) 00256 _DEFINE_VALARRAY_OPERATOR(/, __divides) 00257 _DEFINE_VALARRAY_OPERATOR(%, __modulus) 00258 _DEFINE_VALARRAY_OPERATOR(+, __plus) 00259 _DEFINE_VALARRAY_OPERATOR(-, __minus) 00260 _DEFINE_VALARRAY_OPERATOR(^, __bitwise_xor) 00261 _DEFINE_VALARRAY_OPERATOR(&, __bitwise_and) 00262 _DEFINE_VALARRAY_OPERATOR(|, __bitwise_or) 00263 _DEFINE_VALARRAY_OPERATOR(<<, __shift_left) 00264 _DEFINE_VALARRAY_OPERATOR(>>, __shift_right) 00265 00266 #undef _DEFINE_VALARRAY_OPERATOR 00267 00268 // @} group numeric_arrays 00269 00270 _GLIBCXX_END_NAMESPACE 00271 00272 #endif /* _SLICE_ARRAY_H */