snowenc.c
Go to the documentation of this file.
1 /*
2  * Copyright (C) 2004 Michael Niedermayer <michaelni@gmx.at>
3  *
4  * This file is part of Libav.
5  *
6  * Libav is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * Libav is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with Libav; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19  */
20 
21 #include "libavutil/intmath.h"
22 #include "libavutil/log.h"
23 #include "libavutil/opt.h"
24 #include "avcodec.h"
25 #include "dsputil.h"
26 #include "dwt.h"
27 #include "snow.h"
28 
29 #include "rangecoder.h"
30 #include "mathops.h"
31 
32 #include "mpegvideo.h"
33 #include "h263.h"
34 
35 #undef NDEBUG
36 #include <assert.h>
37 
38 #define QUANTIZE2 0
39 
40 #if QUANTIZE2==1
41 #define Q2_STEP 8
42 
43 static void find_sse(SnowContext *s, Plane *p, int *score, int score_stride, IDWTELEM *r0, IDWTELEM *r1, int level, int orientation){
44  SubBand *b= &p->band[level][orientation];
45  int x, y;
46  int xo=0;
47  int yo=0;
48  int step= 1 << (s->spatial_decomposition_count - level);
49 
50  if(orientation&1)
51  xo= step>>1;
52  if(orientation&2)
53  yo= step>>1;
54 
55  //FIXME bias for nonzero ?
56  //FIXME optimize
57  memset(score, 0, sizeof(*score)*score_stride*((p->height + Q2_STEP-1)/Q2_STEP));
58  for(y=0; y<p->height; y++){
59  for(x=0; x<p->width; x++){
60  int sx= (x-xo + step/2) / step / Q2_STEP;
61  int sy= (y-yo + step/2) / step / Q2_STEP;
62  int v= r0[x + y*p->width] - r1[x + y*p->width];
63  assert(sx>=0 && sy>=0 && sx < score_stride);
64  v= ((v+8)>>4)<<4;
65  score[sx + sy*score_stride] += v*v;
66  assert(score[sx + sy*score_stride] >= 0);
67  }
68  }
69 }
70 
71 static void dequantize_all(SnowContext *s, Plane *p, IDWTELEM *buffer, int width, int height){
72  int level, orientation;
73 
74  for(level=0; level<s->spatial_decomposition_count; level++){
75  for(orientation=level ? 1 : 0; orientation<4; orientation++){
76  SubBand *b= &p->band[level][orientation];
77  IDWTELEM *dst= buffer + (b->ibuf - s->spatial_idwt_buffer);
78 
79  dequantize(s, b, dst, b->stride);
80  }
81  }
82 }
83 
84 static void dwt_quantize(SnowContext *s, Plane *p, DWTELEM *buffer, int width, int height, int stride, int type){
85  int level, orientation, ys, xs, x, y, pass;
86  IDWTELEM best_dequant[height * stride];
87  IDWTELEM idwt2_buffer[height * stride];
88  const int score_stride= (width + 10)/Q2_STEP;
89  int best_score[(width + 10)/Q2_STEP * (height + 10)/Q2_STEP]; //FIXME size
90  int score[(width + 10)/Q2_STEP * (height + 10)/Q2_STEP]; //FIXME size
91  int threshold= (s->m.lambda * s->m.lambda) >> 6;
92 
93  //FIXME pass the copy cleanly ?
94 
95 // memcpy(dwt_buffer, buffer, height * stride * sizeof(DWTELEM));
96  ff_spatial_dwt(buffer, width, height, stride, type, s->spatial_decomposition_count);
97 
98  for(level=0; level<s->spatial_decomposition_count; level++){
99  for(orientation=level ? 1 : 0; orientation<4; orientation++){
100  SubBand *b= &p->band[level][orientation];
101  IDWTELEM *dst= best_dequant + (b->ibuf - s->spatial_idwt_buffer);
102  DWTELEM *src= buffer + (b-> buf - s->spatial_dwt_buffer);
103  assert(src == b->buf); // code does not depend on this but it is true currently
104 
105  quantize(s, b, dst, src, b->stride, s->qbias);
106  }
107  }
108  for(pass=0; pass<1; pass++){
109  if(s->qbias == 0) //keyframe
110  continue;
111  for(level=0; level<s->spatial_decomposition_count; level++){
112  for(orientation=level ? 1 : 0; orientation<4; orientation++){
113  SubBand *b= &p->band[level][orientation];
114  IDWTELEM *dst= idwt2_buffer + (b->ibuf - s->spatial_idwt_buffer);
115  IDWTELEM *best_dst= best_dequant + (b->ibuf - s->spatial_idwt_buffer);
116 
117  for(ys= 0; ys<Q2_STEP; ys++){
118  for(xs= 0; xs<Q2_STEP; xs++){
119  memcpy(idwt2_buffer, best_dequant, height * stride * sizeof(IDWTELEM));
120  dequantize_all(s, p, idwt2_buffer, width, height);
121  ff_spatial_idwt(idwt2_buffer, width, height, stride, type, s->spatial_decomposition_count);
122  find_sse(s, p, best_score, score_stride, idwt2_buffer, s->spatial_idwt_buffer, level, orientation);
123  memcpy(idwt2_buffer, best_dequant, height * stride * sizeof(IDWTELEM));
124  for(y=ys; y<b->height; y+= Q2_STEP){
125  for(x=xs; x<b->width; x+= Q2_STEP){
126  if(dst[x + y*b->stride]<0) dst[x + y*b->stride]++;
127  if(dst[x + y*b->stride]>0) dst[x + y*b->stride]--;
128  //FIXME try more than just --
129  }
130  }
131  dequantize_all(s, p, idwt2_buffer, width, height);
132  ff_spatial_idwt(idwt2_buffer, width, height, stride, type, s->spatial_decomposition_count);
133  find_sse(s, p, score, score_stride, idwt2_buffer, s->spatial_idwt_buffer, level, orientation);
134  for(y=ys; y<b->height; y+= Q2_STEP){
135  for(x=xs; x<b->width; x+= Q2_STEP){
136  int score_idx= x/Q2_STEP + (y/Q2_STEP)*score_stride;
137  if(score[score_idx] <= best_score[score_idx] + threshold){
138  best_score[score_idx]= score[score_idx];
139  if(best_dst[x + y*b->stride]<0) best_dst[x + y*b->stride]++;
140  if(best_dst[x + y*b->stride]>0) best_dst[x + y*b->stride]--;
141  //FIXME copy instead
142  }
143  }
144  }
145  }
146  }
147  }
148  }
149  }
150  memcpy(s->spatial_idwt_buffer, best_dequant, height * stride * sizeof(IDWTELEM)); //FIXME work with that directly instead of copy at the end
151 }
152 
153 #endif /* QUANTIZE2==1 */
154 
155 #if CONFIG_SNOW_ENCODER
156 static av_cold int encode_init(AVCodecContext *avctx)
157 {
158  SnowContext *s = avctx->priv_data;
159  int plane_index;
160 
162  av_log(avctx, AV_LOG_ERROR, "This codec is under development, files encoded with it may not be decodable with future versions!!!\n"
163  "Use vstrict=-2 / -strict -2 to use it anyway.\n");
164  return -1;
165  }
166 
167  if(avctx->prediction_method == DWT_97
168  && (avctx->flags & CODEC_FLAG_QSCALE)
169  && avctx->global_quality == 0){
170  av_log(avctx, AV_LOG_ERROR, "The 9/7 wavelet is incompatible with lossless mode.\n");
171  return -1;
172  }
173 
174  s->spatial_decomposition_type= avctx->prediction_method; //FIXME add decorrelator type r transform_type
175 
176  s->mv_scale = (avctx->flags & CODEC_FLAG_QPEL) ? 2 : 4;
177  s->block_max_depth= (avctx->flags & CODEC_FLAG_4MV ) ? 1 : 0;
178 
179  for(plane_index=0; plane_index<3; plane_index++){
180  s->plane[plane_index].diag_mc= 1;
181  s->plane[plane_index].htaps= 6;
182  s->plane[plane_index].hcoeff[0]= 40;
183  s->plane[plane_index].hcoeff[1]= -10;
184  s->plane[plane_index].hcoeff[2]= 2;
185  s->plane[plane_index].fast_mc= 1;
186  }
187 
188  ff_snow_common_init(avctx);
190 
191  s->version=0;
192 
193  s->m.avctx = avctx;
194  s->m.flags = avctx->flags;
195  s->m.bit_rate= avctx->bit_rate;
196 
197  s->m.me.temp =
198  s->m.me.scratchpad= av_mallocz((avctx->width+64)*2*16*2*sizeof(uint8_t));
199  s->m.me.map = av_mallocz(ME_MAP_SIZE*sizeof(uint32_t));
200  s->m.me.score_map = av_mallocz(ME_MAP_SIZE*sizeof(uint32_t));
201  s->m.obmc_scratchpad= av_mallocz(MB_SIZE*MB_SIZE*12*sizeof(uint32_t));
202  h263_encode_init(&s->m); //mv_penalty
203 
204  s->max_ref_frames = FFMAX(FFMIN(avctx->refs, MAX_REF_FRAMES), 1);
205 
206  if(avctx->flags&CODEC_FLAG_PASS1){
207  if(!avctx->stats_out)
208  avctx->stats_out = av_mallocz(256);
209  }
210  if((avctx->flags&CODEC_FLAG_PASS2) || !(avctx->flags&CODEC_FLAG_QSCALE)){
211  if(ff_rate_control_init(&s->m) < 0)
212  return -1;
213  }
215 
216  avctx->coded_frame= &s->current_picture;
217  switch(avctx->pix_fmt){
218 // case PIX_FMT_YUV444P:
219 // case PIX_FMT_YUV422P:
220  case PIX_FMT_YUV420P:
221  case PIX_FMT_GRAY8:
222 // case PIX_FMT_YUV411P:
223 // case PIX_FMT_YUV410P:
224  s->colorspace_type= 0;
225  break;
226 /* case PIX_FMT_RGB32:
227  s->colorspace= 1;
228  break;*/
229  default:
230  av_log(avctx, AV_LOG_ERROR, "pixel format not supported\n");
231  return -1;
232  }
233 // avcodec_get_chroma_sub_sample(avctx->pix_fmt, &s->chroma_h_shift, &s->chroma_v_shift);
234  s->chroma_h_shift= 1;
235  s->chroma_v_shift= 1;
236 
237  ff_set_cmp(&s->dsp, s->dsp.me_cmp, s->avctx->me_cmp);
239 
240  s->avctx->get_buffer(s->avctx, &s->input_picture);
241 
242  if(s->avctx->me_method == ME_ITER){
243  int i;
244  int size= s->b_width * s->b_height << 2*s->block_max_depth;
245  for(i=0; i<s->max_ref_frames; i++){
246  s->ref_mvs[i]= av_mallocz(size*sizeof(int16_t[2]));
247  s->ref_scores[i]= av_mallocz(size*sizeof(uint32_t));
248  }
249  }
250 
251  return 0;
252 }
253 
254 //near copy & paste from dsputil, FIXME
255 static int pix_sum(uint8_t * pix, int line_size, int w)
256 {
257  int s, i, j;
258 
259  s = 0;
260  for (i = 0; i < w; i++) {
261  for (j = 0; j < w; j++) {
262  s += pix[0];
263  pix ++;
264  }
265  pix += line_size - w;
266  }
267  return s;
268 }
269 
270 //near copy & paste from dsputil, FIXME
271 static int pix_norm1(uint8_t * pix, int line_size, int w)
272 {
273  int s, i, j;
274  uint32_t *sq = ff_squareTbl + 256;
275 
276  s = 0;
277  for (i = 0; i < w; i++) {
278  for (j = 0; j < w; j ++) {
279  s += sq[pix[0]];
280  pix ++;
281  }
282  pix += line_size - w;
283  }
284  return s;
285 }
286 
287 //FIXME copy&paste
288 #define P_LEFT P[1]
289 #define P_TOP P[2]
290 #define P_TOPRIGHT P[3]
291 #define P_MEDIAN P[4]
292 #define P_MV1 P[9]
293 #define FLAG_QPEL 1 //must be 1
294 
295 static int encode_q_branch(SnowContext *s, int level, int x, int y){
296  uint8_t p_buffer[1024];
297  uint8_t i_buffer[1024];
298  uint8_t p_state[sizeof(s->block_state)];
299  uint8_t i_state[sizeof(s->block_state)];
300  RangeCoder pc, ic;
301  uint8_t *pbbak= s->c.bytestream;
302  uint8_t *pbbak_start= s->c.bytestream_start;
303  int score, score2, iscore, i_len, p_len, block_s, sum, base_bits;
304  const int w= s->b_width << s->block_max_depth;
305  const int h= s->b_height << s->block_max_depth;
306  const int rem_depth= s->block_max_depth - level;
307  const int index= (x + y*w) << rem_depth;
308  const int block_w= 1<<(LOG2_MB_SIZE - level);
309  int trx= (x+1)<<rem_depth;
310  int try= (y+1)<<rem_depth;
311  const BlockNode *left = x ? &s->block[index-1] : &null_block;
312  const BlockNode *top = y ? &s->block[index-w] : &null_block;
313  const BlockNode *right = trx<w ? &s->block[index+1] : &null_block;
314  const BlockNode *bottom= try<h ? &s->block[index+w] : &null_block;
315  const BlockNode *tl = y && x ? &s->block[index-w-1] : left;
316  const BlockNode *tr = y && trx<w && ((x&1)==0 || level==0) ? &s->block[index-w+(1<<rem_depth)] : tl; //FIXME use lt
317  int pl = left->color[0];
318  int pcb= left->color[1];
319  int pcr= left->color[2];
320  int pmx, pmy;
321  int mx=0, my=0;
322  int l,cr,cb;
323  const int stride= s->current_picture.linesize[0];
324  const int uvstride= s->current_picture.linesize[1];
325  uint8_t *current_data[3]= { s->input_picture.data[0] + (x + y* stride)*block_w,
326  s->input_picture.data[1] + (x + y*uvstride)*block_w/2,
327  s->input_picture.data[2] + (x + y*uvstride)*block_w/2};
328  int P[10][2];
329  int16_t last_mv[3][2];
330  int qpel= !!(s->avctx->flags & CODEC_FLAG_QPEL); //unused
331  const int shift= 1+qpel;
332  MotionEstContext *c= &s->m.me;
333  int ref_context= av_log2(2*left->ref) + av_log2(2*top->ref);
334  int mx_context= av_log2(2*FFABS(left->mx - top->mx));
335  int my_context= av_log2(2*FFABS(left->my - top->my));
336  int s_context= 2*left->level + 2*top->level + tl->level + tr->level;
337  int ref, best_ref, ref_score, ref_mx, ref_my;
338 
339  assert(sizeof(s->block_state) >= 256);
340  if(s->keyframe){
341  set_blocks(s, level, x, y, pl, pcb, pcr, 0, 0, 0, BLOCK_INTRA);
342  return 0;
343  }
344 
345 // clip predictors / edge ?
346 
347  P_LEFT[0]= left->mx;
348  P_LEFT[1]= left->my;
349  P_TOP [0]= top->mx;
350  P_TOP [1]= top->my;
351  P_TOPRIGHT[0]= tr->mx;
352  P_TOPRIGHT[1]= tr->my;
353 
354  last_mv[0][0]= s->block[index].mx;
355  last_mv[0][1]= s->block[index].my;
356  last_mv[1][0]= right->mx;
357  last_mv[1][1]= right->my;
358  last_mv[2][0]= bottom->mx;
359  last_mv[2][1]= bottom->my;
360 
361  s->m.mb_stride=2;
362  s->m.mb_x=
363  s->m.mb_y= 0;
364  c->skip= 0;
365 
366  assert(c-> stride == stride);
367  assert(c->uvstride == uvstride);
368 
369  c->penalty_factor = get_penalty_factor(s->lambda, s->lambda2, c->avctx->me_cmp);
370  c->sub_penalty_factor= get_penalty_factor(s->lambda, s->lambda2, c->avctx->me_sub_cmp);
371  c->mb_penalty_factor = get_penalty_factor(s->lambda, s->lambda2, c->avctx->mb_cmp);
372  c->current_mv_penalty= c->mv_penalty[s->m.f_code=1] + MAX_MV;
373 
374  c->xmin = - x*block_w - 16+3;
375  c->ymin = - y*block_w - 16+3;
376  c->xmax = - (x+1)*block_w + (w<<(LOG2_MB_SIZE - s->block_max_depth)) + 16-3;
377  c->ymax = - (y+1)*block_w + (h<<(LOG2_MB_SIZE - s->block_max_depth)) + 16-3;
378 
379  if(P_LEFT[0] > (c->xmax<<shift)) P_LEFT[0] = (c->xmax<<shift);
380  if(P_LEFT[1] > (c->ymax<<shift)) P_LEFT[1] = (c->ymax<<shift);
381  if(P_TOP[0] > (c->xmax<<shift)) P_TOP[0] = (c->xmax<<shift);
382  if(P_TOP[1] > (c->ymax<<shift)) P_TOP[1] = (c->ymax<<shift);
383  if(P_TOPRIGHT[0] < (c->xmin<<shift)) P_TOPRIGHT[0]= (c->xmin<<shift);
384  if(P_TOPRIGHT[0] > (c->xmax<<shift)) P_TOPRIGHT[0]= (c->xmax<<shift); //due to pmx no clip
385  if(P_TOPRIGHT[1] > (c->ymax<<shift)) P_TOPRIGHT[1]= (c->ymax<<shift);
386 
387  P_MEDIAN[0]= mid_pred(P_LEFT[0], P_TOP[0], P_TOPRIGHT[0]);
388  P_MEDIAN[1]= mid_pred(P_LEFT[1], P_TOP[1], P_TOPRIGHT[1]);
389 
390  if (!y) {
391  c->pred_x= P_LEFT[0];
392  c->pred_y= P_LEFT[1];
393  } else {
394  c->pred_x = P_MEDIAN[0];
395  c->pred_y = P_MEDIAN[1];
396  }
397 
398  score= INT_MAX;
399  best_ref= 0;
400  for(ref=0; ref<s->ref_frames; ref++){
401  init_ref(c, current_data, s->last_picture[ref].data, NULL, block_w*x, block_w*y, 0);
402 
403  ref_score= ff_epzs_motion_search(&s->m, &ref_mx, &ref_my, P, 0, /*ref_index*/ 0, last_mv,
404  (1<<16)>>shift, level-LOG2_MB_SIZE+4, block_w);
405 
406  assert(ref_mx >= c->xmin);
407  assert(ref_mx <= c->xmax);
408  assert(ref_my >= c->ymin);
409  assert(ref_my <= c->ymax);
410 
411  ref_score= c->sub_motion_search(&s->m, &ref_mx, &ref_my, ref_score, 0, 0, level-LOG2_MB_SIZE+4, block_w);
412  ref_score= ff_get_mb_score(&s->m, ref_mx, ref_my, 0, 0, level-LOG2_MB_SIZE+4, block_w, 0);
413  ref_score+= 2*av_log2(2*ref)*c->penalty_factor;
414  if(s->ref_mvs[ref]){
415  s->ref_mvs[ref][index][0]= ref_mx;
416  s->ref_mvs[ref][index][1]= ref_my;
417  s->ref_scores[ref][index]= ref_score;
418  }
419  if(score > ref_score){
420  score= ref_score;
421  best_ref= ref;
422  mx= ref_mx;
423  my= ref_my;
424  }
425  }
426  //FIXME if mb_cmp != SSE then intra cannot be compared currently and mb_penalty vs. lambda2
427 
428  // subpel search
429  base_bits= get_rac_count(&s->c) - 8*(s->c.bytestream - s->c.bytestream_start);
430  pc= s->c;
431  pc.bytestream_start=
432  pc.bytestream= p_buffer; //FIXME end/start? and at the other stoo
433  memcpy(p_state, s->block_state, sizeof(s->block_state));
434 
435  if(level!=s->block_max_depth)
436  put_rac(&pc, &p_state[4 + s_context], 1);
437  put_rac(&pc, &p_state[1 + left->type + top->type], 0);
438  if(s->ref_frames > 1)
439  put_symbol(&pc, &p_state[128 + 1024 + 32*ref_context], best_ref, 0);
440  pred_mv(s, &pmx, &pmy, best_ref, left, top, tr);
441  put_symbol(&pc, &p_state[128 + 32*(mx_context + 16*!!best_ref)], mx - pmx, 1);
442  put_symbol(&pc, &p_state[128 + 32*(my_context + 16*!!best_ref)], my - pmy, 1);
443  p_len= pc.bytestream - pc.bytestream_start;
444  score += (s->lambda2*(get_rac_count(&pc)-base_bits))>>FF_LAMBDA_SHIFT;
445 
446  block_s= block_w*block_w;
447  sum = pix_sum(current_data[0], stride, block_w);
448  l= (sum + block_s/2)/block_s;
449  iscore = pix_norm1(current_data[0], stride, block_w) - 2*l*sum + l*l*block_s;
450 
451  block_s= block_w*block_w>>2;
452  sum = pix_sum(current_data[1], uvstride, block_w>>1);
453  cb= (sum + block_s/2)/block_s;
454 // iscore += pix_norm1(&current_mb[1][0], uvstride, block_w>>1) - 2*cb*sum + cb*cb*block_s;
455  sum = pix_sum(current_data[2], uvstride, block_w>>1);
456  cr= (sum + block_s/2)/block_s;
457 // iscore += pix_norm1(&current_mb[2][0], uvstride, block_w>>1) - 2*cr*sum + cr*cr*block_s;
458 
459  ic= s->c;
460  ic.bytestream_start=
461  ic.bytestream= i_buffer; //FIXME end/start? and at the other stoo
462  memcpy(i_state, s->block_state, sizeof(s->block_state));
463  if(level!=s->block_max_depth)
464  put_rac(&ic, &i_state[4 + s_context], 1);
465  put_rac(&ic, &i_state[1 + left->type + top->type], 1);
466  put_symbol(&ic, &i_state[32], l-pl , 1);
467  put_symbol(&ic, &i_state[64], cb-pcb, 1);
468  put_symbol(&ic, &i_state[96], cr-pcr, 1);
469  i_len= ic.bytestream - ic.bytestream_start;
470  iscore += (s->lambda2*(get_rac_count(&ic)-base_bits))>>FF_LAMBDA_SHIFT;
471 
472 // assert(score==256*256*256*64-1);
473  assert(iscore < 255*255*256 + s->lambda2*10);
474  assert(iscore >= 0);
475  assert(l>=0 && l<=255);
476  assert(pl>=0 && pl<=255);
477 
478  if(level==0){
479  int varc= iscore >> 8;
480  int vard= score >> 8;
481  if (vard <= 64 || vard < varc)
482  c->scene_change_score+= ff_sqrt(vard) - ff_sqrt(varc);
483  else
484  c->scene_change_score+= s->m.qscale;
485  }
486 
487  if(level!=s->block_max_depth){
488  put_rac(&s->c, &s->block_state[4 + s_context], 0);
489  score2 = encode_q_branch(s, level+1, 2*x+0, 2*y+0);
490  score2+= encode_q_branch(s, level+1, 2*x+1, 2*y+0);
491  score2+= encode_q_branch(s, level+1, 2*x+0, 2*y+1);
492  score2+= encode_q_branch(s, level+1, 2*x+1, 2*y+1);
493  score2+= s->lambda2>>FF_LAMBDA_SHIFT; //FIXME exact split overhead
494 
495  if(score2 < score && score2 < iscore)
496  return score2;
497  }
498 
499  if(iscore < score){
500  pred_mv(s, &pmx, &pmy, 0, left, top, tr);
501  memcpy(pbbak, i_buffer, i_len);
502  s->c= ic;
503  s->c.bytestream_start= pbbak_start;
504  s->c.bytestream= pbbak + i_len;
505  set_blocks(s, level, x, y, l, cb, cr, pmx, pmy, 0, BLOCK_INTRA);
506  memcpy(s->block_state, i_state, sizeof(s->block_state));
507  return iscore;
508  }else{
509  memcpy(pbbak, p_buffer, p_len);
510  s->c= pc;
511  s->c.bytestream_start= pbbak_start;
512  s->c.bytestream= pbbak + p_len;
513  set_blocks(s, level, x, y, pl, pcb, pcr, mx, my, best_ref, 0);
514  memcpy(s->block_state, p_state, sizeof(s->block_state));
515  return score;
516  }
517 }
518 
519 static void encode_q_branch2(SnowContext *s, int level, int x, int y){
520  const int w= s->b_width << s->block_max_depth;
521  const int rem_depth= s->block_max_depth - level;
522  const int index= (x + y*w) << rem_depth;
523  int trx= (x+1)<<rem_depth;
524  BlockNode *b= &s->block[index];
525  const BlockNode *left = x ? &s->block[index-1] : &null_block;
526  const BlockNode *top = y ? &s->block[index-w] : &null_block;
527  const BlockNode *tl = y && x ? &s->block[index-w-1] : left;
528  const BlockNode *tr = y && trx<w && ((x&1)==0 || level==0) ? &s->block[index-w+(1<<rem_depth)] : tl; //FIXME use lt
529  int pl = left->color[0];
530  int pcb= left->color[1];
531  int pcr= left->color[2];
532  int pmx, pmy;
533  int ref_context= av_log2(2*left->ref) + av_log2(2*top->ref);
534  int mx_context= av_log2(2*FFABS(left->mx - top->mx)) + 16*!!b->ref;
535  int my_context= av_log2(2*FFABS(left->my - top->my)) + 16*!!b->ref;
536  int s_context= 2*left->level + 2*top->level + tl->level + tr->level;
537 
538  if(s->keyframe){
539  set_blocks(s, level, x, y, pl, pcb, pcr, 0, 0, 0, BLOCK_INTRA);
540  return;
541  }
542 
543  if(level!=s->block_max_depth){
544  if(same_block(b,b+1) && same_block(b,b+w) && same_block(b,b+w+1)){
545  put_rac(&s->c, &s->block_state[4 + s_context], 1);
546  }else{
547  put_rac(&s->c, &s->block_state[4 + s_context], 0);
548  encode_q_branch2(s, level+1, 2*x+0, 2*y+0);
549  encode_q_branch2(s, level+1, 2*x+1, 2*y+0);
550  encode_q_branch2(s, level+1, 2*x+0, 2*y+1);
551  encode_q_branch2(s, level+1, 2*x+1, 2*y+1);
552  return;
553  }
554  }
555  if(b->type & BLOCK_INTRA){
556  pred_mv(s, &pmx, &pmy, 0, left, top, tr);
557  put_rac(&s->c, &s->block_state[1 + (left->type&1) + (top->type&1)], 1);
558  put_symbol(&s->c, &s->block_state[32], b->color[0]-pl , 1);
559  put_symbol(&s->c, &s->block_state[64], b->color[1]-pcb, 1);
560  put_symbol(&s->c, &s->block_state[96], b->color[2]-pcr, 1);
561  set_blocks(s, level, x, y, b->color[0], b->color[1], b->color[2], pmx, pmy, 0, BLOCK_INTRA);
562  }else{
563  pred_mv(s, &pmx, &pmy, b->ref, left, top, tr);
564  put_rac(&s->c, &s->block_state[1 + (left->type&1) + (top->type&1)], 0);
565  if(s->ref_frames > 1)
566  put_symbol(&s->c, &s->block_state[128 + 1024 + 32*ref_context], b->ref, 0);
567  put_symbol(&s->c, &s->block_state[128 + 32*mx_context], b->mx - pmx, 1);
568  put_symbol(&s->c, &s->block_state[128 + 32*my_context], b->my - pmy, 1);
569  set_blocks(s, level, x, y, pl, pcb, pcr, b->mx, b->my, b->ref, 0);
570  }
571 }
572 
573 static int get_dc(SnowContext *s, int mb_x, int mb_y, int plane_index){
574  int i, x2, y2;
575  Plane *p= &s->plane[plane_index];
576  const int block_size = MB_SIZE >> s->block_max_depth;
577  const int block_w = plane_index ? block_size/2 : block_size;
578  const uint8_t *obmc = plane_index ? obmc_tab[s->block_max_depth+1] : obmc_tab[s->block_max_depth];
579  const int obmc_stride= plane_index ? block_size : 2*block_size;
580  const int ref_stride= s->current_picture.linesize[plane_index];
581  uint8_t *src= s-> input_picture.data[plane_index];
582  IDWTELEM *dst= (IDWTELEM*)s->m.obmc_scratchpad + plane_index*block_size*block_size*4; //FIXME change to unsigned
583  const int b_stride = s->b_width << s->block_max_depth;
584  const int w= p->width;
585  const int h= p->height;
586  int index= mb_x + mb_y*b_stride;
587  BlockNode *b= &s->block[index];
588  BlockNode backup= *b;
589  int ab=0;
590  int aa=0;
591 
592  b->type|= BLOCK_INTRA;
593  b->color[plane_index]= 0;
594  memset(dst, 0, obmc_stride*obmc_stride*sizeof(IDWTELEM));
595 
596  for(i=0; i<4; i++){
597  int mb_x2= mb_x + (i &1) - 1;
598  int mb_y2= mb_y + (i>>1) - 1;
599  int x= block_w*mb_x2 + block_w/2;
600  int y= block_w*mb_y2 + block_w/2;
601 
602  add_yblock(s, 0, NULL, dst + ((i&1)+(i>>1)*obmc_stride)*block_w, NULL, obmc,
603  x, y, block_w, block_w, w, h, obmc_stride, ref_stride, obmc_stride, mb_x2, mb_y2, 0, 0, plane_index);
604 
605  for(y2= FFMAX(y, 0); y2<FFMIN(h, y+block_w); y2++){
606  for(x2= FFMAX(x, 0); x2<FFMIN(w, x+block_w); x2++){
607  int index= x2-(block_w*mb_x - block_w/2) + (y2-(block_w*mb_y - block_w/2))*obmc_stride;
608  int obmc_v= obmc[index];
609  int d;
610  if(y<0) obmc_v += obmc[index + block_w*obmc_stride];
611  if(x<0) obmc_v += obmc[index + block_w];
612  if(y+block_w>h) obmc_v += obmc[index - block_w*obmc_stride];
613  if(x+block_w>w) obmc_v += obmc[index - block_w];
614  //FIXME precalculate this or simplify it somehow else
615 
616  d = -dst[index] + (1<<(FRAC_BITS-1));
617  dst[index] = d;
618  ab += (src[x2 + y2*ref_stride] - (d>>FRAC_BITS)) * obmc_v;
619  aa += obmc_v * obmc_v; //FIXME precalculate this
620  }
621  }
622  }
623  *b= backup;
624 
625  return av_clip(((ab<<LOG2_OBMC_MAX) + aa/2)/aa, 0, 255); //FIXME we should not need clipping
626 }
627 
628 static inline int get_block_bits(SnowContext *s, int x, int y, int w){
629  const int b_stride = s->b_width << s->block_max_depth;
630  const int b_height = s->b_height<< s->block_max_depth;
631  int index= x + y*b_stride;
632  const BlockNode *b = &s->block[index];
633  const BlockNode *left = x ? &s->block[index-1] : &null_block;
634  const BlockNode *top = y ? &s->block[index-b_stride] : &null_block;
635  const BlockNode *tl = y && x ? &s->block[index-b_stride-1] : left;
636  const BlockNode *tr = y && x+w<b_stride ? &s->block[index-b_stride+w] : tl;
637  int dmx, dmy;
638 // int mx_context= av_log2(2*FFABS(left->mx - top->mx));
639 // int my_context= av_log2(2*FFABS(left->my - top->my));
640 
641  if(x<0 || x>=b_stride || y>=b_height)
642  return 0;
643 /*
644 1 0 0
645 01X 1-2 1
646 001XX 3-6 2-3
647 0001XXX 7-14 4-7
648 00001XXXX 15-30 8-15
649 */
650 //FIXME try accurate rate
651 //FIXME intra and inter predictors if surrounding blocks are not the same type
652  if(b->type & BLOCK_INTRA){
653  return 3+2*( av_log2(2*FFABS(left->color[0] - b->color[0]))
654  + av_log2(2*FFABS(left->color[1] - b->color[1]))
655  + av_log2(2*FFABS(left->color[2] - b->color[2])));
656  }else{
657  pred_mv(s, &dmx, &dmy, b->ref, left, top, tr);
658  dmx-= b->mx;
659  dmy-= b->my;
660  return 2*(1 + av_log2(2*FFABS(dmx)) //FIXME kill the 2* can be merged in lambda
661  + av_log2(2*FFABS(dmy))
662  + av_log2(2*b->ref));
663  }
664 }
665 
666 static int get_block_rd(SnowContext *s, int mb_x, int mb_y, int plane_index, const uint8_t *obmc_edged){
667  Plane *p= &s->plane[plane_index];
668  const int block_size = MB_SIZE >> s->block_max_depth;
669  const int block_w = plane_index ? block_size/2 : block_size;
670  const int obmc_stride= plane_index ? block_size : 2*block_size;
671  const int ref_stride= s->current_picture.linesize[plane_index];
672  uint8_t *dst= s->current_picture.data[plane_index];
673  uint8_t *src= s-> input_picture.data[plane_index];
674  IDWTELEM *pred= (IDWTELEM*)s->m.obmc_scratchpad + plane_index*block_size*block_size*4;
675  uint8_t *cur = s->scratchbuf;
676  uint8_t tmp[ref_stride*(2*MB_SIZE+HTAPS_MAX-1)];
677  const int b_stride = s->b_width << s->block_max_depth;
678  const int b_height = s->b_height<< s->block_max_depth;
679  const int w= p->width;
680  const int h= p->height;
681  int distortion;
682  int rate= 0;
683  const int penalty_factor= get_penalty_factor(s->lambda, s->lambda2, s->avctx->me_cmp);
684  int sx= block_w*mb_x - block_w/2;
685  int sy= block_w*mb_y - block_w/2;
686  int x0= FFMAX(0,-sx);
687  int y0= FFMAX(0,-sy);
688  int x1= FFMIN(block_w*2, w-sx);
689  int y1= FFMIN(block_w*2, h-sy);
690  int i,x,y;
691 
692  ff_snow_pred_block(s, cur, tmp, ref_stride, sx, sy, block_w*2, block_w*2, &s->block[mb_x + mb_y*b_stride], plane_index, w, h);
693 
694  for(y=y0; y<y1; y++){
695  const uint8_t *obmc1= obmc_edged + y*obmc_stride;
696  const IDWTELEM *pred1 = pred + y*obmc_stride;
697  uint8_t *cur1 = cur + y*ref_stride;
698  uint8_t *dst1 = dst + sx + (sy+y)*ref_stride;
699  for(x=x0; x<x1; x++){
700 #if FRAC_BITS >= LOG2_OBMC_MAX
701  int v = (cur1[x] * obmc1[x]) << (FRAC_BITS - LOG2_OBMC_MAX);
702 #else
703  int v = (cur1[x] * obmc1[x] + (1<<(LOG2_OBMC_MAX - FRAC_BITS-1))) >> (LOG2_OBMC_MAX - FRAC_BITS);
704 #endif
705  v = (v + pred1[x]) >> FRAC_BITS;
706  if(v&(~255)) v= ~(v>>31);
707  dst1[x] = v;
708  }
709  }
710 
711  /* copy the regions where obmc[] = (uint8_t)256 */
712  if(LOG2_OBMC_MAX == 8
713  && (mb_x == 0 || mb_x == b_stride-1)
714  && (mb_y == 0 || mb_y == b_height-1)){
715  if(mb_x == 0)
716  x1 = block_w;
717  else
718  x0 = block_w;
719  if(mb_y == 0)
720  y1 = block_w;
721  else
722  y0 = block_w;
723  for(y=y0; y<y1; y++)
724  memcpy(dst + sx+x0 + (sy+y)*ref_stride, cur + x0 + y*ref_stride, x1-x0);
725  }
726 
727  if(block_w==16){
728  /* FIXME rearrange dsputil to fit 32x32 cmp functions */
729  /* FIXME check alignment of the cmp wavelet vs the encoding wavelet */
730  /* FIXME cmps overlap but do not cover the wavelet's whole support.
731  * So improving the score of one block is not strictly guaranteed
732  * to improve the score of the whole frame, thus iterative motion
733  * estimation does not always converge. */
734  if(s->avctx->me_cmp == FF_CMP_W97)
735  distortion = ff_w97_32_c(&s->m, src + sx + sy*ref_stride, dst + sx + sy*ref_stride, ref_stride, 32);
736  else if(s->avctx->me_cmp == FF_CMP_W53)
737  distortion = ff_w53_32_c(&s->m, src + sx + sy*ref_stride, dst + sx + sy*ref_stride, ref_stride, 32);
738  else{
739  distortion = 0;
740  for(i=0; i<4; i++){
741  int off = sx+16*(i&1) + (sy+16*(i>>1))*ref_stride;
742  distortion += s->dsp.me_cmp[0](&s->m, src + off, dst + off, ref_stride, 16);
743  }
744  }
745  }else{
746  assert(block_w==8);
747  distortion = s->dsp.me_cmp[0](&s->m, src + sx + sy*ref_stride, dst + sx + sy*ref_stride, ref_stride, block_w*2);
748  }
749 
750  if(plane_index==0){
751  for(i=0; i<4; i++){
752 /* ..RRr
753  * .RXx.
754  * rxx..
755  */
756  rate += get_block_bits(s, mb_x + (i&1) - (i>>1), mb_y + (i>>1), 1);
757  }
758  if(mb_x == b_stride-2)
759  rate += get_block_bits(s, mb_x + 1, mb_y + 1, 1);
760  }
761  return distortion + rate*penalty_factor;
762 }
763 
764 static int get_4block_rd(SnowContext *s, int mb_x, int mb_y, int plane_index){
765  int i, y2;
766  Plane *p= &s->plane[plane_index];
767  const int block_size = MB_SIZE >> s->block_max_depth;
768  const int block_w = plane_index ? block_size/2 : block_size;
769  const uint8_t *obmc = plane_index ? obmc_tab[s->block_max_depth+1] : obmc_tab[s->block_max_depth];
770  const int obmc_stride= plane_index ? block_size : 2*block_size;
771  const int ref_stride= s->current_picture.linesize[plane_index];
772  uint8_t *dst= s->current_picture.data[plane_index];
773  uint8_t *src= s-> input_picture.data[plane_index];
774  //FIXME zero_dst is const but add_yblock changes dst if add is 0 (this is never the case for dst=zero_dst
775  // const has only been removed from zero_dst to suppress a warning
776  static IDWTELEM zero_dst[4096]; //FIXME
777  const int b_stride = s->b_width << s->block_max_depth;
778  const int w= p->width;
779  const int h= p->height;
780  int distortion= 0;
781  int rate= 0;
782  const int penalty_factor= get_penalty_factor(s->lambda, s->lambda2, s->avctx->me_cmp);
783 
784  for(i=0; i<9; i++){
785  int mb_x2= mb_x + (i%3) - 1;
786  int mb_y2= mb_y + (i/3) - 1;
787  int x= block_w*mb_x2 + block_w/2;
788  int y= block_w*mb_y2 + block_w/2;
789 
790  add_yblock(s, 0, NULL, zero_dst, dst, obmc,
791  x, y, block_w, block_w, w, h, /*dst_stride*/0, ref_stride, obmc_stride, mb_x2, mb_y2, 1, 1, plane_index);
792 
793  //FIXME find a cleaner/simpler way to skip the outside stuff
794  for(y2= y; y2<0; y2++)
795  memcpy(dst + x + y2*ref_stride, src + x + y2*ref_stride, block_w);
796  for(y2= h; y2<y+block_w; y2++)
797  memcpy(dst + x + y2*ref_stride, src + x + y2*ref_stride, block_w);
798  if(x<0){
799  for(y2= y; y2<y+block_w; y2++)
800  memcpy(dst + x + y2*ref_stride, src + x + y2*ref_stride, -x);
801  }
802  if(x+block_w > w){
803  for(y2= y; y2<y+block_w; y2++)
804  memcpy(dst + w + y2*ref_stride, src + w + y2*ref_stride, x+block_w - w);
805  }
806 
807  assert(block_w== 8 || block_w==16);
808  distortion += s->dsp.me_cmp[block_w==8](&s->m, src + x + y*ref_stride, dst + x + y*ref_stride, ref_stride, block_w);
809  }
810 
811  if(plane_index==0){
812  BlockNode *b= &s->block[mb_x+mb_y*b_stride];
813  int merged= same_block(b,b+1) && same_block(b,b+b_stride) && same_block(b,b+b_stride+1);
814 
815 /* ..RRRr
816  * .RXXx.
817  * .RXXx.
818  * rxxx.
819  */
820  if(merged)
821  rate = get_block_bits(s, mb_x, mb_y, 2);
822  for(i=merged?4:0; i<9; i++){
823  static const int dxy[9][2] = {{0,0},{1,0},{0,1},{1,1},{2,0},{2,1},{-1,2},{0,2},{1,2}};
824  rate += get_block_bits(s, mb_x + dxy[i][0], mb_y + dxy[i][1], 1);
825  }
826  }
827  return distortion + rate*penalty_factor;
828 }
829 
830 static int encode_subband_c0run(SnowContext *s, SubBand *b, IDWTELEM *src, IDWTELEM *parent, int stride, int orientation){
831  const int w= b->width;
832  const int h= b->height;
833  int x, y;
834 
835  if(1){
836  int run=0;
837  int runs[w*h];
838  int run_index=0;
839  int max_index;
840 
841  for(y=0; y<h; y++){
842  for(x=0; x<w; x++){
843  int v, p=0;
844  int /*ll=0, */l=0, lt=0, t=0, rt=0;
845  v= src[x + y*stride];
846 
847  if(y){
848  t= src[x + (y-1)*stride];
849  if(x){
850  lt= src[x - 1 + (y-1)*stride];
851  }
852  if(x + 1 < w){
853  rt= src[x + 1 + (y-1)*stride];
854  }
855  }
856  if(x){
857  l= src[x - 1 + y*stride];
858  /*if(x > 1){
859  if(orientation==1) ll= src[y + (x-2)*stride];
860  else ll= src[x - 2 + y*stride];
861  }*/
862  }
863  if(parent){
864  int px= x>>1;
865  int py= y>>1;
866  if(px<b->parent->width && py<b->parent->height)
867  p= parent[px + py*2*stride];
868  }
869  if(!(/*ll|*/l|lt|t|rt|p)){
870  if(v){
871  runs[run_index++]= run;
872  run=0;
873  }else{
874  run++;
875  }
876  }
877  }
878  }
879  max_index= run_index;
880  runs[run_index++]= run;
881  run_index=0;
882  run= runs[run_index++];
883 
884  put_symbol2(&s->c, b->state[30], max_index, 0);
885  if(run_index <= max_index)
886  put_symbol2(&s->c, b->state[1], run, 3);
887 
888  for(y=0; y<h; y++){
889  if(s->c.bytestream_end - s->c.bytestream < w*40){
890  av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
891  return -1;
892  }
893  for(x=0; x<w; x++){
894  int v, p=0;
895  int /*ll=0, */l=0, lt=0, t=0, rt=0;
896  v= src[x + y*stride];
897 
898  if(y){
899  t= src[x + (y-1)*stride];
900  if(x){
901  lt= src[x - 1 + (y-1)*stride];
902  }
903  if(x + 1 < w){
904  rt= src[x + 1 + (y-1)*stride];
905  }
906  }
907  if(x){
908  l= src[x - 1 + y*stride];
909  /*if(x > 1){
910  if(orientation==1) ll= src[y + (x-2)*stride];
911  else ll= src[x - 2 + y*stride];
912  }*/
913  }
914  if(parent){
915  int px= x>>1;
916  int py= y>>1;
917  if(px<b->parent->width && py<b->parent->height)
918  p= parent[px + py*2*stride];
919  }
920  if(/*ll|*/l|lt|t|rt|p){
921  int context= av_log2(/*FFABS(ll) + */3*FFABS(l) + FFABS(lt) + 2*FFABS(t) + FFABS(rt) + FFABS(p));
922 
923  put_rac(&s->c, &b->state[0][context], !!v);
924  }else{
925  if(!run){
926  run= runs[run_index++];
927 
928  if(run_index <= max_index)
929  put_symbol2(&s->c, b->state[1], run, 3);
930  assert(v);
931  }else{
932  run--;
933  assert(!v);
934  }
935  }
936  if(v){
937  int context= av_log2(/*FFABS(ll) + */3*FFABS(l) + FFABS(lt) + 2*FFABS(t) + FFABS(rt) + FFABS(p));
938  int l2= 2*FFABS(l) + (l<0);
939  int t2= 2*FFABS(t) + (t<0);
940 
941  put_symbol2(&s->c, b->state[context + 2], FFABS(v)-1, context-4);
942  put_rac(&s->c, &b->state[0][16 + 1 + 3 + quant3bA[l2&0xFF] + 3*quant3bA[t2&0xFF]], v<0);
943  }
944  }
945  }
946  }
947  return 0;
948 }
949 
950 static int encode_subband(SnowContext *s, SubBand *b, IDWTELEM *src, IDWTELEM *parent, int stride, int orientation){
951 // encode_subband_qtree(s, b, src, parent, stride, orientation);
952 // encode_subband_z0run(s, b, src, parent, stride, orientation);
953  return encode_subband_c0run(s, b, src, parent, stride, orientation);
954 // encode_subband_dzr(s, b, src, parent, stride, orientation);
955 }
956 
957 static av_always_inline int check_block(SnowContext *s, int mb_x, int mb_y, int p[3], int intra, const uint8_t *obmc_edged, int *best_rd){
958  const int b_stride= s->b_width << s->block_max_depth;
959  BlockNode *block= &s->block[mb_x + mb_y * b_stride];
960  BlockNode backup= *block;
961  unsigned value;
962  int rd, index;
963 
964  assert(mb_x>=0 && mb_y>=0);
965  assert(mb_x<b_stride);
966 
967  if(intra){
968  block->color[0] = p[0];
969  block->color[1] = p[1];
970  block->color[2] = p[2];
971  block->type |= BLOCK_INTRA;
972  }else{
973  index= (p[0] + 31*p[1]) & (ME_CACHE_SIZE-1);
974  value= s->me_cache_generation + (p[0]>>10) + (p[1]<<6) + (block->ref<<12);
975  if(s->me_cache[index] == value)
976  return 0;
977  s->me_cache[index]= value;
978 
979  block->mx= p[0];
980  block->my= p[1];
981  block->type &= ~BLOCK_INTRA;
982  }
983 
984  rd= get_block_rd(s, mb_x, mb_y, 0, obmc_edged);
985 
986 //FIXME chroma
987  if(rd < *best_rd){
988  *best_rd= rd;
989  return 1;
990  }else{
991  *block= backup;
992  return 0;
993  }
994 }
995 
996 /* special case for int[2] args we discard afterwards,
997  * fixes compilation problem with gcc 2.95 */
998 static av_always_inline int check_block_inter(SnowContext *s, int mb_x, int mb_y, int p0, int p1, const uint8_t *obmc_edged, int *best_rd){
999  int p[2] = {p0, p1};
1000  return check_block(s, mb_x, mb_y, p, 0, obmc_edged, best_rd);
1001 }
1002 
1003 static av_always_inline int check_4block_inter(SnowContext *s, int mb_x, int mb_y, int p0, int p1, int ref, int *best_rd){
1004  const int b_stride= s->b_width << s->block_max_depth;
1005  BlockNode *block= &s->block[mb_x + mb_y * b_stride];
1006  BlockNode backup[4]= {block[0], block[1], block[b_stride], block[b_stride+1]};
1007  unsigned value;
1008  int rd, index;
1009 
1010  assert(mb_x>=0 && mb_y>=0);
1011  assert(mb_x<b_stride);
1012  assert(((mb_x|mb_y)&1) == 0);
1013 
1014  index= (p0 + 31*p1) & (ME_CACHE_SIZE-1);
1015  value= s->me_cache_generation + (p0>>10) + (p1<<6) + (block->ref<<12);
1016  if(s->me_cache[index] == value)
1017  return 0;
1018  s->me_cache[index]= value;
1019 
1020  block->mx= p0;
1021  block->my= p1;
1022  block->ref= ref;
1023  block->type &= ~BLOCK_INTRA;
1024  block[1]= block[b_stride]= block[b_stride+1]= *block;
1025 
1026  rd= get_4block_rd(s, mb_x, mb_y, 0);
1027 
1028 //FIXME chroma
1029  if(rd < *best_rd){
1030  *best_rd= rd;
1031  return 1;
1032  }else{
1033  block[0]= backup[0];
1034  block[1]= backup[1];
1035  block[b_stride]= backup[2];
1036  block[b_stride+1]= backup[3];
1037  return 0;
1038  }
1039 }
1040 
1041 static void iterative_me(SnowContext *s){
1042  int pass, mb_x, mb_y;
1043  const int b_width = s->b_width << s->block_max_depth;
1044  const int b_height= s->b_height << s->block_max_depth;
1045  const int b_stride= b_width;
1046  int color[3];
1047 
1048  {
1049  RangeCoder r = s->c;
1050  uint8_t state[sizeof(s->block_state)];
1051  memcpy(state, s->block_state, sizeof(s->block_state));
1052  for(mb_y= 0; mb_y<s->b_height; mb_y++)
1053  for(mb_x= 0; mb_x<s->b_width; mb_x++)
1054  encode_q_branch(s, 0, mb_x, mb_y);
1055  s->c = r;
1056  memcpy(s->block_state, state, sizeof(s->block_state));
1057  }
1058 
1059  for(pass=0; pass<25; pass++){
1060  int change= 0;
1061 
1062  for(mb_y= 0; mb_y<b_height; mb_y++){
1063  for(mb_x= 0; mb_x<b_width; mb_x++){
1064  int dia_change, i, j, ref;
1065  int best_rd= INT_MAX, ref_rd;
1066  BlockNode backup, ref_b;
1067  const int index= mb_x + mb_y * b_stride;
1068  BlockNode *block= &s->block[index];
1069  BlockNode *tb = mb_y ? &s->block[index-b_stride ] : NULL;
1070  BlockNode *lb = mb_x ? &s->block[index -1] : NULL;
1071  BlockNode *rb = mb_x+1<b_width ? &s->block[index +1] : NULL;
1072  BlockNode *bb = mb_y+1<b_height ? &s->block[index+b_stride ] : NULL;
1073  BlockNode *tlb= mb_x && mb_y ? &s->block[index-b_stride-1] : NULL;
1074  BlockNode *trb= mb_x+1<b_width && mb_y ? &s->block[index-b_stride+1] : NULL;
1075  BlockNode *blb= mb_x && mb_y+1<b_height ? &s->block[index+b_stride-1] : NULL;
1076  BlockNode *brb= mb_x+1<b_width && mb_y+1<b_height ? &s->block[index+b_stride+1] : NULL;
1077  const int b_w= (MB_SIZE >> s->block_max_depth);
1078  uint8_t obmc_edged[b_w*2][b_w*2];
1079 
1080  if(pass && (block->type & BLOCK_OPT))
1081  continue;
1082  block->type |= BLOCK_OPT;
1083 
1084  backup= *block;
1085 
1086  if(!s->me_cache_generation)
1087  memset(s->me_cache, 0, sizeof(s->me_cache));
1088  s->me_cache_generation += 1<<22;
1089 
1090  //FIXME precalculate
1091  {
1092  int x, y;
1093  memcpy(obmc_edged, obmc_tab[s->block_max_depth], b_w*b_w*4);
1094  if(mb_x==0)
1095  for(y=0; y<b_w*2; y++)
1096  memset(obmc_edged[y], obmc_edged[y][0] + obmc_edged[y][b_w-1], b_w);
1097  if(mb_x==b_stride-1)
1098  for(y=0; y<b_w*2; y++)
1099  memset(obmc_edged[y]+b_w, obmc_edged[y][b_w] + obmc_edged[y][b_w*2-1], b_w);
1100  if(mb_y==0){
1101  for(x=0; x<b_w*2; x++)
1102  obmc_edged[0][x] += obmc_edged[b_w-1][x];
1103  for(y=1; y<b_w; y++)
1104  memcpy(obmc_edged[y], obmc_edged[0], b_w*2);
1105  }
1106  if(mb_y==b_height-1){
1107  for(x=0; x<b_w*2; x++)
1108  obmc_edged[b_w*2-1][x] += obmc_edged[b_w][x];
1109  for(y=b_w; y<b_w*2-1; y++)
1110  memcpy(obmc_edged[y], obmc_edged[b_w*2-1], b_w*2);
1111  }
1112  }
1113 
1114  //skip stuff outside the picture
1115  if(mb_x==0 || mb_y==0 || mb_x==b_width-1 || mb_y==b_height-1){
1116  uint8_t *src= s-> input_picture.data[0];
1117  uint8_t *dst= s->current_picture.data[0];
1118  const int stride= s->current_picture.linesize[0];
1119  const int block_w= MB_SIZE >> s->block_max_depth;
1120  const int sx= block_w*mb_x - block_w/2;
1121  const int sy= block_w*mb_y - block_w/2;
1122  const int w= s->plane[0].width;
1123  const int h= s->plane[0].height;
1124  int y;
1125 
1126  for(y=sy; y<0; y++)
1127  memcpy(dst + sx + y*stride, src + sx + y*stride, block_w*2);
1128  for(y=h; y<sy+block_w*2; y++)
1129  memcpy(dst + sx + y*stride, src + sx + y*stride, block_w*2);
1130  if(sx<0){
1131  for(y=sy; y<sy+block_w*2; y++)
1132  memcpy(dst + sx + y*stride, src + sx + y*stride, -sx);
1133  }
1134  if(sx+block_w*2 > w){
1135  for(y=sy; y<sy+block_w*2; y++)
1136  memcpy(dst + w + y*stride, src + w + y*stride, sx+block_w*2 - w);
1137  }
1138  }
1139 
1140  // intra(black) = neighbors' contribution to the current block
1141  for(i=0; i<3; i++)
1142  color[i]= get_dc(s, mb_x, mb_y, i);
1143 
1144  // get previous score (cannot be cached due to OBMC)
1145  if(pass > 0 && (block->type&BLOCK_INTRA)){
1146  int color0[3]= {block->color[0], block->color[1], block->color[2]};
1147  check_block(s, mb_x, mb_y, color0, 1, *obmc_edged, &best_rd);
1148  }else
1149  check_block_inter(s, mb_x, mb_y, block->mx, block->my, *obmc_edged, &best_rd);
1150 
1151  ref_b= *block;
1152  ref_rd= best_rd;
1153  for(ref=0; ref < s->ref_frames; ref++){
1154  int16_t (*mvr)[2]= &s->ref_mvs[ref][index];
1155  if(s->ref_scores[ref][index] > s->ref_scores[ref_b.ref][index]*3/2) //FIXME tune threshold
1156  continue;
1157  block->ref= ref;
1158  best_rd= INT_MAX;
1159 
1160  check_block_inter(s, mb_x, mb_y, mvr[0][0], mvr[0][1], *obmc_edged, &best_rd);
1161  check_block_inter(s, mb_x, mb_y, 0, 0, *obmc_edged, &best_rd);
1162  if(tb)
1163  check_block_inter(s, mb_x, mb_y, mvr[-b_stride][0], mvr[-b_stride][1], *obmc_edged, &best_rd);
1164  if(lb)
1165  check_block_inter(s, mb_x, mb_y, mvr[-1][0], mvr[-1][1], *obmc_edged, &best_rd);
1166  if(rb)
1167  check_block_inter(s, mb_x, mb_y, mvr[1][0], mvr[1][1], *obmc_edged, &best_rd);
1168  if(bb)
1169  check_block_inter(s, mb_x, mb_y, mvr[b_stride][0], mvr[b_stride][1], *obmc_edged, &best_rd);
1170 
1171  /* fullpel ME */
1172  //FIXME avoid subpel interpolation / round to nearest integer
1173  do{
1174  dia_change=0;
1175  for(i=0; i<FFMAX(s->avctx->dia_size, 1); i++){
1176  for(j=0; j<i; j++){
1177  dia_change |= check_block_inter(s, mb_x, mb_y, block->mx+4*(i-j), block->my+(4*j), *obmc_edged, &best_rd);
1178  dia_change |= check_block_inter(s, mb_x, mb_y, block->mx-4*(i-j), block->my-(4*j), *obmc_edged, &best_rd);
1179  dia_change |= check_block_inter(s, mb_x, mb_y, block->mx+4*(i-j), block->my-(4*j), *obmc_edged, &best_rd);
1180  dia_change |= check_block_inter(s, mb_x, mb_y, block->mx-4*(i-j), block->my+(4*j), *obmc_edged, &best_rd);
1181  }
1182  }
1183  }while(dia_change);
1184  /* subpel ME */
1185  do{
1186  static const int square[8][2]= {{+1, 0},{-1, 0},{ 0,+1},{ 0,-1},{+1,+1},{-1,-1},{+1,-1},{-1,+1},};
1187  dia_change=0;
1188  for(i=0; i<8; i++)
1189  dia_change |= check_block_inter(s, mb_x, mb_y, block->mx+square[i][0], block->my+square[i][1], *obmc_edged, &best_rd);
1190  }while(dia_change);
1191  //FIXME or try the standard 2 pass qpel or similar
1192 
1193  mvr[0][0]= block->mx;
1194  mvr[0][1]= block->my;
1195  if(ref_rd > best_rd){
1196  ref_rd= best_rd;
1197  ref_b= *block;
1198  }
1199  }
1200  best_rd= ref_rd;
1201  *block= ref_b;
1202  check_block(s, mb_x, mb_y, color, 1, *obmc_edged, &best_rd);
1203  //FIXME RD style color selection
1204  if(!same_block(block, &backup)){
1205  if(tb ) tb ->type &= ~BLOCK_OPT;
1206  if(lb ) lb ->type &= ~BLOCK_OPT;
1207  if(rb ) rb ->type &= ~BLOCK_OPT;
1208  if(bb ) bb ->type &= ~BLOCK_OPT;
1209  if(tlb) tlb->type &= ~BLOCK_OPT;
1210  if(trb) trb->type &= ~BLOCK_OPT;
1211  if(blb) blb->type &= ~BLOCK_OPT;
1212  if(brb) brb->type &= ~BLOCK_OPT;
1213  change ++;
1214  }
1215  }
1216  }
1217  av_log(s->avctx, AV_LOG_ERROR, "pass:%d changed:%d\n", pass, change);
1218  if(!change)
1219  break;
1220  }
1221 
1222  if(s->block_max_depth == 1){
1223  int change= 0;
1224  for(mb_y= 0; mb_y<b_height; mb_y+=2){
1225  for(mb_x= 0; mb_x<b_width; mb_x+=2){
1226  int i;
1227  int best_rd, init_rd;
1228  const int index= mb_x + mb_y * b_stride;
1229  BlockNode *b[4];
1230 
1231  b[0]= &s->block[index];
1232  b[1]= b[0]+1;
1233  b[2]= b[0]+b_stride;
1234  b[3]= b[2]+1;
1235  if(same_block(b[0], b[1]) &&
1236  same_block(b[0], b[2]) &&
1237  same_block(b[0], b[3]))
1238  continue;
1239 
1240  if(!s->me_cache_generation)
1241  memset(s->me_cache, 0, sizeof(s->me_cache));
1242  s->me_cache_generation += 1<<22;
1243 
1244  init_rd= best_rd= get_4block_rd(s, mb_x, mb_y, 0);
1245 
1246  //FIXME more multiref search?
1247  check_4block_inter(s, mb_x, mb_y,
1248  (b[0]->mx + b[1]->mx + b[2]->mx + b[3]->mx + 2) >> 2,
1249  (b[0]->my + b[1]->my + b[2]->my + b[3]->my + 2) >> 2, 0, &best_rd);
1250 
1251  for(i=0; i<4; i++)
1252  if(!(b[i]->type&BLOCK_INTRA))
1253  check_4block_inter(s, mb_x, mb_y, b[i]->mx, b[i]->my, b[i]->ref, &best_rd);
1254 
1255  if(init_rd != best_rd)
1256  change++;
1257  }
1258  }
1259  av_log(s->avctx, AV_LOG_ERROR, "pass:4mv changed:%d\n", change*4);
1260  }
1261 }
1262 
1263 static void encode_blocks(SnowContext *s, int search){
1264  int x, y;
1265  int w= s->b_width;
1266  int h= s->b_height;
1267 
1268  if(s->avctx->me_method == ME_ITER && !s->keyframe && search)
1269  iterative_me(s);
1270 
1271  for(y=0; y<h; y++){
1272  if(s->c.bytestream_end - s->c.bytestream < w*MB_SIZE*MB_SIZE*3){ //FIXME nicer limit
1273  av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
1274  return;
1275  }
1276  for(x=0; x<w; x++){
1277  if(s->avctx->me_method == ME_ITER || !search)
1278  encode_q_branch2(s, 0, x, y);
1279  else
1280  encode_q_branch (s, 0, x, y);
1281  }
1282  }
1283 }
1284 
1285 static void quantize(SnowContext *s, SubBand *b, IDWTELEM *dst, DWTELEM *src, int stride, int bias){
1286  const int w= b->width;
1287  const int h= b->height;
1288  const int qlog= av_clip(s->qlog + b->qlog, 0, QROOT*16);
1289  const int qmul= qexp[qlog&(QROOT-1)]<<((qlog>>QSHIFT) + ENCODER_EXTRA_BITS);
1290  int x,y, thres1, thres2;
1291 
1292  if(s->qlog == LOSSLESS_QLOG){
1293  for(y=0; y<h; y++)
1294  for(x=0; x<w; x++)
1295  dst[x + y*stride]= src[x + y*stride];
1296  return;
1297  }
1298 
1299  bias= bias ? 0 : (3*qmul)>>3;
1300  thres1= ((qmul - bias)>>QEXPSHIFT) - 1;
1301  thres2= 2*thres1;
1302 
1303  if(!bias){
1304  for(y=0; y<h; y++){
1305  for(x=0; x<w; x++){
1306  int i= src[x + y*stride];
1307 
1308  if((unsigned)(i+thres1) > thres2){
1309  if(i>=0){
1310  i<<= QEXPSHIFT;
1311  i/= qmul; //FIXME optimize
1312  dst[x + y*stride]= i;
1313  }else{
1314  i= -i;
1315  i<<= QEXPSHIFT;
1316  i/= qmul; //FIXME optimize
1317  dst[x + y*stride]= -i;
1318  }
1319  }else
1320  dst[x + y*stride]= 0;
1321  }
1322  }
1323  }else{
1324  for(y=0; y<h; y++){
1325  for(x=0; x<w; x++){
1326  int i= src[x + y*stride];
1327 
1328  if((unsigned)(i+thres1) > thres2){
1329  if(i>=0){
1330  i<<= QEXPSHIFT;
1331  i= (i + bias) / qmul; //FIXME optimize
1332  dst[x + y*stride]= i;
1333  }else{
1334  i= -i;
1335  i<<= QEXPSHIFT;
1336  i= (i + bias) / qmul; //FIXME optimize
1337  dst[x + y*stride]= -i;
1338  }
1339  }else
1340  dst[x + y*stride]= 0;
1341  }
1342  }
1343  }
1344 }
1345 
1346 static void dequantize(SnowContext *s, SubBand *b, IDWTELEM *src, int stride){
1347  const int w= b->width;
1348  const int h= b->height;
1349  const int qlog= av_clip(s->qlog + b->qlog, 0, QROOT*16);
1350  const int qmul= qexp[qlog&(QROOT-1)]<<(qlog>>QSHIFT);
1351  const int qadd= (s->qbias*qmul)>>QBIAS_SHIFT;
1352  int x,y;
1353 
1354  if(s->qlog == LOSSLESS_QLOG) return;
1355 
1356  for(y=0; y<h; y++){
1357  for(x=0; x<w; x++){
1358  int i= src[x + y*stride];
1359  if(i<0){
1360  src[x + y*stride]= -((-i*qmul + qadd)>>(QEXPSHIFT)); //FIXME try different bias
1361  }else if(i>0){
1362  src[x + y*stride]= (( i*qmul + qadd)>>(QEXPSHIFT));
1363  }
1364  }
1365  }
1366 }
1367 
1368 static void decorrelate(SnowContext *s, SubBand *b, IDWTELEM *src, int stride, int inverse, int use_median){
1369  const int w= b->width;
1370  const int h= b->height;
1371  int x,y;
1372 
1373  for(y=h-1; y>=0; y--){
1374  for(x=w-1; x>=0; x--){
1375  int i= x + y*stride;
1376 
1377  if(x){
1378  if(use_median){
1379  if(y && x+1<w) src[i] -= mid_pred(src[i - 1], src[i - stride], src[i - stride + 1]);
1380  else src[i] -= src[i - 1];
1381  }else{
1382  if(y) src[i] -= mid_pred(src[i - 1], src[i - stride], src[i - 1] + src[i - stride] - src[i - 1 - stride]);
1383  else src[i] -= src[i - 1];
1384  }
1385  }else{
1386  if(y) src[i] -= src[i - stride];
1387  }
1388  }
1389  }
1390 }
1391 
1392 static void correlate(SnowContext *s, SubBand *b, IDWTELEM *src, int stride, int inverse, int use_median){
1393  const int w= b->width;
1394  const int h= b->height;
1395  int x,y;
1396 
1397  for(y=0; y<h; y++){
1398  for(x=0; x<w; x++){
1399  int i= x + y*stride;
1400 
1401  if(x){
1402  if(use_median){
1403  if(y && x+1<w) src[i] += mid_pred(src[i - 1], src[i - stride], src[i - stride + 1]);
1404  else src[i] += src[i - 1];
1405  }else{
1406  if(y) src[i] += mid_pred(src[i - 1], src[i - stride], src[i - 1] + src[i - stride] - src[i - 1 - stride]);
1407  else src[i] += src[i - 1];
1408  }
1409  }else{
1410  if(y) src[i] += src[i - stride];
1411  }
1412  }
1413  }
1414 }
1415 
1416 static void encode_qlogs(SnowContext *s){
1417  int plane_index, level, orientation;
1418 
1419  for(plane_index=0; plane_index<2; plane_index++){
1420  for(level=0; level<s->spatial_decomposition_count; level++){
1421  for(orientation=level ? 1:0; orientation<4; orientation++){
1422  if(orientation==2) continue;
1423  put_symbol(&s->c, s->header_state, s->plane[plane_index].band[level][orientation].qlog, 1);
1424  }
1425  }
1426  }
1427 }
1428 
1429 static void encode_header(SnowContext *s){
1430  int plane_index, i;
1431  uint8_t kstate[32];
1432 
1433  memset(kstate, MID_STATE, sizeof(kstate));
1434 
1435  put_rac(&s->c, kstate, s->keyframe);
1436  if(s->keyframe || s->always_reset){
1439  s->last_qlog=
1440  s->last_qbias=
1441  s->last_mv_scale=
1442  s->last_block_max_depth= 0;
1443  for(plane_index=0; plane_index<2; plane_index++){
1444  Plane *p= &s->plane[plane_index];
1445  p->last_htaps=0;
1446  p->last_diag_mc=0;
1447  memset(p->last_hcoeff, 0, sizeof(p->last_hcoeff));
1448  }
1449  }
1450  if(s->keyframe){
1451  put_symbol(&s->c, s->header_state, s->version, 0);
1452  put_rac(&s->c, s->header_state, s->always_reset);
1456  put_symbol(&s->c, s->header_state, s->colorspace_type, 0);
1457  put_symbol(&s->c, s->header_state, s->chroma_h_shift, 0);
1458  put_symbol(&s->c, s->header_state, s->chroma_v_shift, 0);
1460 // put_rac(&s->c, s->header_state, s->rate_scalability);
1461  put_symbol(&s->c, s->header_state, s->max_ref_frames-1, 0);
1462 
1463  encode_qlogs(s);
1464  }
1465 
1466  if(!s->keyframe){
1467  int update_mc=0;
1468  for(plane_index=0; plane_index<2; plane_index++){
1469  Plane *p= &s->plane[plane_index];
1470  update_mc |= p->last_htaps != p->htaps;
1471  update_mc |= p->last_diag_mc != p->diag_mc;
1472  update_mc |= !!memcmp(p->last_hcoeff, p->hcoeff, sizeof(p->hcoeff));
1473  }
1474  put_rac(&s->c, s->header_state, update_mc);
1475  if(update_mc){
1476  for(plane_index=0; plane_index<2; plane_index++){
1477  Plane *p= &s->plane[plane_index];
1478  put_rac(&s->c, s->header_state, p->diag_mc);
1479  put_symbol(&s->c, s->header_state, p->htaps/2-1, 0);
1480  for(i= p->htaps/2; i; i--)
1481  put_symbol(&s->c, s->header_state, FFABS(p->hcoeff[i]), 0);
1482  }
1483  }
1485  put_rac(&s->c, s->header_state, 1);
1487  encode_qlogs(s);
1488  }else
1489  put_rac(&s->c, s->header_state, 0);
1490  }
1491 
1493  put_symbol(&s->c, s->header_state, s->qlog - s->last_qlog , 1);
1494  put_symbol(&s->c, s->header_state, s->mv_scale - s->last_mv_scale, 1);
1495  put_symbol(&s->c, s->header_state, s->qbias - s->last_qbias , 1);
1497 
1498 }
1499 
1500 static void update_last_header_values(SnowContext *s){
1501  int plane_index;
1502 
1503  if(!s->keyframe){
1504  for(plane_index=0; plane_index<2; plane_index++){
1505  Plane *p= &s->plane[plane_index];
1506  p->last_diag_mc= p->diag_mc;
1507  p->last_htaps = p->htaps;
1508  memcpy(p->last_hcoeff, p->hcoeff, sizeof(p->hcoeff));
1509  }
1510  }
1511 
1513  s->last_qlog = s->qlog;
1514  s->last_qbias = s->qbias;
1515  s->last_mv_scale = s->mv_scale;
1518 }
1519 
1520 static int qscale2qlog(int qscale){
1521  return rint(QROOT*log(qscale / (float)FF_QP2LAMBDA)/log(2))
1522  + 61*QROOT/8;
1523 }
1524 
1525 static int ratecontrol_1pass(SnowContext *s, AVFrame *pict)
1526 {
1527  /* Estimate the frame's complexity as a sum of weighted dwt coefficients.
1528  * FIXME we know exact mv bits at this point,
1529  * but ratecontrol isn't set up to include them. */
1530  uint32_t coef_sum= 0;
1531  int level, orientation, delta_qlog;
1532 
1533  for(level=0; level<s->spatial_decomposition_count; level++){
1534  for(orientation=level ? 1 : 0; orientation<4; orientation++){
1535  SubBand *b= &s->plane[0].band[level][orientation];
1536  IDWTELEM *buf= b->ibuf;
1537  const int w= b->width;
1538  const int h= b->height;
1539  const int stride= b->stride;
1540  const int qlog= av_clip(2*QROOT + b->qlog, 0, QROOT*16);
1541  const int qmul= qexp[qlog&(QROOT-1)]<<(qlog>>QSHIFT);
1542  const int qdiv= (1<<16)/qmul;
1543  int x, y;
1544  //FIXME this is ugly
1545  for(y=0; y<h; y++)
1546  for(x=0; x<w; x++)
1547  buf[x+y*stride]= b->buf[x+y*stride];
1548  if(orientation==0)
1549  decorrelate(s, b, buf, stride, 1, 0);
1550  for(y=0; y<h; y++)
1551  for(x=0; x<w; x++)
1552  coef_sum+= abs(buf[x+y*stride]) * qdiv >> 16;
1553  }
1554  }
1555 
1556  /* ugly, ratecontrol just takes a sqrt again */
1557  coef_sum = (uint64_t)coef_sum * coef_sum >> 16;
1558  assert(coef_sum < INT_MAX);
1559 
1560  if(pict->pict_type == AV_PICTURE_TYPE_I){
1561  s->m.current_picture.mb_var_sum= coef_sum;
1563  }else{
1564  s->m.current_picture.mc_mb_var_sum= coef_sum;
1566  }
1567 
1568  pict->quality= ff_rate_estimate_qscale(&s->m, 1);
1569  if (pict->quality < 0)
1570  return INT_MIN;
1571  s->lambda= pict->quality * 3/2;
1572  delta_qlog= qscale2qlog(pict->quality) - s->qlog;
1573  s->qlog+= delta_qlog;
1574  return delta_qlog;
1575 }
1576 
1577 static void calculate_visual_weight(SnowContext *s, Plane *p){
1578  int width = p->width;
1579  int height= p->height;
1580  int level, orientation, x, y;
1581 
1582  for(level=0; level<s->spatial_decomposition_count; level++){
1583  for(orientation=level ? 1 : 0; orientation<4; orientation++){
1584  SubBand *b= &p->band[level][orientation];
1585  IDWTELEM *ibuf= b->ibuf;
1586  int64_t error=0;
1587 
1588  memset(s->spatial_idwt_buffer, 0, sizeof(*s->spatial_idwt_buffer)*width*height);
1589  ibuf[b->width/2 + b->height/2*b->stride]= 256*16;
1591  for(y=0; y<height; y++){
1592  for(x=0; x<width; x++){
1593  int64_t d= s->spatial_idwt_buffer[x + y*width]*16;
1594  error += d*d;
1595  }
1596  }
1597 
1598  b->qlog= (int)(log(352256.0/sqrt(error)) / log(pow(2.0, 1.0/QROOT))+0.5);
1599  }
1600  }
1601 }
1602 
1603 static int encode_frame(AVCodecContext *avctx, unsigned char *buf, int buf_size, void *data){
1604  SnowContext *s = avctx->priv_data;
1605  RangeCoder * const c= &s->c;
1606  AVFrame *pict = data;
1607  const int width= s->avctx->width;
1608  const int height= s->avctx->height;
1609  int level, orientation, plane_index, i, y;
1610  uint8_t rc_header_bak[sizeof(s->header_state)];
1611  uint8_t rc_block_bak[sizeof(s->block_state)];
1612 
1613  ff_init_range_encoder(c, buf, buf_size);
1614  ff_build_rac_states(c, 0.05*(1LL<<32), 256-8);
1615 
1616  for(i=0; i<3; i++){
1617  int shift= !!i;
1618  for(y=0; y<(height>>shift); y++)
1619  memcpy(&s->input_picture.data[i][y * s->input_picture.linesize[i]],
1620  &pict->data[i][y * pict->linesize[i]],
1621  width>>shift);
1622  }
1623  s->new_picture = *pict;
1624 
1625  s->m.picture_number= avctx->frame_number;
1626  if(avctx->flags&CODEC_FLAG_PASS2){
1627  s->m.pict_type =
1630  if(!(avctx->flags&CODEC_FLAG_QSCALE)) {
1631  pict->quality= ff_rate_estimate_qscale(&s->m, 0);
1632  if (pict->quality < 0)
1633  return -1;
1634  }
1635  }else{
1636  s->keyframe= avctx->gop_size==0 || avctx->frame_number % avctx->gop_size == 0;
1637  s->m.pict_type=
1639  }
1640 
1641  if(s->pass1_rc && avctx->frame_number == 0)
1642  pict->quality= 2*FF_QP2LAMBDA;
1643  if(pict->quality){
1644  s->qlog= qscale2qlog(pict->quality);
1645  s->lambda = pict->quality * 3/2;
1646  }
1647  if(s->qlog < 0 || (!pict->quality && (avctx->flags & CODEC_FLAG_QSCALE))){
1648  s->qlog= LOSSLESS_QLOG;
1649  s->lambda = 0;
1650  }//else keep previous frame's qlog until after motion estimation
1651 
1653 
1656  s->m.current_picture.f.pts = pict->pts;
1657  if(pict->pict_type == AV_PICTURE_TYPE_P){
1658  int block_width = (width +15)>>4;
1659  int block_height= (height+15)>>4;
1660  int stride= s->current_picture.linesize[0];
1661 
1662  assert(s->current_picture.data[0]);
1663  assert(s->last_picture[0].data[0]);
1664 
1665  s->m.avctx= s->avctx;
1666  s->m.current_picture.f.data[0] = s->current_picture.data[0];
1667  s->m. last_picture.f.data[0] = s->last_picture[0].data[0];
1668  s->m. new_picture.f.data[0] = s-> input_picture.data[0];
1669  s->m. last_picture_ptr= &s->m. last_picture;
1670  s->m.linesize=
1671  s->m. last_picture.f.linesize[0] =
1672  s->m. new_picture.f.linesize[0] =
1673  s->m.current_picture.f.linesize[0] = stride;
1675  s->m.width = width;
1676  s->m.height= height;
1677  s->m.mb_width = block_width;
1678  s->m.mb_height= block_height;
1679  s->m.mb_stride= s->m.mb_width+1;
1680  s->m.b8_stride= 2*s->m.mb_width+1;
1681  s->m.f_code=1;
1682  s->m.pict_type= pict->pict_type;
1683  s->m.me_method= s->avctx->me_method;
1684  s->m.me.scene_change_score=0;
1685  s->m.flags= s->avctx->flags;
1686  s->m.quarter_sample= (s->avctx->flags & CODEC_FLAG_QPEL)!=0;
1687  s->m.out_format= FMT_H263;
1688  s->m.unrestricted_mv= 1;
1689 
1690  s->m.lambda = s->lambda;
1691  s->m.qscale= (s->m.lambda*139 + FF_LAMBDA_SCALE*64) >> (FF_LAMBDA_SHIFT + 7);
1692  s->lambda2= s->m.lambda2= (s->m.lambda*s->m.lambda + FF_LAMBDA_SCALE/2) >> FF_LAMBDA_SHIFT;
1693 
1694  s->m.dsp= s->dsp; //move
1695  ff_init_me(&s->m);
1696  s->dsp= s->m.dsp;
1697  }
1698 
1699  if(s->pass1_rc){
1700  memcpy(rc_header_bak, s->header_state, sizeof(s->header_state));
1701  memcpy(rc_block_bak, s->block_state, sizeof(s->block_state));
1702  }
1703 
1704 redo_frame:
1705 
1706  if(pict->pict_type == AV_PICTURE_TYPE_I)
1708  else
1710 
1711  s->m.pict_type = pict->pict_type;
1712  s->qbias= pict->pict_type == AV_PICTURE_TYPE_P ? 2 : 0;
1713 
1715 
1717  for(plane_index=0; plane_index<3; plane_index++){
1718  calculate_visual_weight(s, &s->plane[plane_index]);
1719  }
1720  }
1721 
1722  encode_header(s);
1723  s->m.misc_bits = 8*(s->c.bytestream - s->c.bytestream_start);
1724  encode_blocks(s, 1);
1725  s->m.mv_bits = 8*(s->c.bytestream - s->c.bytestream_start) - s->m.misc_bits;
1726 
1727  for(plane_index=0; plane_index<3; plane_index++){
1728  Plane *p= &s->plane[plane_index];
1729  int w= p->width;
1730  int h= p->height;
1731  int x, y;
1732 // int bits= put_bits_count(&s->c.pb);
1733 
1734  if (!s->memc_only) {
1735  //FIXME optimize
1736  if(pict->data[plane_index]) //FIXME gray hack
1737  for(y=0; y<h; y++){
1738  for(x=0; x<w; x++){
1739  s->spatial_idwt_buffer[y*w + x]= pict->data[plane_index][y*pict->linesize[plane_index] + x]<<FRAC_BITS;
1740  }
1741  }
1742  predict_plane(s, s->spatial_idwt_buffer, plane_index, 0);
1743 
1744  if( plane_index==0
1745  && pict->pict_type == AV_PICTURE_TYPE_P
1746  && !(avctx->flags&CODEC_FLAG_PASS2)
1748  ff_init_range_encoder(c, buf, buf_size);
1749  ff_build_rac_states(c, 0.05*(1LL<<32), 256-8);
1751  s->keyframe=1;
1753  goto redo_frame;
1754  }
1755 
1756  if(s->qlog == LOSSLESS_QLOG){
1757  for(y=0; y<h; y++){
1758  for(x=0; x<w; x++){
1759  s->spatial_dwt_buffer[y*w + x]= (s->spatial_idwt_buffer[y*w + x] + (1<<(FRAC_BITS-1))-1)>>FRAC_BITS;
1760  }
1761  }
1762  }else{
1763  for(y=0; y<h; y++){
1764  for(x=0; x<w; x++){
1766  }
1767  }
1768  }
1769 
1770  /* if(QUANTIZE2)
1771  dwt_quantize(s, p, s->spatial_dwt_buffer, w, h, w, s->spatial_decomposition_type);
1772  else*/
1774 
1775  if(s->pass1_rc && plane_index==0){
1776  int delta_qlog = ratecontrol_1pass(s, pict);
1777  if (delta_qlog <= INT_MIN)
1778  return -1;
1779  if(delta_qlog){
1780  //reordering qlog in the bitstream would eliminate this reset
1781  ff_init_range_encoder(c, buf, buf_size);
1782  memcpy(s->header_state, rc_header_bak, sizeof(s->header_state));
1783  memcpy(s->block_state, rc_block_bak, sizeof(s->block_state));
1784  encode_header(s);
1785  encode_blocks(s, 0);
1786  }
1787  }
1788 
1789  for(level=0; level<s->spatial_decomposition_count; level++){
1790  for(orientation=level ? 1 : 0; orientation<4; orientation++){
1791  SubBand *b= &p->band[level][orientation];
1792 
1793  if(!QUANTIZE2)
1794  quantize(s, b, b->ibuf, b->buf, b->stride, s->qbias);
1795  if(orientation==0)
1796  decorrelate(s, b, b->ibuf, b->stride, pict->pict_type == AV_PICTURE_TYPE_P, 0);
1797  encode_subband(s, b, b->ibuf, b->parent ? b->parent->ibuf : NULL, b->stride, orientation);
1798  assert(b->parent==NULL || b->parent->stride == b->stride*2);
1799  if(orientation==0)
1800  correlate(s, b, b->ibuf, b->stride, 1, 0);
1801  }
1802  }
1803 
1804  for(level=0; level<s->spatial_decomposition_count; level++){
1805  for(orientation=level ? 1 : 0; orientation<4; orientation++){
1806  SubBand *b= &p->band[level][orientation];
1807 
1808  dequantize(s, b, b->ibuf, b->stride);
1809  }
1810  }
1811 
1813  if(s->qlog == LOSSLESS_QLOG){
1814  for(y=0; y<h; y++){
1815  for(x=0; x<w; x++){
1816  s->spatial_idwt_buffer[y*w + x]<<=FRAC_BITS;
1817  }
1818  }
1819  }
1820  predict_plane(s, s->spatial_idwt_buffer, plane_index, 1);
1821  }else{
1822  //ME/MC only
1823  if(pict->pict_type == AV_PICTURE_TYPE_I){
1824  for(y=0; y<h; y++){
1825  for(x=0; x<w; x++){
1826  s->current_picture.data[plane_index][y*s->current_picture.linesize[plane_index] + x]=
1827  pict->data[plane_index][y*pict->linesize[plane_index] + x];
1828  }
1829  }
1830  }else{
1831  memset(s->spatial_idwt_buffer, 0, sizeof(IDWTELEM)*w*h);
1832  predict_plane(s, s->spatial_idwt_buffer, plane_index, 1);
1833  }
1834  }
1835  if(s->avctx->flags&CODEC_FLAG_PSNR){
1836  int64_t error= 0;
1837 
1838  if(pict->data[plane_index]) //FIXME gray hack
1839  for(y=0; y<h; y++){
1840  for(x=0; x<w; x++){
1841  int d= s->current_picture.data[plane_index][y*s->current_picture.linesize[plane_index] + x] - pict->data[plane_index][y*pict->linesize[plane_index] + x];
1842  error += d*d;
1843  }
1844  }
1845  s->avctx->error[plane_index] += error;
1846  s->current_picture.error[plane_index] = error;
1847  }
1848 
1849  }
1850 
1851  update_last_header_values(s);
1852 
1853  ff_snow_release_buffer(avctx);
1854 
1856  s->current_picture.pict_type = pict->pict_type;
1857  s->current_picture.quality = pict->quality;
1858  s->m.frame_bits = 8*(s->c.bytestream - s->c.bytestream_start);
1859  s->m.p_tex_bits = s->m.frame_bits - s->m.misc_bits - s->m.mv_bits;
1862  s->m.current_picture.f.quality = pict->quality;
1863  s->m.total_bits += 8*(s->c.bytestream - s->c.bytestream_start);
1864  if(s->pass1_rc)
1865  if (ff_rate_estimate_qscale(&s->m, 0) < 0)
1866  return -1;
1867  if(avctx->flags&CODEC_FLAG_PASS1)
1868  ff_write_pass1_stats(&s->m);
1869  s->m.last_pict_type = s->m.pict_type;
1870  avctx->frame_bits = s->m.frame_bits;
1871  avctx->mv_bits = s->m.mv_bits;
1872  avctx->misc_bits = s->m.misc_bits;
1873  avctx->p_tex_bits = s->m.p_tex_bits;
1874 
1875  emms_c();
1876 
1877  return ff_rac_terminate(c);
1878 }
1879 
1880 static av_cold int encode_end(AVCodecContext *avctx)
1881 {
1882  SnowContext *s = avctx->priv_data;
1883 
1884  ff_snow_common_end(s);
1885  if (s->input_picture.data[0])
1886  avctx->release_buffer(avctx, &s->input_picture);
1887  av_free(avctx->stats_out);
1888 
1889  return 0;
1890 }
1891 
1892 #define OFFSET(x) offsetof(SnowContext, x)
1893 #define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
1894 static const AVOption options[] = {
1895  { "memc_only", "Only do ME/MC (I frames -> ref, P frame -> ME+MC).", OFFSET(memc_only), AV_OPT_TYPE_INT, { 0 }, 0, 1, VE },
1896  { NULL },
1897 };
1898 
1899 static const AVClass snowenc_class = {
1900  .class_name = "snow encoder",
1901  .item_name = av_default_item_name,
1902  .option = options,
1903  .version = LIBAVUTIL_VERSION_INT,
1904 };
1905 
1906 AVCodec ff_snow_encoder = {
1907  .name = "snow",
1908  .type = AVMEDIA_TYPE_VIDEO,
1909  .id = CODEC_ID_SNOW,
1910  .priv_data_size = sizeof(SnowContext),
1911  .init = encode_init,
1912  .encode = encode_frame,
1913  .close = encode_end,
1914  .long_name = NULL_IF_CONFIG_SMALL("Snow"),
1915  .priv_class = &snowenc_class,
1916 };
1917 #endif