LAPACK  3.4.2
LAPACK: Linear Algebra PACKage
 All Files Functions Groups
zlanht.f File Reference

Go to the source code of this file.

Functions/Subroutines

DOUBLE PRECISION function zlanht (NORM, N, D, E)
 ZLANHT returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a complex Hermitian tridiagonal matrix.
 

Function/Subroutine Documentation

DOUBLE PRECISION function zlanht ( character  NORM,
integer  N,
double precision, dimension( * )  D,
complex*16, dimension( * )  E 
)

ZLANHT returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a complex Hermitian tridiagonal matrix.

Download ZLANHT + dependencies [TGZ] [ZIP] [TXT]
Purpose:
 ZLANHT  returns the value of the one norm,  or the Frobenius norm, or
 the  infinity norm,  or the  element of  largest absolute value  of a
 complex Hermitian tridiagonal matrix A.
Returns
ZLANHT
    ZLANHT = ( max(abs(A(i,j))), NORM = 'M' or 'm'
             (
             ( norm1(A),         NORM = '1', 'O' or 'o'
             (
             ( normI(A),         NORM = 'I' or 'i'
             (
             ( normF(A),         NORM = 'F', 'f', 'E' or 'e'

 where  norm1  denotes the  one norm of a matrix (maximum column sum),
 normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
 normF  denotes the  Frobenius norm of a matrix (square root of sum of
 squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.
Parameters
[in]NORM
          NORM is CHARACTER*1
          Specifies the value to be returned in ZLANHT as described
          above.
[in]N
          N is INTEGER
          The order of the matrix A.  N >= 0.  When N = 0, ZLANHT is
          set to zero.
[in]D
          D is DOUBLE PRECISION array, dimension (N)
          The diagonal elements of A.
[in]E
          E is COMPLEX*16 array, dimension (N-1)
          The (n-1) sub-diagonal or super-diagonal elements of A.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date
September 2012

Definition at line 102 of file zlanht.f.

Here is the call graph for this function:

Here is the caller graph for this function: