LAPACK  3.4.2
LAPACK: Linear Algebra PACKage
 All Files Functions Groups
clangt.f File Reference

Go to the source code of this file.

Functions/Subroutines

REAL function clangt (NORM, N, DL, D, DU)
 CLANGT returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of a general tridiagonal matrix. More...
 

Function/Subroutine Documentation

REAL function clangt ( character  NORM,
integer  N,
complex, dimension( * )  DL,
complex, dimension( * )  D,
complex, dimension( * )  DU 
)

CLANGT returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of a general tridiagonal matrix.

Download CLANGT + dependencies [TGZ] [ZIP] [TXT]
Purpose:
 CLANGT  returns the value of the one norm,  or the Frobenius norm, or
 the  infinity norm,  or the  element of  largest absolute value  of a
 complex tridiagonal matrix A.
Returns
CLANGT
    CLANGT = ( max(abs(A(i,j))), NORM = 'M' or 'm'
             (
             ( norm1(A),         NORM = '1', 'O' or 'o'
             (
             ( normI(A),         NORM = 'I' or 'i'
             (
             ( normF(A),         NORM = 'F', 'f', 'E' or 'e'

 where  norm1  denotes the  one norm of a matrix (maximum column sum),
 normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
 normF  denotes the  Frobenius norm of a matrix (square root of sum of
 squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.
Parameters
[in]NORM
          NORM is CHARACTER*1
          Specifies the value to be returned in CLANGT as described
          above.
[in]N
          N is INTEGER
          The order of the matrix A.  N >= 0.  When N = 0, CLANGT is
          set to zero.
[in]DL
          DL is COMPLEX array, dimension (N-1)
          The (n-1) sub-diagonal elements of A.
[in]D
          D is COMPLEX array, dimension (N)
          The diagonal elements of A.
[in]DU
          DU is COMPLEX array, dimension (N-1)
          The (n-1) super-diagonal elements of A.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date
September 2012

Definition at line 107 of file clangt.f.

Here is the call graph for this function:

Here is the caller graph for this function: