LAPACK  3.4.2
LAPACK: Linear Algebra PACKage
 All Files Functions Groups
dlartgs.f File Reference

Go to the source code of this file.

Functions/Subroutines

subroutine dlartgs (X, Y, SIGMA, CS, SN)
 DLARTGS generates a plane rotation designed to introduce a bulge in implicit QR iteration for the bidiagonal SVD problem.
 

Function/Subroutine Documentation

subroutine dlartgs ( double precision  X,
double precision  Y,
double precision  SIGMA,
double precision  CS,
double precision  SN 
)

DLARTGS generates a plane rotation designed to introduce a bulge in implicit QR iteration for the bidiagonal SVD problem.

Download DLARTGS + dependencies [TGZ] [ZIP] [TXT]
Purpose:
 DLARTGS generates a plane rotation designed to introduce a bulge in
 Golub-Reinsch-style implicit QR iteration for the bidiagonal SVD
 problem. X and Y are the top-row entries, and SIGMA is the shift.
 The computed CS and SN define a plane rotation satisfying

    [  CS  SN  ]  .  [ X^2 - SIGMA ]  =  [ R ],
    [ -SN  CS  ]     [    X * Y    ]     [ 0 ]

 with R nonnegative.  If X^2 - SIGMA and X * Y are 0, then the
 rotation is by PI/2.
Parameters
[in]X
          X is DOUBLE PRECISION
          The (1,1) entry of an upper bidiagonal matrix.
[in]Y
          Y is DOUBLE PRECISION
          The (1,2) entry of an upper bidiagonal matrix.
[in]SIGMA
          SIGMA is DOUBLE PRECISION
          The shift.
[out]CS
          CS is DOUBLE PRECISION
          The cosine of the rotation.
[out]SN
          SN is DOUBLE PRECISION
          The sine of the rotation.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date
September 2012

Definition at line 91 of file dlartgs.f.

Here is the call graph for this function:

Here is the caller graph for this function: