Ice 3.4.2 Documentation

Lolce Manual 10
L1 ICE OVEIVIEW . o oot ettt et e e et e e e e e e e 12
11,1 1ce ArChItECIUNE . . . o 13
1.1 LA TErmMINOIOGY . . v v ettt et e e et e e e e e e 14
1.1.1.2 Slice (Specification Language for IC&) it e 21
1.1.1.3 Language Mappingso vttt e i e e e e e e e e e e 22
1.1.1.4 Client and SEerver StTUCIUIEttt et ettt e e e e e e 23
1.1.1.5 Overview of the Ice Protocol 25
L1.1.21C8 SEIVICES . . ottt ittt et et et e e e e 26
1.1.3 Architectural Benefits Of [Ce 28
1.2 Hello World APpPIICALION oot e e e e e e 30
1.2.1 Writing @ Slice Definition 31
1.2.2 Writing an Ice Application With CH+ . ..o 32
1.2.3 Writing an Ice Application with Java 39
1.2.4 Writing an Ice Application with C-Sharp e 45
1.2.5 Writing an Ice Application with Visual BasiCttt e e 50
1.2.6 Writing an Ice Application with ObJective-C e 56
1.2.7 Writing an Ice Application with Python 63
1.2.8 Writing an Ice Application With RUDY 68
1.2.9 Writing an Ice Application with PHP 71
1.3 The SHICE LANQUAGE ot ittt et et et e e e e e e e e e e e e e 74
1.3.1Slice Compilationo 75
1.3.2 SHiCe SOUICE FIlES . . . o 77
L33 LexiCal RUIES . .. 79
1.3 A MOTUIES . ..o 81
13,5 BaSIC TY PSS . .t ittt et e e 83
1.3.6 User-Defined TyYPeS . . oottt e e e e 85
1.3.6.1 ENUMETAtIONS . .. oottt et e e e e e e 86
1.3.6.2 SHUCIUIES . .ottt e et e e e e 87
1.3.6.3 SEUUENCES . . o ittt ettt e e e 89
1.3.6.4 DICHIONANIES . . oot ottt e e e e 91
1.3.6.5 Constants and LIteralst 93
1.3.7 Interfaces, Operations, and EXCEePLONS ot 96
L1.3.7. 1 OPEIatiONS . . .ot ettt e 97
1.3.7.2 USEr EXCEPLONS . . .ttt ittt e e et e e e 100
1.3. 7.3 RUN-TIME EXCEPLIONS . o .ottt ettt e e e e e e e e e e e e e e 104
L3 74 PrOXIES . . e 108
1.3.7.5 Interface INheritance 110
138 ClaSSES . o\ttt 117
1.3.8. 1 SIMPIE ClasSSES . . . ottt e e 118
1.3.8.2 Class INhertanCe 119
1.3.8.3 Class Inheritance SemantiCsttt e 121
1.3.8.4 Classes @S UNIONSottt ittt e e e e 123
1.3.8.5 Self-Referential Classes e 124
1.3.8.6 Classes VErsUS SIIUCIUIESo .ottt e ettt e e et e e e e e e e e 127
1.3.8.7 Classes With OPerationsottt e e e e e e e e e 128
1.3.8.8 Architectural Implications Of CIasSeSt 129
1.3.8.9 Classes Implementing INterfacest e e e 131
1.3.8.10 Class Inheritance LIMItations e 133
1.3.8.11 Pass-by-Value Versus Pass-by-Reference 134
1.3.8.12 Passing Interfaces by Value 136
1.3.9 Forward DeClarationsttt 137
L 3. 00 TYPE DS .ottt 138
1.3.11 Operations 0N ObJeCtot 139
13,02 LOCAI TYPES . ottt ittt et e e e e 141
1.3.13 Names @nd SCOPING . .« o vt ittt et e et e e e e e e e e e e e e e 142
1.3 14 Metadataot 148
1.3.15 Serializable ObJeCtSo 149
1.3.16 Deprecating Slice DefinitionNso 151
1.3.17 Using the Slice Compilers e e e e 152
1.3.18 Slice CheCKSUMS . . oottt e e et e e e e e e e e e e e e e 154
1.3.19 Generating Slice DOCUMENTALIONottt et e e e e e e e e e e e e e 155
1.3.20 SHiCE KEYWOIAS . . oottt et e e e e e e e e e e e e 161
1.3.21 Slice Metadata DIreClIVES ot 162
1.3.22 Slice for a Simple File System 167
1A CHt MaAPPING .« ottt e et e e e e 170
1.4.1 Client-Side Slice-to-C++ MapPiNgo ittt e e e e et e e e e e 171
1.4.1.1 C++ Mapping for ldentifiers 172
1.4.1.2 C++ Mapping for ModUIESo e 173
1.4.1.3 C++ Mapping for Built-In Types o 174
1.4.1.4 C++ Mapping for ENUMErationsttt e e e e 176
1.4.1.5 C++ Mapping for SIrUCIUIESo e e e e e e 177
1.4.1.6 C++ Mapping for SEQUENCES\ttt ettt e e e e e 181
1.4.1.7 C++ Mapping for DICtIONArieSo e 186
1.4.1.8 C++ Mapping for CONSIANTSottt e e e e e e 187

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

1.4.1.9 C++ Mapping for EXCEPLONSo 188
1.4.1.10 C++ Mapping for INterfaceso 192
1.4.1.11 C++ Mapping for OPerationSottt e e 200
1.4.1.12 C++ Mapping for Classesot 208
1.4.1.13 Smart Pointers for Classes i e 215
1.4.1.14 Asynchronous Method Invocation (AMI) in CH+ ... 227
1.4.1.15 slice2cpp Command-Line OPLIONSttt et e e e e 238
1.4.1.16 Using Slice ChecksUMS iN CH+ . ..o e e e e e e e e e e 243
1.4.1.17 Example of a File System Client in CH+ 244
1.4.2 Server-Side Slice-to-C++ MapPiNgo ottt et e et e 248
1.4.2.1 The Server-Side main FUNCLiON in CHt .. Lo 249
1.4.2.2 Server-Side C++ Mapping for Interfaces 260
1.4.2.3 Parameter Passing iN CH+ . ..o 263
1.4.2.4 Raising EXCEPLONS IN CHt Lo e e e 264
1.4.2.5 Object InCarnation iN CH+ L oL oo 265
1.4.2.6 Asynchronous Method Dispatch (AMD) in CH+ ...t e e e e e 269
1.4.2.7 Example of @ File System Serverin CH+ ... 273
1.4.3The C++ Utility LIDrary e e e e e e 287
1.4.3.1 The C++ AbstractMutex Class e e 288
1.4.3.2 The C++ Cache Template e e e 290
1.4.3.3 The C++ EXCEPLON ClIaSS . . . o\ttt ittt e e e e e e e e e e e e e e e 293
1.4.3.4 The C++ generateUUID FUNCHON oot e e e e e 294
1.4.3.5 The C++ Handle TEMPIAtet e e e 295
1.4.3.6 The C++ Handle Template Adaptors e e e 299
1.4.3.7 The C++ ScopedArray TempPlatet e e e e e e e 303
1.4.3.8 The C++ Shared and SimpleShared Classest e e 304
1.4.3.9The CH++ TIMeE Classottt it et e e e e e e 305
1.4.3.10 The C++ Timer and TimerTask Classes i e 309
1.4.3.11 Unicode and UTF-8 Conversion FUNCLIONS IN CH+ . ..o e e 311
1.4.3.12 Version INformation in CH+ . ..o o 312

1.5 JaVA MaPPING . o ottt e e e e e e 313
1.5.1 Client-Side Slice-t0-Java Mappingottt ettt e e e e 314
1.5.1.1 Java Mapping for Identifiers 315
1.5.1.2 Java Mapping for MOdUIESo 316
1.5.1.3 Java Mapping for BUilt-In TYPeSot 317
1.5.1.4 Java Mapping for ENUMEIatiONS ittt et e e e 318
1.5.1.5 Java Mapping for STFUCIUIESottt e e e e e e e e e e e e e e e e 319
1.5.1.6 Java Mapping for SEQUENCESttt et e 321
1.5.1.7 Java Mapping for DICHIONAIESt e e e 322
1.5.1.8 Java Mapping for CONSIANTSot e e 323
1.5.1.9 Java Mapping for EXCEPIONSottt 324
1.5.1.10 Java Mapping for Interfaces 328
1.5.1.11 Java Mapping for Operationsttt 336
1.5.1.12 Java Mapping for ClasSest 342
1.5.1.13 Serializable ObJECIS IN JAVA oottt 349
1.5.1.14 Customizing the Java Mappingttt e e e e 350
1.5.1.15 Asynchronous Method Invocation (AMI) IN Javat 359
1.5.1.16 Using the Slice Compiler for Javattt e 369
1.5.1.17 Using Slice CheCKkSUMS iN JAVAttt e e e e e e e e e e 372
1.5.1.18 Example of a File System Client in Javattt e e 373
1.5.2 Server-Side Slice-to-Java Mapping oottt e e 377
1.5.2.1 The Server-Side main Method in Javat e 378
1.5.2.2 Server-Side Java Mapping for Interfaces 383
1.5.2.3 Parameter PassSing iN JAVAottt ettt 386
1.5.2.4 Raising EXCEPLIONS IN JAVAo\ttt et e e e e e e e 387
1.5.25Tie ClassSeS iN JAVAottt et e e e e e e e e e 388
1.5.2.6 Object INCarNation iN JAVAttt it e e e e e 392
1.5.2.7 Asynchronous Method Dispatch (AMD) IN JaVAo i it e e 395
1.5.2.8 Example of a File System Serverin Javat 399
1.5.3The Java Utility Library 407
1.6 C-Sharp Mappingottt et e e e 410
1.6.1 Client-Side Slice-to-C-Sharp Mappingottt e e e 411
1.6.1.1 C-Sharp Mapping for [dentifiers 412
1.6.1.2 C-Sharp Mapping for ModUIESt e 413
1.6.1.3 C-Sharp Mapping for BUilt-In TYpesSt 414
1.6.1.4 C-Sharp Mapping for ENUMErationNSot e e e e e e 415
1.6.1.5 C-Sharp Mapping for StrUCIUIESot e e e e e 416
1.6.1.6 C-Sharp Mapping for SEQUENCESot e e e 421
1.6.1.7 C-Sharp Mapping for DICHONAIESttt e e e e e e e 427
1.6.1.8 C-Sharp Collection COMPAIISONottt ettt e et e e e e e e e e e 430
1.6.1.9 C-Sharp Mapping for CONSIANTSo\ttt et e e e e e e e e e 431
1.6.1.10 C-Sharp Mapping for EXCEPLIONSo e e e e 433
1.6.1.11 C-Sharp Mapping for INferfacest e e e 436
1.6.1.12 C-Sharp Mapping for Operations i e 442
1.6.1.13 C-Sharp Mapping for Classesttt e e e 448

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

1.6.1.14 Serializable Objects inN C-Sharp e 457
1.6.1.15 C-Sharp Specific Metadata DIreCtiVeS e 458
1.6.1.16 Asynchronous Method Invocation (AMI) in C-Sharp e 459
1.6.1.17 slice2cs Command-Line OPtiONS oot e 470
1.6.1.18 Using Slice Checksums in C-Sharpt e e e 471
1.6.1.19 Example of a File System Clientin C-Sharp i e 472
1.6.2 Server-Side Slice-to-C-Sharp Mappingo oottt e 476
1.6.2.1 The Server-Side main Method in C-Sharp e 477
1.6.2.2 Server-Side C-Sharp Mapping for Interfaces 482
1.6.2.3 Parameter Passing in C-Sharp 485
1.6.2.4 Raising EXCeptions iN C-Sharpt e e 486
1.6.2.5 Tie Classes iN C-SNarDot e e e e 487
1.6.2.6 Object Incarnation inN C-Sharpt e e 491
1.6.2.7 Asynchronous Method Dispatch (AMD) in C-Sharpt e 494
1.6.2.8 Example of a File System Serverin C-Sharp e 498
1.6.3 .NET Compact Framework SUPPOI e e e e e e e 506
1.6.4 The NET ULility LIDrary e e e e e e e e e e e e e e e 508
1.7 OBJECtiVE-C MAPPING - . o . ottt ettt et e e e e e e e e 510
1.7.1 Client-Side Slice-to-Objective-C Mappingottt e e e e e e e 511
1.7.1.1 Objective-C Mapping for ModUules 512
1.7.1.2 Objective-C Mapping for Identifiers e 514
1.7.1.3 Objective-C Mapping for Built-In TYPeSo e 516
1.7.1.4 Objective-C Mapping for ENUMErationNsottt e e e 517
1.7.1.5 Objective-C Mapping for SIrUCIUIESo o e e e e e 518
1.7.1.6 Objective-C Mapping for SEQUENCESttt it e e e e e e 521
1.7.1.7 Objective-C Mapping for DICHONArieS e 525
1.7.1.8 Objective-C Mapping for CONStANtSot e e 526
1.7.1.9 Objective-C Mapping for EXCEPLIONSo e 527
1.7.1.10 Objective-C Mapping for Interfaces 533
1.7.1.11 Objective-C Mapping for Operationsttt e e e e 537
1.7.1.12 Objective-C Mapping for Local Interfaces 546
1.7.1.13 Objective-C Mapping for ClasSesttt e e e e e 547
1.7.1.14 Objective-C Mapping for Interfaces by Value 556
1.7.1.15 Asynchronous Method Invocation (AMI) in Objective-C 557
1.7.1.16 slice2objc Command-Line OPptioNS 565
1.7.1.17 Example of a File System Client in Objective-C 566
1.7.2 Server-Side Slice-to-Objective-C Mappingo ottt e e e 570
1.7.2.1 The Server-Side main Function in Objective-C 571
1.7.2.2 Server-Side Objective-C Mapping for Interfaces e 574
1.7.2.3 Parameter Passing in ObJective-C 577
1.7.2.4 Raising EXceptions in ObJeCtive-C e 579
1.7.2.5 Object Incarnation in ObJeCtiVE-Co e 580
1.7.2.6 Example of a File System Serverin Objective-C 584

1.8 PYthOon Mapping . ..ottt e e e e 595
1.8.1 Client-Side Slice-to-Python Mappingot 596
1.8.1.1 Python Mapping for Identifiers 597
1.8.1.2 Python Mapping for ModUIES o 598
1.8.1.3 Python Mapping for BuUilt-In TYPeSot e e e e e 599
1.8.1.4 Python Mapping for ENUMErationSsot e e e e e e e e 600
1.8.1.5 Python Mapping for STrUCIUIESo oo e e e e 602
1.8.1.6 Python Mapping for SEQUENCESottt e e 603
1.8.1.7 Python Mapping for DICHIONAIESo e 606
1.8.1.8 Python Mapping for CONSANTSottt e e e e e e e e e 607
1.8.1.9 Python Mapping for EXCEPLIONSottt e e e 608
1.8.1.10 Python Mapping for INtErfacest e e 611
1.8.1.11 Python Mapping for Operations e e 616
1.8.1.12 Python Mapping for Classesottt e e e e e 621
1.8.1.13 Asynchronous Method Invocation (AMI) in Python 626
1.8.1.14 Code Generation in PYythOn 634
1.8.1.15 Using Slice Checksums in PYython e 642
1.8.1.16 Example of a File System Client in Python 643
1.8.2 Server-Side Slice-to-Python Mappingottt 647
1.8.2.1 The Server-Side main Program in Python 648
1.8.2.2 Server-Side Python Mapping for Interfaces i e e 653
1.8.2.3 Parameter Passing in PYython 655
1.8.2.4 Raising EXCeptions in PYythono 657
1.8.2.5 Object Incarnation in PYthOn 658
1.8.2.6 Asynchronous Method Dispatch (AMD) in Python 661
1.8.2.7 Example of a File System Serverin Python 665

1O RUDY Mapping ..ottt et e e e 673
1.9.1 Client-Side Slice-to-Ruby Mappingot 674
1.9.1.1 Ruby Mapping for ldentifiers 675
1.9.1.2 Ruby Mapping for MOUIESo e 676
1.9.1.3 Ruby Mapping for BUilt-In TYPESo 677
1.9.1.4 Ruby Mapping for ENUMETAtiONSot e e e e e e 678

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

1.9.1.5 Ruby Mapping for StrUCLUIES o e e e e e e e e 680
1.9.1.6 Ruby Mapping for SEQUENCESottt e e 681
1.9.1.7 Ruby Mapping for DICHONAIIESot e e e e e e 683
1.9.1.8 Ruby Mapping for CONStANtSot e 684
1.9.1.9 Ruby Mapping for EXCEPLIONS oottt e e e e 685
1.9.1.10 Ruby Mapping for Interfaces 688
1.9.1.11 Ruby Mapping for Operationsttt et e e e e e 693
1.9.1.12 Ruby Mapping for ClasSest e e 698
1.9.1.13 Code Generation in RUDY 705
1.9.1.14 The main Program in RUDY 710
1.9.1.15 Using Slice Checksums in RUDY o e e 715
1.9.1.16 Example of a File System Client in RUDY 716
110 PHP MaAPPING .o oottt et e e et e e e e e 720
1.10.1 Client-Side Slice-to-PHP Mappingttt e e e e 721
1.10.1.1 PHP Mapping for ldentifiers 722
1.10.1.2 PHP Mapping for MOAUIES e e e e e e 723
1.10.1.3 PHP Mapping for Built-In TYPESo e e 724
1.10.1.4 PHP Mapping for ENUMEratiONSottt e e e e e e e e e 725
1.10.1.5 PHP Mapping for SITUCLUIES oottt e e e e e e e e e e e e e e e e e 726
1.10.1.6 PHP Mapping for SEQUENCESottt ettt e e et e e e e e e 727
1.10.1.7 PHP Mapping for DICtIONAIIESottt e e e e e e e 728
1.10.1.8 PHP Mapping for CONStaNtSot e e e e e 729
1.10.1.9 PHP Mapping for EXCEPLIONS ottt ettt e e e e e e e e e e 730
1.10.1.10 PHP Mapping for Interfaces 733
1.10.1.11 PHP Mapping for Operationsttt ettt e e e e e e e e e 739
1.10.1.12 PHP Mapping for Classesttt e e e e 744
1.10.1.13 slice2php Command-Line OPtioNSo\ttt e 749
1.10.1.14 Application NOtes for PHP 750
1.10.1.15 Using Slice Checksums in PHP 756
1.10.1.16 Example of a File System Client in PHP 757
1.11 Properties and Configuration it e e e e 761
1.10.1 PropertieS OVEIVIEW . .ottt et et e e e e et e e e e e e e e e 762
1.11.2 Configuration File SYNtaX 764
1.11.3 Setting Properties on the Command LiNe 766
1.11.4 Using Configuration FIles 767
1.11.5 Alternate Property STOrESottt e e 769
1.11.6 Command-Line Parsing and Initialization 770
1.11.7 The Properties INterface e e 773
1.11.8 Reading Propertiest 775
1.11.9 Setting PrOPerti®S oottt et e e e 776
1.10.10 Parsing Propertiest 780
1.12 Threads and ConcurrenCy With CH+ L .. et e e e e e e 784
1.12.1 The CH+ MULEX ClaSSot ittt et e e e e e e e e e e e e e 785
1.12.2 The C++ RECMULEX Class i e e e 791
1.12.3 The CH+ MONITOr ClaSS . . . ottt ettt e e et e e e e e e e e 793
1.12.4The CH+ CoNd Classottt e e e e e e e e e 799
1.12.5 The CH++ Thread Classesttt e e e e e e e 802
1.12.6 Priority INVErSION iN Gt Lo e e e e 810
1.12.7 Portable Signal Handling in G+ 811
1.13 The lce Run Time in Detailo e e e e e e 812
1.13.1 COMMUNICAIONS . . o ottt ettt e e e et et e e e et et e e e e e e e e e 813
1.13.2 Communicator Initialization 816
1.13.3 ObJECE AQAPLEIS . . o o ittt ettt e e e 818
1.13.3.1 The ACtive Servant Mapt e e e e e e e e 819
1.13.3.2 Creating an Object AQapterot e e e e e 821
1.13.3.3 Servant Activation and Deactivation e 822
1.13.3.4 ObjeCt Adapter StalES . .. oottt it e e 824
1.13.3.5 Object Adapter ENAPOINISottt e e e e 827
1.13.3.6 Creating Proxies with an Object Adapter 831
1.13.3.7 Using Multiple Object Adaplerst e e e e 833
1.13.4 ObJeCt IAENLILY . . . oottt 834
1.13.5 The CUITENt ODJECTottt e e e e e e e e e e e e e e e e e 837
1.13.6 Servant LOCALOrSttt et e e e e 839
1.13.6.1 The ServantLocator Interface i 840
1.13.6.2 Threading Guarantees for Servant LOCatorst e 842
1.13.6.3 Registering @ Servant LOCAOrttt et 843
1.13.6.4 Servant Locator EXample 845
1.13.6.5 Using Identity Categories with Servant LOCatorsttt i 849
1.13.6.6 Using Cookies with Servant LOCatOrSttt e e e 851
1.13.7 Default SErVants 852
1.13.8 Server Implementation TEChNIQUESottt e e e e e e e e 856
1.13.9 Servant EVICIOrS 862
1.13.9.1 Implementing a Servant EVICtOr in CH+o 864
1.13.9.2 Implementing a Servant EVICIOr iN Javattt 870
1.13.9.3 Implementing a Servant Evictor in C-Sharpo 876

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

1.13.10 The Ice Threading Model e e 883
1.13.10.2 Thread POOISo 884
1.13.10.2 Object Adapter Thread POOISo e 886
1.13.10.3 Thread Pool Design Considerationsttt e e e 887
1.13.10.4 Nested INVOCALIONSot e e e e e 889
1.13.10.5 Thread Safety 891
1.13.10.6 Dispatching Invocations to User Threadsttt e 896

113,11 USING PrOXIES . . oottt et e e e e e e e e e e e 907
1.13.11.1 ObtaiNiNg PrOXIE®S oottt e it et e e e e e e 908
1.13.11.2 Proxy Methodso e e 911
1.13.11.3 Proxy ENAPOINS .. .ot e 915
1.13.11.4 Filtering Proxy ENAPOINISot e 916
1.13.11.5 Proxy Defaults and OVerrides e 917
1.13.11.6 Proxy and ENdpoint SYNTAXttt et e e e 918

1.13.12 ReQUESE CONEXES . . o oot et et et e e e e e 924
1.13.12.1 EXpliCit REQUESE CONIEXIS . . o vttt ittt e et e e e e e e e e 925
1.13.12.2 Per-Proxy ReqUeSst CONtEXESttt e e e e e e e 927
1.13.12.3 Implicit REQUESE CONIEXES . . . o . ottt et e e e e e e e e e e e e e 928
1.13.12.4 Design Considerations for Request CONtexXtS it 930

1.13.13 ConNECtioN TIMEOULS . . . ot ittt ettt e e e et e e e e e e e e e e e e 932

1.13.14 Oneway INVOCALIONS ottt e ettt e e e e e e e e e 934

1.13.15 Datagram INVOCALIONSottt ettt e e et et e e e e e 937

1.13.16 Batched INVOCAtioNSo 939

O I o 1o £ 941
1.13.17.1 Locator Semantics for ClIeNtS 942
1.13.17.2 Locator Configuration for a ClIent e 946
1.13.17.3 Locator SEmMantiCs for SEIVEIS o 947
1.13.17.4 Locator Configuration for @ SEIVEr e 948

1.13.18 Administrative Facility 950
1.13.18.1 The @admin ObJECEottt e e e e e e 951
1.13.18.2 The Administrative Object Adapter e 952
1.13.18.3 Using the admin Object e e 953
1.13.18.4 The Process FacCet 955
1.13.18.5 The Properties Facet e e e 958
1.13.18.6 Filtering Administrative FaCetS 959
1.13.18.7 Custom Administrative FaCetst 960
1.13.18.8 Security Considerations for Administrative Facets i 961

1.13.19 Logger Facility 962
1.13.19.1 The Default LOGQerottt e e e e e e e e e e e e e e 963
1.13.19.2 CUSIOM LOQOEIS . o o ettt e et e e e e e e e e e e e e 964
1.13.19.3 BUIlt-iN LOQOEIS . . ottt ettt e e e e e 965
1.13.19.4 L0ogger PlUG-iNS . . .ot 966
1.13.19.5 The Per-ProCess LOgOerttt e e e e e 970
1.13.19.6 C++ Logger Utility ClasSeSttt e e e 971

1.13.20 Stats FacCility oo 973

1.13.21 LOCALION TFANSPAIEINCY . . o . v ottt et et e et et e e e e e e e e e e e e e e e e e 975

1.13.22 AUtOMALIC REtIIES . . oo 977

1.13.23 DiSPatCh INterCEPIOrS . .t ittt e e e e 981

1.13.24 C++ Strings and Character ENCOdiNgo ot 985
1.13.24.1 Installing String CONVEIEIS ottt ettt e et e e e e e e e e 986
1.13.24.2 UTF-8 CONVEISION . . o\ttt et it et e e e e e e e e e e e et e e e e e e e e 987
1.13.24.3 String Parametersin Local Calls 988
1.13.24.4 BUilt-in StriNg CONVEIEIS ottt ittt e et et e e e e e e e e e e e e e 989
1.13.24.5 String Conversion Convenience FUNCLONSottt e e e 990
1.13.24.6 The iconv String CONVEIET ottt ettt e e e et e e e e e e 991
1.13.24.7 The Ice String Converter PIUG-IN e 992
1.13.24.8 Custom String Converter PlUg-iNSt e e e 993

1.13.25 Plug-in FaCility . ..o 994
1.03.25. 0 PIUG-IN AP o 995
1.13.25.2 Plug-in Configurationttt e e e 997
1.13.25.3 Advanced PlUg-in TOPICSottt ittt e et e e e e e e 998

1.13.26 Custom Class LOAAEISottt et 1000

1.14 Facets and VErSIONING . . .o oottt et e e e e e e e e e e e e 1001

I Vo = Ao = o] £ 1002

1.14.2 The Versioning Problem 1008

1.14.3 Versioning With Facets 1012

1.5 Object Life CYCleo 1016

1.15.1 Understanding Object Life CyCle e 1017

1.15.2 Object Existence and NON-EXISIENCEo e e e e 1018

1.15.3 Life Cycle of Proxies, Servants, and Ice ObJECtS i e 1021

1.15.4 ObJECE CreatiOn . . . v ittt ettt e e e e et e e e 1023

1.15.5 ObJeCt DESIIUCLION ottt e et e e e e e e e e e 1027
1.15.5.1 Idempotency and Life Cycle Operationsttt e e e e e 1029
1.15.5.2 Implementing @ destroy OPerationttt 1030
1.15.5.3 Cleaning Up a Destroyed Servantttt e e 1032

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

1.15.5.4 Life Cycle and Collection Operationst e 1034
1.15.5.5 Life Cycle and Normal Operationsttt e e e e e 1038
1.15.6 Removing Cyclic DEPENAENCIES oottt e e e e e e e e 1042
1.15.6.1 Acquiring Locks without DeadloCKS e 1043
1.15.6.2 Reaping ObJeCtSottt e 1044
1.15.7 Object Identity and UNIQUENESS oottt et e e e e e e e e e e e 1048
1.15.8 Object Life Cycle for the File System Application e 1050
1.15.8.1 Implementing Object Life Cycle in CH+ 1052
1.15.8.2 Implementing Object Life Cycle in Java e 1059
1.15.9 Avoiding Server-Side Garbage 1067
1.16 DYNAMIC IC8 o .o oot 1074
1.16.1 Streaming INterfaCes 1075
1.16.1.1 C++ Streaming INterfaces 1076
1.16.1.1.1 The InputStream Interface in CH++ e 1077
1.16.1.1.2 The OutputStream Interface in CH+ e e 1083
1.16.1.1.3 Intercepting Object Insertion and Extraction in C++ i e 1088
1.16.1.1.4 Intercepting User Exception Insertion in C++ e 1089
1.16.1.2 Java Streaming INterfaces 1090
1.16.1.2.1 The InputStream Interface iN Java e 1091
1.16.1.2.2 The OutputStream Interface in Javat e 1095
1.16.1.2.3 Stream Helper FUNCLONS iNJAVA oottt e e e e e e e e 1098
1.16.1.2.4 Intercepting Object Insertion and Extraction inJavat 1100
1.16.1.2.5 Intercepting User Exception INSertion in Javattt 1101
1.16.1.3 C-Sharp Streaming INterfaces 1102
1.16.1.3.1 The InputStream Interface in C-Sharp i e e e e 1103
1.16.1.3.2 The OutputStream Interface in C-Sharp e e 1107
1.16.1.3.3 Stream Helper FuNctions in C-Sharpt e 1110
1.16.1.3.4 Intercepting Object Insertion and Extractionin C-Sharp 1113
1.16.1.3.5 Intercepting User Exception Insertion in C-Sharp i 1114

1.16.2 Dynamic Invocation and DIiSpatCh 1115
1.16.2.1 Dynamic Invocation and Dispatch OVEIVIEW it e 1116
1.16.2.2 Dynamic Invocation and Dispatch in CH++ e 1119
1.16.2.3 Dynamic Invocation and Dispatch in Java 1124
1.16.2.4 Dynamic Invocation and Dispatch in C-Sharp 1128
1.16.3 Asynchronous Dynamic Invocation and DispatCh 1132
1.16.3.1 Asynchronous Dynamic Invocation and Dispatch in C++ 1133
1.16.3.2 Asynchronous Dynamic Invocation and Dispatch in Java 1138
1.16.3.3 Asynchronous Dynamic Invocation and Dispatch in C-Sharp 1141
1.17 Connection ManagemMENTttt ettt e e e e e 1144
1.17.1 Connection Establishment 1145
1.17.2 Active Connection Managementttt et e e e 1148
1.17.3 USING CONNECLIONS . . . oot ittt et e et e e e e e e e e e e e e e e e e e 1149
1.17.4 ConneCtion CIOSUIE ottt et e e e e e e et e e e e e e e 1155
1.17.5 Bidirectional CONNECLIONSttt et e et e e e e e e 1156
1,18 The 18 ProtoCOl e 1159
1.18.1 Data ENCOTING . . . o oottt et ettt e e e e e e e e 1160
1.18.1.1 Basic Data ENCOOINGo o e 1161
1.18.1.2 Data Encoding for EXCEPLIONSttt e 1164
1.18.1.3 Data Encoding for ClasSesttt e e 1166
1.18.1.3.1 Data Encoding for Class TYPe IDSottt e e e 1167
1.18.1.3.2 Simple Example of Class ENCOAINGottt 1168
1.18.1.3.3 Data Encoding for Class Graphst 1171
1.18.1.4 Data Encoding for INterfacest 1176
1.18.1.5 Data Encoding for ProXies 1177
1.18.2 ProtoCOl MESSAGES . . o . vttt ittt e e e e e e e 1180
1.18.3 Protocol COMPIESSIONottt et et e e e e e e e e e 1186
1.18.4 Protocol and ENCOdiNg VerSiOoNSottt e e e 1187
L9 ICEGHIA o e ettt e e 1189
1.19.1 1ceGrid ArChItECIUIE oot e e e e e e 1191
1.19.2 Getting Started With ICEGIA 1193
1.19.3 Using IceGrid Deploymento 1197
1.19.4 Well-Known ODJECES . .. oottt et e e e e e e e e 1203
1.19.51ceGrid TeMPIAtES oottt e 1209
1.19.6 IceBox Integration With ICEGIIA i e e e 1213
1.19.7 Object Adapter RepliCatioN e 1216
1.19.8 Load BalanCingt 1219
1.19.9 Resource Allocation using ICEGIA SESSIONSttt 1221
1.19.10 Registry RepliCAtiON 1226
1.19.11 Application DIStriDULION oo e 1230
1.19.12 IceGrid AdMINIStrative SESSIONSottt e e e 1236
1.19.13 Glacier2 Integration With ICEGIITt 1242
1.19.14 IceGrid XML RefErenCe o 1245
1.19.14.1 Adapter DescCriptor ElemMENto 1246
1.19.14.2 Allocatable Descriptor Element 1248
1.19.14.3 Application Descriptor Element 1249

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

1.19.14.4 DbENV Descriptor Elemento 1250
1.19.14.5 DbProperty Descriptor EIEmeNnt 1251
1.19.14.6 Description Descriptor EIement 1252
1.19.14.7 Directory DescCriptor Element 1253
1.19.14.8 Distrib Descriptor EIemMeNnto 1254
1.19.14.9 IceBox Descriptor EIemento 1255
1.19.14.10 IceGrid Descriptor Element 1256
1.19.14.11 Load-Balancing Descriptor Element 1257
1.19.14.12 Log Descriptor EIEMENTo 1258
1.19.14.13 Node Descriptor Element 1259
1.19.14.14 Object Descriptor EIEMENt 1260
1.19.14.15 Parameter Descriptor Element 1261
1.19.14.16 Properties Descriptor Element 1262
1.19.14.17 Property Descriptor EIEMENt 1263
1.19.14.18 Replica-Group Descriptor Element 1264
1.19.14.19 Server DescCriptor ElemeNnt e 1265
1.19.14.20 Server-Instance Descriptor Element 1267
1.19.14.21 Server-Template Descriptor Element 1268
1.19.14.22 Service Descriptor EIement 1269
1.19.14.23 Service-Instance Descriptor Element 1270
1.19.14.24 Service-Template Descriptor Element 1271
1.19.14.25 Variable Descriptor Element 1272
1.19.14.26 Using Command Line Options in DESCPIOrSttt 1273
1.19.14.27 Setting Environment Variables in DeSCHPIOrSot 1274
1.19.15 Using Descriptor Variables and Parametersottt e e 1276
1.19.16 IceGrid Property Set SEMANLICS oottt et e e e 1281
1.19.17 IceGrid XML FAUIESttt et et e e e e e e e e e 1285
1.19.18 IceGrid Server REfErenCe 1287
1.19.08. 0 ICegriaregistry . . .ot e 1288
1.19.18.20CegridnNOOeot e 1290
1.19.18.3 Well-Known Registry ObJeCtS i 1292
1.19.18.4 IceGrid Persistent DAtattt 1293
1.19.18.5 Promoting a RegiStry SIaVve 1295
1.19.19 IceGrid and the Administrative Facility 1296
1.19.20 Securing ICEGIIAot e 1302
1.19.21 IceGrid Administrative ULIIItIES 1306
1.19.22 IceGrid Server ACHIVALION 1311
1.19.23 IceGrid TroubleshOotingo 1314
120 FrEEZE . . .ot 1316
1.20.1 Freeze EVICIOrS . .. oot e e 1317
1.20.1.1 Freeze EVICIOr CONCEPIS . ..t vttt ettt e e et e et e e e et e e e e 1318
1.20.1.2 Background Save EVICIOr 1323
1.20.1.3 Transactional EVICIOr e 1326
1.20.1.4 Using a Freeze Evictor in the File System Server 1330
1.20.1.4.1 Adding an Evictor to the C++ File System Server 1332
1.20.1.4.2 Adding an Evictor to the Java File System Server 1340

1.20.2 FIrEEZE MaAPS . o o ettt e e et e e 1347
1.20.2.1 Freeze Map CONCEPIS . . .ottt e ettt et e e e e et e e 1348
1.20.2.2 Using @a Freeze Map in CHt Lo oo 1355
1.20.2.3 Using @ Freeze Map iN JAVAottt e 1363
1.20.2.4 Using a Freeze Map in the File System Server e 1375
1.20.2.4.1 Adding a Freeze Map to the C++ File System Server i 1377
1.20.2.4.2 Adding a Freeze Map to the Java File System Server 1387

1.20.3 Freeze Catalogsottt ittt 1396
1.20.4 Backing Up Freeze Databasesttt e e e et e 1398
B R =T =3 T) P 1399
1.21.1 Migrating @ Freeze Databasettt e 1400
1.21.1.1 Automatic Database MIgrationt 1401
1.21.1.2 Custom Database Migrationttt e e 1404
1.21.1.3 FreezeScript Transformation XML Reference e 1408
1.21.1.4 Using transformabo e 1414
1.21.2 Inspecting @ Freeze Databasettt 1420
1.20.2. 0 USiNg dumpdb ..o e 1421
1.21.2.2 FreezeScript Inspection XML Reference i e e e e 1427
1.21.3 FreezeScript Descriptor EXpression LANQUAGE oottt i e et e e e et e e e 1432
L 22 1B S S o it 1435
122, L USING ICBS S . .ttt 1437
1.22.2 Configuring [CES So 1440
1.22.3 Programming ICES Sot 1449
1.22.3.1 Programming [CESSL IN CHt L ..o e 1450
1.22.3.2 Programming ICESSL N Javat 1455
1.22.3.3 Programming [CeSSL IN INET 1459
1.22.4 AdVaNCed ICES S TOPICS . vttt it ettt ettt e e e e e e e e e 1463
1.22.5 Setting up a Certificate AUtNOKILYo 1470
123 GIACIEr2 . . ot 1474

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

1.23.1 Common Firewall Traversal ISSUES e e 1475
1.23.2 AbOUL GIACIEI2 . . . oot e e 1476
1.23.3 HOW Glacier2 WOrKS . ..o 1477
1.23.4 Getting Started with GIaCier2 1478
1.23.5 Callbacks through GIacier2 e e 1483
1.23.6 Glacier2 Helper ClIasSeSttt e et e e e e e e 1486
1.23.7 Securing @ GIaCier2 ROULETottt e e e e e et e e e 1492
1.23.8 Glacier2 Session Managementttt i e e e e 1498
1.23.9 Dynamic Request Filtering with Glacier2 1501
1.23.10 Glacier2 Request BUIferingo e 1503
1.23.11 How Glacier2 uses Request CONEXESttt e e e e e e e e 1504
1.23.12 Configuring Glacier2 behind an External Firewall 1506
1.23.13 Advanced Glacier2 Client Configurations i e 1507
1.23.14 IceGrid and Glacier2 Integrationt 1508

L 24 1CEBOX . .o e 1510
1.24.1 DeVeloping ICEBOX SEIVICES . . . vttt ittt et e e e e e e e e 1511
1.24.2 Configuring ICEBOX SEIVICES\ttt et e e et e e e e e e e e e 1515
1.24.3 Starting the [CeBOX SeIVer 1518
1.24.4 IceBox ADMINISIration 1520
72 (ot} (o T o P 1524
1.25.1 1CeSIOrM CONCEPLS . . . oot ittt et e e e e e e e e e e 1525
1.25.2 1ceStorm INterfaceso 1527
1,25, 3 USING ICB S OMM . oottt e 1529
1.25.3.1 Implementing an IceStorm Publisher 1530
1.25.3.2 Using an IceStorm Publisher Object e 1534
1.25.3.3 Implementing an IceStorm Subscriber 1536
1.25.3.4 Publishing to a Specific SUbSCriber 1541

1.25.4 Highly Available 1CeStorm 1543
1.25.5 [ceStorm AdmINIStratiOno 1547
1.25.6 TOPIC FEABIAtiON oottt e e e e e e 1549
1.25.7 IceStorm Quality Of ServICE 1553
1.25.8 1ceStorm Delivery MOOESottt e e e e e 1555
1.25.9 Configuring ICESIOMMo e e 1557
126 ICEPatCR . 1561
1.26.1 USINg iCepatCh2Call 1562
1.26.2 Running the ICEPAtCh2 Server 1564
1.26.3 Running the IcePatCh2 Client e e 1565
1.26.4 IcePatch2 Object Identitieso 1567
1.26.5 IcePatch2 Client Utility LIDraryo e e e e e e e 1568
1.27 Property RefereNCe 1571
1.27.1 Ice Configuration PropertYt e 1572
1.27.2 1Ce TraCe PrOpPertiESo ittt e e e e e e e 1573
1.27.3 1ce Warning Propertieso e 1576
1.27.4 Ice Object Adapter PrOPeIti®Sttt e e e e e e e 1578
1.27.5 Ice AdmInistrative Propertiesottt e e e e 1582
1.27.6 1C€ PIUG-IN Properti®Sottt et et e e e e e e 1584
1.27.7 Ice Thread Pool Properties e e e e e 1587
1.27.8 Ice Default and OVerride PropertieSttt ettt e e e e 1590
1.27.9 1Ce ProxXy Propertieso e e 1594
1.27.10 Ice Transport ProPertiESottt e e e 1597
1.27.11 Ice MisCellaneous Properties ittt et e e e e 1600
1.27.02 1CESSL PrOPerti®S . . oo ottt ettt e e e 1608
1.27.13 1CEBOX PrOPeItiES . . oo ittt 1620
1.27.14 1ceBOXAAMIN PrOPEItiES . . o\ ottt et e e e e e e e 1623
1.27.15 1CEGHIA PrOPEItIES . . o .ttt ittt e e e et e e e e e e e 1624
1.27.16 IceGrid Administrative Client Propertiest e 1639
127,17 1CES OIM PrOPEIIES . . o ottt e e e 1641
1.27.18 GIACIEr2 PrOPerti®S . . . o .t ittt et e e et e e e e e e e 1649
1.27.19 Fre@ze PrOPeItiES . . oo ittt ittt e et e e e e e 1659
1.27.20 1CPAtCN2 PropertiesSottt e 1665
1.28 WINAOWS SEIVICES . . .ottt et ettt e e e e e e e e e e e e e 1667
1.28.1 Installing @ WINAOWS SEIVICE o\ttt et ettt e e e e e e e e e e e 1668
1.28.2 Using the Ice Service INStaller 1669
1.28.3 Manually Installing @ SeIVICEt e e 1672
1.28.4 Troubleshooting WINAOWS SEIVICESottt e e e e e e e e e e 1678
1.29 Binary DistriDULIONS oo 1680
1.29.1 Ice Developer KitSo e 1681
1.29.2 Guidelines for Distributing Ice Applications 1682
1.30 Deprecated AMI Mappingo ottt et et e e e e e e e e 1685
1.30.1 Overview of Deprecated AMI Mappingottt e e e e e e 1686
1.30.2 Deprecated AMI Language MappingsSv vt u ittt e et e e e e 1690
1.30.3 Advanced Topics for Deprecated AMI Mappingttt e 1697
131 IDE INtEgrationottt ettt e e e 1704
1.31. 1 Visual Studio Add-iN . ..o 1705
1.31.2 ECliPSe PlIUG-IN oo 1708

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

1.31.3 XCOAE PlUG-IN . oo 1710

2. REIEASE NOES . . ottt 1712
2.1 New Features iN 18 3.4 ... 1713
2.2 Upgrading your Application from €8 3.4.X . . . oot 1719
2.3 Upgrading your Application from [Ce 3.3 1722
2.4 Upgrading your Application from Ice 3.2 or Earlier Releases 1737
2.5 Platform NOtes for ICe B.4.2 1743
2.6 KNnown Problems in [Ce 3.4, . . 1745
2.7 Using the Windows Binary Distribution 1747
2.8 UsINg the LINUX RPMSo e e e e e e e e 1756
2.9 Using the Mac OS X Binary Distribution 1761
2.10 Using the Solaris Binary DiStriDULIONSot e e e e e e e 1764

Copyright © 2011, ZeroC, Inc.

10

Ice 3.4.2 Documentation

lce Manual

Distributed Programming with Ice

The Internet Communications Engine (Ice) is a modern object-oriented toolkit that enables you to build distributed applications with minimal
effort. Ice allows you to focus your efforts on your application logic, and it takes care of all interactions with low-level network programming
interfaces. With Ice, there is no need to worry about details such as opening network connections, serializing and deserializing data for
network transmission, or retrying failed connection attempts.

The main design goals of Ice are:

Provide an object-oriented middleware platform suitable for use in heterogeneous environments.

Provide a full set of features that support development of realistic distributed applications for a wide variety of domains.
Avoid unnecessary complexity, making the platform easy to learn and to use.

Provide an implementation that is efficient in network bandwidth, memory use, and CPU overhead.

Provide an implementation that has built-in security, making it suitable for use over insecure public networks.

In simpler terms, the Ice design goals could be stated as "Let's build a powerful middleware platform that makes the developer's life easier.

) The acronym "Ice" is pronounced as a single syllable, like the word for frozen water.

Getting Help with Ice

If you have a question and you cannot find an answer in this manual, you can visit our developer forums to see if another developer has
encountered the same issue. If you still need help, feel free to post your question on the forum, which ZeroC's developers monitor regularly.
Note, however, that we can provide only limited free support in our forums. For guaranteed response and problem resolution times, we
highly recommend purchasing commercial support.

Feedback about the Manual

We would very much like to hear from you in case you find any bugs (however minor) in this manual. We also would like to hear your opinion
on the contents, and any suggestions as to how it might be improved. You can contact us via e-mail at icebook@zeroc.com.

Legal Notices

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those
designations appear in this book and ZeroC was aware of the trademark claim, the designations have been printed in initial caps or all caps.
The authors and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of any kind and
assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising
out of the use of the information or programs contained herein.

License

This manual is provided under one of two licenses, whichever you prefer:

® Creative Commons Attribution-No Derivative Works 3.0 Unported License.
This license does not permit you to make modifications.

® Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported License.
This license permits you to make modifications. If you distribute this manual under this license, you must prominently include the
following text:

Copyright © 2011, ZeroC, Inc.

http://www.zeroc.com/forums
http://www.zeroc.com/support.html
http://creativecommons.org/licenses/by-nd/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/

11

Ice 3.4.2 Documentation

This document is derived from ZeroC's Ice Manual, Copyright © ZeroC, Inc. 2003-2011.
You can find the latest version of this document at:
http://doc.zeroc.com/display/Ice/lce+Manual

Copyright

Copyright © 2003-2011 by ZeroC, Inc.
mailto:info@zeroc.com
http://www.zeroc.com

Copyright © 2011, ZeroC, Inc.

http://doc.zeroc.com/display/Ice/Ice+Manual
http://www.zeroc.com

12

Ice 3.4.2 Documentation

Ice Overview

The following topics provide a high-level overview of Ice:

® |ce Architecture introduces fundamental concepts and terminology, and outlines how Slice definitions, language mappings, and the
Ice run time and protocol work in concert to create clients and servers.

® |ce Services briefly presents the object services provided by Ice.

® Architectural Benefits of Ice outlines the benefits that result from the Ice architecture.

Topics

® |ce Architecture
® |ce Services
® Architectural Benefits of Ice

Copyright © 2011, ZeroC, Inc.

13

Ice 3.4.2 Documentation

Ice Architecture

Ice is an object-oriented middleware platform. Fundamentally, this means that Ice provides tools, APIs, and library support for building
object-oriented client-server applications. Ice applications are suitable for use in heterogeneous environments: client and server can be
written in different programming languages, can run on different operating systems and machine architectures, and can communicate using
a variety of networking technologies. The source code for these applications is portable regardless of the deployment environment.

Topics:

Terminology

Slice (Specification Language for Ice)
Language Mappings

Client and Server Structure

Overview of the Ice Protocol

See Also

® |ce Services
® Architectural Benefits of Ice

Copyright © 2011, ZeroC, Inc.

14

Ice 3.4.2 Documentation

Terminology

Every computing technology creates its own vocabulary as it evolves. Ice is no exception. However, the amount of new jargon used by Ice is
minimal. Rather than inventing new terms, we have used existing terminology as much as possible. If you have used another middleware
technology in the past, you will be familiar with much of what follows. (However, we suggest you at least skim the material because a few
terms used by Ice do differ from the corresponding terms used by other middleware.)

On this page:

Clients and Servers

Ice Objects

Proxies

Stringified Proxies

Direct Proxies

Indirect Proxies

Direct Versus Indirect Binding
Fixed Proxies

Routed Proxies

Replication

Replica Groups

Servants

At-Most-Once Semantics
Synchronous Method Invocation
Asynchronous Method Invocation
Asynchronous Method Dispatch
Oneway Method Invocation
Batched Oneway Method Invocation
Datagram Invocations

Batched Datagram Invocations
Run-Time Exceptions

User Exceptions

Properties

Clients and Servers

The terms client and server are not firm designations for particular parts of an application; rather, they denote roles that are taken by parts of
an application for the duration of a request:

® Clients are active entities. They issue requests for service to servers.
® Servers are passive entities. They provide services in response to client requests.

Frequently, servers are not "pure" servers, in the sense that they never issue requests and only respond to requests. Instead, servers often
act as a server on behalf of some client but, in turn, act as a client to another server in order to satisfy their client's request.

Similarly, clients often are not "pure" clients, in the sense that they only request service from an object. Instead, clients are frequently
client-server hybrids. For example, a client might start a long-running operation on a server; as part of starting the operation, the client can
provide a callback object to the server that is used by the server to notify the client when the operation is complete. In that case, the client
acts as a client when it starts the operation, and as a server when it is notified that the operation is complete.

Such role reversal is common in many systems, so, frequently, client-server systems could be more accurately described as peer-to-peer
systems.

Ice Objects

An Ice object is a conceptual entity, or abstraction. An Ice object can be characterized by the following points:

® An Ice object is an entity in the local or a remote address space that can respond to client requests.

® Asingle Ice object can be instantiated in a single server or, redundantly, in multiple servers. If an object has multiple simultaneous
instantiations, it is still a single Ice object.

® Each Ice object has one or more interfaces. An interface is a collection of named operations that are supported by an object. Clients
issue requests by invoking operations.

® An operation has zero or more parameters as well as a return value. Parameters and return values have a specific type. Parameters
are named and have a direction: in-parameters are initialized by the client and passed to the server; out-parameters are initialized
by the server and passed to the client. (The return value is simply a special out-parameter.)

® An Ice object has a distinguished interface, known as its main interface. In addition, an Ice object can provide zero or more alternate
interfaces, known as facets. Clients can select among the facets of an object to choose the interface they want to work with.

® Each Ice object has a unique object identity. An object's identity is an identifying value that distinguishes the object from all other

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

objects. The Ice object model assumes that object identities are globally unique, that is, no two objects within an Ice communication
domain can have the same object identity.

In practice, you need not use object identities that are globally unique, such as UUIDs, only identities that do not clash with any
other identity within your domain of interest. However, there are architectural advantages to using globally unique identifiers, which
we explore in our discussion of object life cycle.

Proxies

For a client to be able to contact an Ice object, the client must hold a proxy for the Ice object. A proxy is an artifact that is local to the client's
address space; it represents the (possibly remote) Ice object for the client. A proxy acts as the local ambassador for an Ice object: when the
client invokes an operation on the proxy, the Ice run time:

. Locates the Ice object

. Activates the Ice object's server if it is not running

. Activates the Ice object within the server

. Transmits any in-parameters to the Ice object

. Waits for the operation to complete

. Returns any out-parameters and the return value to the client (or throws an exception in case of an error)

O WNE

A proxy encapsulates all the necessary information for this sequence of steps to take place. In particular, a proxy contains:
® Addressing information that allows the client-side run time to contact the correct server

® An object identity that identifies which particular object in the server is the target of a request
® An optional facet identifier that determines which particular facet of an object the proxy refers to

Stringified Proxies

The information in a proxy can be expressed as a string. For example, the string:

Si nmpl ePrinter:default -p 10000

is a human-readable representation of a proxy. The Ice run time provides API calls that allow you to convert a proxy to its stringified form and
vice versa. This is useful, for example, to store proxies in database tables or text files.

Provided that a client knows the identity of an Ice object and its addressing information, it can create a proxy "out of thin air" by supplying

that information. In other words, no part of the information inside a proxy is considered opaque; a client needs to know only an object's
identity, addressing information, and (to be able to invoke an operation) the object's type in order to contact the object.

Direct Proxies

A direct proxy is a proxy that embeds an object's identity, together with the address at which its server runs. The address is completely
specified by:

® a protocol identifier (such TCP/IP or UDP)
® a protocol-specific address (such as a host name and port number)

To contact the object denoted by a direct proxy, the Ice run time uses the addressing information in the proxy to contact the server; the
identity of the object is sent to the server with each request made by the client.

Indirect Proxies

An indirect proxy has two forms. It may provide only an object's identity, or it may specify an identity together with an object adapter
identifier. An object that is accessible using only its identity is called a well-known object. For example, the string:

Si npl ePrinter

is a valid proxy for a well-known object with the identity Si npl ePri nter.

An indirect proxy that includes an object adapter identifier has the stringified form

Si npl ePri nter @rint er Adapt er

15 Copyright © 2011, ZeroC, Inc.

http://www.wikipedia.org/Uuid

Ice 3.4.2 Documentation

Any object of the object adapter can be accessed using such a proxy, regardless of whether that object is also a well-known object.

Notice that an indirect proxy contains no addressing information. To determine the correct server, the client-side run time passes the proxy
information to a location service. In turn, the location service uses the object identity or the object adapter identifier as the key in a lookup
table that contains the address of the server and returns the current server address to the client. The client-side run time now knows how to
contact the server and dispatches the client request as usual.

The entire process is similar to the mapping from Internet domain names to IP address by the Domain Name Service (DNS): when we use a
domain name, such as ww. zer oc. com to look up a web page, the host name is first resolved to an IP address behind the scenes and,
once the correct IP address is known, the IP address is used to connect to the server. With Ice, the mapping is from an object identity or
object adapter identifier to a protocol-address pair, but otherwise very similar. The client-side run time knows how to contact the location
service via configuration (just as web browsers know which DNS server to use via configuration).

Direct Versus Indirect Binding

The process of resolving the information in a proxy to protocol-address pair is known as binding. Not surprisingly, direct binding is used for
direct proxies, and indirect binding is used for indirect proxies.

The main advantage of indirect binding is that it allows us to move servers around (that is, change their address) without invalidating existing
proxies that are held by clients. In other words, direct proxies avoid the extra lookup to locate the server but no longer work if a server is
moved to a different machine. On the other hand, indirect proxies continue to work even if we move (or migrate) a server.

Fixed Proxies

A fixed proxy is a proxy that is bound to a particular connection: instead of containing addressing information or an adapter name, the proxy
contains a connection handle. The connection handle stays valid only for as long as the connection stays open so, once the connection is
closed, the proxy no longer works (and will never work again). Fixed proxies cannot be marshaled, that is, they cannot be passed as
parameters on operation invocations. Fixed proxies are used to allow bidirectional communication, so a server can make callbacks to a client
without having to open a new connection.

Routed Proxies

A routed proxy is a proxy that forwards all invocations to a specific target object, instead of sending invocations directly to the actual target.
Routed proxies are useful for implementing services such as Glacier2, which enables clients to communicate with servers that are behind a
firewall.

Replication

In Ice, replication involves making object adapters (and their objects) available at multiple addresses. The goal of replication is usually to
provide redundancy by running the same server on several computers. If one of the computers should happen to fail, a server still remains
available on the others.

The use of replication implies that applications are designed for it. In particular, it means a client can access an object via one address and
obtain the same result as from any other address. Either these objects are stateless, or their implementations are designed to synchronize
with a database (or each other) in order to maintain a consistent view of each object's state.

Ice supports a limited form of replication when a proxy specifies multiple addresses for an object. The Ice run time selects one of the
addresses at random for its initial connection attempt and tries all of them in the case of a failure. For example, consider this proxy:

SinplePrinter:tcp -h serverl -p 10001:tcp -h server2 -p 10002

The proxy states that the object with identity Si npl ePr i nt er is available using TCP at two addresses, one on the host ser ver 1 and
another on the host ser ver 2. The burden falls to users or system administrators to ensure that the servers are actually running on these
computers at the specified ports.

Replica Groups

In addition to the proxy-based replication described above, Ice supports a more useful form of replication known as replica groups that
requires the use of a location service.

A replica group has a unique identifier and consists of any number of object adapters. An object adapter may be a member of at most one
replica group; such an adapter is considered to be a replicated object adapter.

After a replica group has been established, its identifier can be used in an indirect proxy in place of an adapter identifier. For example, a
replica group identified as Pr i nt er Adapt er s can be used in a proxy as shown below:

Copyright © 2011, ZeroC, Inc.

17

Ice 3.4.2 Documentation

Si npl ePrinter @rinter Adapters

The replica group is treated by the location service as a "virtual object adapter." The behavior of the location service when resolving an
indirect proxy containing a replica group id is an implementation detail. For example, the location service could decide to return the
addresses of all object adapters in the group, in which case the client's Ice run time would select one of the addresses at random using the
limited form of replication discussed earlier. Another possibility is for the location service to return only one address, which it decided upon
using some heuristic.

Regardless of the way in which a location service resolves a replica group, the key benefit is indirection: the location service as a middleman
can add more intelligence to the binding process.

Servants

As we mentioned, an Ice Object is a conceptual entity that has a type, identity, and addressing information. However, client requests
ultimately must end up with a concrete server-side processing entity that can provide the behavior for an operation invocation. To put this
differently, a client request must ultimately end up executing code inside the server, with that code written in a specific programming
language and executing on a specific processor.

The server-side artifact that provides behavior for operation invocations is known as a servant. A servant provides substance for (or
incarnates) one or more Ice objects. In practice, a servant is simply an instance of a class that is written by the server developer and that is
registered with the server-side run time as the servant for one or more Ice objects. Methods on the class correspond to the operations on the
Ice object's interface and provide the behavior for the operations.

A single servant can incarnate a single Ice object at a time or several Ice objects simultaneously. If the former, the identity of the Ice object
incarnated by the servant is implicit in the servant. If the latter, the servant is provided the identity of the Ice object with each request, so it
can decide which object to incarnate for the duration of the request.

Conversely, a single Ice object can have multiple servants. For example, we might choose to create a proxy for an Ice object with two
different addresses for different machines. In that case, we will have two servers, with each server containing a servant for the same Ice
object. When a client invokes an operation on such an Ice object, the client-side run time sends the request to exactly one server. In other
words, multiple servants for a single Ice object allow you to build redundant systems: the client-side run time attempts to send the request to
one server and, if that attempt fails, sends the request to the second server. An error is reported back to the client-side application code only
if that second attempt also fails.

At-Most-Once Semantics

Ice requests have at-most-once semantics: the Ice run time does its best to deliver a request to the correct destination and, depending on
the exact circumstances, may retry a failed request. Ice guarantees that it will either deliver the request, or, if it cannot deliver the request,
inform the client with an appropriate exception; under no circumstances is a request delivered twice, that is, retries are attempted only if it is
known that a previous attempt definitely failed.

One exception to this rule are datagram invocations over UDP transports. For these, duplicated UDP packets can lead to a
violation of at-most-once semantics.

At-most-once semantics are important because they guarantee that operations that are not idempotent can be used safely. An idempotent
operation is an operation that, if executed twice, has the same effect as if executed once. For example, x = 1; is an idempotent operation:
if we execute the operation twice, the end result is the same as if we had executed it once. On the other hand, x++; is not idempotent: if we
execute the operation twice, the end result is not the same as if we had executed it once.

Without at-most-once semantics, we can build distributed systems that are more robust in the presence of network failures. However,
realistic systems require non-idempotent operations, so at-most-once semantics are a necessity, even though they make the system less

robust in the presence of network failures. Ice permits you to mark individual operations as idempotent. For such operations, the Ice run time
uses a more aggressive error recovery mechanism than for non-idempotent operations.

Synchronous Method Invocation

By default, the request dispatch model used by Ice is a synchronous remote procedure call: an operation invocation behaves like a local
procedure call, that is, the client thread is suspended for the duration of the call and resumes when the call completes (and all its results are
available).

Asynchronous Method Invocation

Ice also supports asynchronous method invocation (AMI): clients can invoke operations asynchronously, that is, the client uses a proxy as

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

usual to invoke an operation but, in addition to passing the normal parameters, also passes a callback object and the client invocation
returns immediately. Once the operation completes, the client-side run time invokes a method on the callback object passed initially, passing
the results of the operation to the callback object (or, in case of failure, passing exception information).

The server cannot distinguish an asynchronous invocation from a synchronous one — either way, the server simply sees that a client has
invoked an operation on an object.

Asynchronous Method Dispatch

Asynchronous method dispatch (AMD) is the server-side equivalent of AMI. For synchronous dispatch (the default), the server-side run time
up-calls into the application code in the server in response to an operation invocation. While the operation is executing (or sleeping, for
example, because it is waiting for data), a thread of execution is tied up in the server; that thread is released only when the operation
completes.

With asynchronous method dispatch, the server-side application code is informed of the arrival of an operation invocation. However, instead
of being forced to process the request immediately, the server-side application can choose to delay processing of the request and, in doing
S0, releases the execution thread for the request. The server-side application code is now free to do whatever it likes. Eventually, once the
results of the operation are available, the server-side application code makes an API call to inform the server-side Ice run time that a request
that was dispatched previously is now complete; at that point, the results of the operation are returned to the client.

Asynchronous method dispatch is useful if, for example, a server offers operations that block clients for an extended period of time. For
example, the server may have an object with a get operation that returns data from an external, asynchronous data source and that blocks
clients until the data becomes available. With synchronous dispatch, each client waiting for data to arrive ties up an execution thread in the
server. Clearly, this approach does not scale beyond a few dozen clients. With asynchronous dispatch, hundreds or thousands of clients can
be blocked in the same operation invocation without tying up any threads in the server.

Another way to use asynchronous method dispatch is to complete an operation, so the results of the operation are returned to the client, but
to keep the execution thread of the operation beyond the duration of the operation invocation. This allows you to continue processing after
results have been returned to the client, for example, to perform cleanup or write updates to persistent storage.

Synchronous and asynchronous method dispatch are transparent to the client, that is, the client cannot tell whether a server chose to
process a request synchronously or asynchronously.

Oneway Method Invocation

Clients can invoke an operation as a oneway operation. A oneway invocation has "best effort" semantics. For a oneway invocation, the
client-side run time hands the invocation to the local transport, and the invocation completes on the client side as soon as the local transport
has buffered the invocation. The actual invocation is then sent asynchronously by the operating system. The server does not reply to oneway
invocations, that is, traffic flows only from client to server, but not vice versa.

Oneway invocations are unreliable. For example, the target object may not exist, in which case the invocation is simply lost. Similarly, the
operation may be dispatched to a servant in the server, but the operation may fail (for example, because parameter values are invalid); if so,
the client receives no notification that something has gone wrong.

Oneway invocations are possible only on operations that do not have a return value, do not have out-parameters, and do not throw user
exceptions.

To the application code on the server-side, oneway invocations are transparent, that is, there is no way to distinguish a twoway invocation
from a oneway invocation.

Oneway invocations are available only if the target object offers a stream-oriented transport, such as TCP/IP or SSL.

Note that, even though oneway operations are sent over a stream-oriented transport, they may be processed out of order in the server. This
can happen because each invocation may be dispatched in its own thread: even though the invocations are initiated in the order in which the
invocations arrive at the server, this does not mean that they will be processed in that order — the vagaries of thread scheduling can result in
a oneway invocation completing before other oneway invocations that were received earlier.

Batched Oneway Method Invocation

Each oneway invocation sends a separate message to the server. For a series of short messages, the overhead of doing so is considerable:
the client- and server-side run time each must switch between user mode and kernel mode for each message and, at the networking level,
each message incurs the overheads of flow-control and acknowledgement.

Batched oneway invocations allow you to send a series of oneway invocations as a single message: every time you invoke a batched
oneway operation, the invocation is buffered in the client-side run time. Once you have accumulated all the oneway invocations you want to
send, you make a separate API call to send all the invocations at once. The client-side run time then sends all of the buffered invocations in
a single message, and the server receives all of the invocations in a single message. This avoids the overhead of repeatedly trapping into
the kernel for both client and server, and is much easier on the network between them because one large message can be transmitted more
efficiently than many small ones.

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

The individual invocations in a batched oneway message are dispatched by a single thread in the order in which they were placed into the
batch. This guarantees that the individual operations in a batched oneway message are processed in order in the server.

Batched oneway invocations are particularly useful for messaging services, such as IceStorm, and for fine-grained interfaces that offer set
operations for small attributes.

Datagram Invocations

Datagram invocations have "best effort" semantics similar to oneway invocations. However, datagram invocations require the object to offer
UDP as a transport (whereas oneway invocations require TCP/IP).

Like a oneway invocation, a datagram invocation can be made only if the operation does not have a return value, out-parameters, or user
exceptions. A datagram invocation uses UDP to invoke the operation. The operation returns as soon as the local UDP stack has accepted
the message; the actual operation invocation is sent asynchronously by the network stack behind the scenes.

Datagrams, like oneway invocations, are unreliable: the target object may not exist in the server, the server may not be running, or the
operation may be invoked in the server but fail due to invalid parameters sent by the client. As for oneway invocations, the client receives no
notification of such errors.

However, unlike oneway invocations, datagram invocations have a number of additional error scenarios:

® Individual invocations may simply be lost in the network.
This is due to the unreliable delivery of UDP packets. For example, if you invoke three operations in sequence, the middle invocation
may be lost. (The same thing cannot happen for oneway invocations — because they are delivered over a connection-oriented
transport, individual invocations cannot be lost.)

® |ndividual invocations may arrive out of order.
Again, this is due to the nature of UDP datagrams. Because each invocation is sent as a separate datagram, and individual
datagrams can take different paths through the network, it can happen that invocations arrive in an order that differs from the order
in which they were sent.

Datagram invocations are well suited for small messages on LANs, where the likelihood of loss is small. They are also suited to situations in
which low latency is more important than reliability, such as for fast, interactive internet applications. Finally, datagram invocations can be
used to multicast messages to multiple servers simultaneously.

Batched Datagram Invocations

As for batched oneway invocations, batched datagram invocations allow you to accumulate a number of invocations in a buffer and then
send the entire buffer as a single datagram by making an API call to flush the buffer. Batched datagrams reduce the overhead of repeated
system calls and allow the underlying network to operate more efficiently. However, batched datagram invocations are useful only for
batched messages whose total size does not substantially exceed the PDU limit of the network: if the size of a batched datagram gets too
large, UDP fragmentation makes it more likely that one or more fragments are lost, which results in the loss of the entire batched message.
However, you are guaranteed that either all invocations in a batch will be delivered, or none will be delivered. It is impossible for individual
invocations within a batch to be lost.

Batched datagrams use a single thread in the server to dispatch the individual invocations in a batch. This guarantees that the invocations
are made in the order in which they were queued — invocations cannot appear to be reordered in the server.

Run-Time Exceptions

Any operation invocation can raise a run-time exception. Run-time exceptions are pre-defined by the Ice run time and cover common error
conditions, such as connection failure, connection timeout, or resource allocation failure. Run-time exceptions are presented to the
application as native exceptions and so integrate neatly with the native exception handling capabilities of languages that support exception
handling.

User Exceptions

A server indicates application-specific error conditions by raising user exceptions to clients. User exceptions can carry an arbitrary amount of
complex data and can be arranged into inheritance hierarchies, which makes it easy for clients to handle categories of errors generically, by
catching an exception that is further up the inheritance hierarchy. Like run-time exceptions, user exceptions map to native exceptions.

Properties

Much of the Ice run time is configurable via properties. Properties are name-value pairs, such as | ce. Def aul t . Pr ot ocol =t cp.
Properties are typically stored in text files and parsed by the Ice run time to configure various options, such as the thread pool size, the level
of tracing, and various other configuration parameters.

Copyright © 2011, ZeroC, Inc.

20

See Also

The Slice Language
Proxies

Locators

Object Life Cycle
Bidirectional Connections
Glacier2

IceStorm

Ice 3.4.2 Documentation

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Slice (Specification Language for Ice)

Each Ice object has an interface with a number of operations. Interfaces, operations, and the types of data that are exchanged between
client and server are defined using the Slice language. Slice allows you to define the client-server contract in a way that is independent of a
specific programming language, such as C++, Java, or C#. The Slice definitions are compiled by a compiler into an API for a specific
programming language, that is, the part of the API that is specific to the interfaces and types you have defined consists of generated code.

See Also

® The Slice Language

21 Copyright © 2011, ZeroC, Inc.

22

Ice 3.4.2 Documentation

Language Mappings

The rules that govern how each Slice construct is translated into a specific programming language are known as language mappings. For
example, for the C++ mapping, a Slice sequence appears as an STL vector, whereas, for the Java mapping, a Slice sequence appears as a
Java array. In order to determine what the API for a specific Slice construct looks like, you only need the Slice definition and knowledge of
the language mapping rules. The rules are simple and regular enough to make it unnecessary to read the generated code to work out how to
use the generated API.

Of course, you are free to peruse the generated code. However, as a rule, that is inefficient because the generated code is not necessarily
suitable for human consumption. We recommend that you familiarize yourself with the language mapping rules; that way, you can mostly
ignore the generated code and need to refer to it only when you are interested in some specific detail.

Currently, Ice provides language mappings for C++, Java, C#, Python, Objective-C, and, for the client side, PHP and Ruby.
See Also

C++ Mapping

Java Mapping

C# Mapping
Objective-C Mapping
Python Mapping
Ruby Mapping

PHP Mapping

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Client and Server Structure

Ice clients and servers have the logical internal structure:

Client Application Server Application
A
Y
Proxy Skeleton Object
Code lce API lce AP Adapter
Client lce Core m Server lce Core
Metwork

|:| lce API

|:| Generated Code

Ice Client and Server Structure

Both client and server consist of a mixture of application code, library code, and code generated from Slice definitions:

23

® The Ice core contains the client- and server-side run-time support for remote communication. Much of this code is concerned with

the details of networking, threading, byte ordering, and many other networking-related issues that we want to keep away from
application code. The Ice core is provided as a number of libraries that client and server use.

The generic part of the Ice core (that is, the part that is independent of the specific types you have defined in Slice) is accessed
through the Ice API. You use the Ice API to take care of administrative chores, such as initializing and finalizing the Ice run time. The
Ice APl is identical for clients and servers (although servers use a larger part of the API than clients).

The proxy code is generated from your Slice definitions and, therefore, specific to the types of objects and data you have defined in
Slice. The proxy code has two major functions:
® |t provides a down-call interface for the client. Calling a function in the generated proxy API ultimately ends up sending an
RPC message to the server that invokes a corresponding function on the target object.
® |t provides marshaling and unmarshaling code. Marshaling is the process of serializing a complex data structure, such as a
sequence or a dictionary, for transmission on the wire. The marshaling code converts data into a form that is standardized
for transmission and independent of the endian-ness and padding rules of the local machine. Unmarshaling is the reverse
of marshaling, that is, deserializing data that arrives over the network and reconstructing a local representation of the data
in types that are appropriate for the programming language in use.

The skeleton code is also generated from your Slice definition and, therefore, specific to the types of objects and data you have
defined in Slice. The skeleton code is the server-side equivalent of the client-side proxy code: it provides an up-call interface that
permits the Ice run time to transfer the thread of control to the application code you write. The skeleton also contains marshaling and
unmarshaling code, so the server can receive parameters sent by the client, and return parameters and exceptions to the client.

The object adapter is a part of the Ice API that is specific to the server side: only servers use object adapters. An object adapter has
several functions:
® The object adapter maps incoming requests from clients to specific methods on programming-language objects. In other
words, the object adapter tracks which servants with what object identity are in memory.
® The object adapter is associated with one or more transport endpoints. If more than one transport endpoint is associated
with an adapter, the servants incarnating objects within the adapter can be reached via multiple transports. For example,
you can associate both a TCP/IP and a UDP endpoint with an adapter, to provide alternate quality-of-service and
performance characteristics.
® The object adapter is responsible for the creation of proxies that can be passed to clients. The object adapter knows about
the type, identity, and transport details of each of its objects and embeds the correct details when the server-side

Copyright © 2011, ZeroC, Inc.

24

Ice 3.4.2 Documentation

application code requests the creation of a proxy.
Note that, as far as the process view is concerned, there are only two processes involved: the client and the server. All the run time support

for distributed communication is provided by the Ice libraries and the code that is generated from Slice definitions. (For indirect proxies, a
third process, IceGrid, is required to resolve proxies to transport endpoints.)

See Also

® Hello World Application
® |ceGrid

Copyright © 2011, ZeroC, Inc.

25

Ice 3.4.2 Documentation

Overview of the Ice Protocol

Ice provides an RPC protocol that can use either TCP/IP or UDP as an underlying transport. In addition, Ice also allows you to use SSL as a
transport, so all communication between client and server is encrypted.

The Ice protocol defines:

® anumber of message types, such as request and reply message types,

® a protocol state machine that determines in what sequence different message types are exchanged by client and server, together
with the associated connection establishment and tear-down semantics for TCP/IP,

® encoding rules that determine how each type of data is represented on the wire,

® a header for each message type that contains details such as the message type, the message size, and the protocol and encoding
version in use.

Ice also supports compression on the wire: by setting a configuration parameter, you can arrange for all network traffic to be compressed to
conserve bandwidth. This is useful if your application exchanges large amounts of data between client and server.

The Ice protocol is suitable for building highly-efficient event forwarding mechanisms because it permits forwarding of a message without
knowledge of the details of the information inside a message. This means that messaging switches need not do any unmarshaling and
remarshaling of messages — they can forward a message by simply treating it as an opaque buffer of bytes.

The Ice protocol also supports bidirectional operation: if a server wants to send a message to a callback object provided by the client, the

callback can be made over the connection that was originally created by the client. This feature is especially important when the client is
behind a firewall that permits outgoing connections, but not incoming connections.

See Also

® The Ice Protocol
® |ceSSL
® Bidirectional Connections

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Ice Services

The Ice core provides a sophisticated client-server platform for distributed application development. However, realistic applications usually
require more than just a remoting capability: typically, you also need a way to start servers on demand, distribute proxies to clients, distribute
asynchronous events, configure your application, distribute patches for an application, and so on.

Ice ships with a number of services that provide these and other features. The services are implemented as Ice servers to which your
application acts as a client. None of the services use Ice-internal features that are hidden from application developers so, in theory, you
could develop equivalent services yourself. However, having these services available as part of the platform allows you to focus on
application development instead of having to build a lot of infrastructure first. Moreover, building such services is not a trivial effort, so it pays
to know what is available and use it instead of reinventing your own wheel.

On this page:

Freeze and FreezeScript
IceGrid Service

IceBox Server

IceStorm

IcePatch2

Glacier2

Freeze and FreezeScript

Ice has a built-in object persistence service, known as Freeze. Freeze makes it easy to store object state in a database: you define the state
stored by your objects in Slice, and the Freeze compiler generates code that stores and retrieves object state to and from a database.
Freeze uses Berkeley DB as its database.

Ice also offers a tool set collectively called FreezeScript that makes it easier to maintain databases and to migrate the contents of existing
databases to a new schema if the type definitions of objects change.

IceGrid Service

IceGrid is an implementation of an Ice location service that resolves the symbolic information in an indirect proxy to a protocol-address pair
for indirect binding. A location service is only the beginning of IceGrid's capabilities.

IceGrid:

® allows you to register servers for automatic start-up: instead of requiring a server to be running at the time a client issues a request,
IceGrid starts servers on demand, when the first client request arrives.

provides tools that make it easy to configure complex applications containing several servers.

supports replication and load-balancing.

automates the distribution and patching of server executables and dependent files.

provides a simple query service that allows clients to obtain proxies for objects they are interested in.

IceBox Server

IceBox is a simple application server that can orchestrate the starting and stopping of a number of application components. Application
components can be deployed as a dynamic library instead of as a process. This reduces overall system load, for example, by allowing you to
run several application components in a single Java virtual machine instead of having multiple processes, each with its own virtual machine.

IlceStorm

IceStorm is a publish-subscribe service that decouples clients and servers. Fundamentally, IceStorm acts as a distribution switch for events.
Publishers send events to the service, which, in turn, passes the events to subscribers. In this way, a single event published by a publisher
can be sent to multiple subscribers. Events are categorized by topic, and subscribers specify the topics they are interested in. Only events
that match a subscriber's topic are sent to that subscriber. The service permits selection of a number of quality-of-service criteria to allow
applications to choose the appropriate trade-off between reliability and performance.

IceStorm is particularly useful if you have a need to distribute information to large numbers of application components. (A typical example is
a stock ticker application with a large number of subscribers.) IceStorm decouples the publishers of information from subscribers and takes
care of the redistribution of the published events. In addition, lceStorm can be run as a federated service, that is, multiple instances of the
service can be run on different machines to spread the processing load over a number of CPUs.

Copyright © 2011, ZeroC, Inc.

http://www.oracle.com/technology/products/berkeley-db

27

Ice 3.4.2 Documentation

IcePatch2

IcePatch2 is a software patching service. It allows you to easily distribute software updates to clients. Clients simply connect to the
IcePatch2 server and request updates for a particular application. The service automatically checks the version of the client's software and
downloads any updated application components in a compressed format to conserve bandwidth. Software patches can be secured using the
Glacier2 service, so only authorized clients can download software updates.

lﬂl IcePatch2 supersedes IcePatch, which was a previous version of this service.

Glacier2

Glacier2 is the Ice firewall traversal service: it allows clients and servers to securely communicate through a firewall without compromising
security. Client-server traffic is SSL-encrypted using public key certificates and is bidirectional. Glacier2 offers support for mutual
authentication as well as secure session management.

lﬂ Glacier2 supersedes Glacier, which was a previous version of this service

See Also

IceGrid
Freeze
FreezeScript
Glacier2
IceBox
IceStorm
IcePatch2

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Architectural Benefits of Ice

The Ice architecture provides a number of benefits to application developers:

Object-oriented semantics
Ice fully preserves the object-oriented paradigm "across the wire." All operation invocations use late binding, so the implementation
of an operation is chosen depending on the actual run-time (not static) type of an object.

Support for synchronous and asynchronous messaging

Ice provides both synchronous and asynchronous operation invocation and dispatch, as well as publish-subscribe messaging via
IceStorm. This allows you to choose a communication model according to the needs of your application instead of having to
shoe-horn the application to fit a single model.

Support for multiple interfaces
With facets, objects can provide multiple, unrelated interfaces while retaining a single object identity across these interfaces. This
provides great flexibility, particularly as an application evolves but needs to remain compatible with older, already deployed clients.

Machine independence
Clients and servers are shielded form idiosyncrasies of the underlying machine architecture. Issues such as byte ordering and
padding are hidden from application code.

Language independence
Client and server can be developed independently and in different programming languages. The Slice definition used by both client
and server establishes the interface contract between them and is the only thing they need to agree on.

Implementation independence
Clients are unaware of how servers implement their objects. This means that the implementation of a server can be changed after
clients are deployed, for example, to use a different persistence mechanism or even a different programming language.

Operating system independence
The Ice APIs are fully portable, so the same source code compiles and runs under both Windows and Unix.

Threading support
The Ice run time is fully threaded and APIs are thread-safe. No effort (beyond synchronizing access to shared data) is required on
part of the application developer to develop threaded, high-performance clients and servers.

Transport independence
Ice currently offers both TCP/IP and UDP as transport protocols. Neither client nor server code are aware of the underlying
transport. (The desired transport can be chosen by a configuration parameter.)

Location and server transparency

The Ice run time takes care of locating objects and managing the underlying transport mechanism, such as opening and closing
connections. Interactions between client and server appear connection-less. Via IceGrid, you can arrange for servers to be started
on demand if they are not running at the time a client invokes an operation. Servers can be migrated to different physical addresses
without breaking proxies held by clients, and clients are completely unaware how object implementations are distributed over server
processes.

Security

Communications between client and server can be fully secured with strong encryption over SSL, so applications can use
unsecured public networks to communicate securely. Via Glacier2, you can implement secure forwarding of requests through a
firewall, with full support for callbacks.

Built-in persistence
With Freeze, creating persistent object implementations becomes trivial. Ice comes with built-in support for Berkeley DB, which is a
high-performance database.

Source code availability
The source code for Ice is available. While it is not necessary to have access to the source code to use the platform, it allows you to
see how things are implemented or port the code to a new operating system.

Overall, Ice provides a state-of-the art development and deployment environment for distributed computing that is more complete than any
other platform we are aware of.

See Also

28

Ice Architecture
Ice Services

Copyright © 2011, ZeroC, Inc.

http://www.oracle.com/technology/products/berkeley-db

29

Ice 3.4.2 Documentation

Copyright © 2011, ZeroC, Inc.

30

Ice 3.4.2 Documentation

Hello World Application

This section presents a very simple (but complete) client and server.
Writing an Ice application involves the following steps:

1. Write a Slice definition and compile it.
2. Write a server and compile it.
3. Write a client and compile it.

If someone else has written the server already and you are only writing a client, you do not need to write the Slice definition, only compile it
(and, obviously, you do not need to write the server in that case).

The application described here enables remote printing: a client sends the text to be printed to a server, which in turn sends that text to a
printer. For simplicity (and because we do not want to concern ourselves with the idiosyncrasies of print spoolers for various platforms), our
printer will simply print to a terminal instead of a real printer. This is no great loss: the purpose of the exercise is to show how a client can
communicate with a server; once the thread of control has reached the server application code, that code can of course do anything it likes
(including sending the text to a real printer). How to do this is independent of Ice and therefore not relevant here.

Much of the detail of the source code will remain unexplained for now. The intent is to show you how to get started and
give you a feel for what the development environment looks like; we will provide all the detail throughout the remainder of
this manual.

Topics

Writing a Slice Definition

Writing an Ice Application with C++

Writing an Ice Application with Java
Writing an Ice Application with C-Sharp
Writing an Ice Application with Visual Basic
Writing an Ice Application with Objective-C
Writing an Ice Application with Python
Writing an Ice Application with Ruby
Writing an Ice Application with PHP

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Writing a Slice Definition

The first step in writing any Ice application is to write a Slice definition containing the interfaces that are used by the application. For our
minimal printing application, we write the following Slice definition:

Slice

nmodul e Denp {
interface Printer {
void printString(string s);
b
b

We save this text in a file called Pri nter.ice.
Our Slice definitions consist of the module Deno containing a single interface called Pri nt er . For now, the interface is very simple and

provides only a single operation, called pri nt Stri ng. The pri nt St ri ng operation accepts a string as its sole input parameter; the text of
that string is what appears on the (possibly remote) printer.

See Also

® The Slice Language

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Writing an Ice Application with C++

This page shows how to create an Ice application with C++.
On this page:

® Compiling a Slice Definition for C++

® Writing and Compiling a Server in C++

L]

°

Writing and Compiling a Client in C++
Running Client and Server in C++

Compiling a Slice Definition for C++

The first step in creating our C++ application is to compile our Slice definition to generate C++ proxies and skeletons. Under Unix, you can
compile the definition as follows:

$ slice2cpp Printer.ice

Whenever we show Unix commands, we assume a Bourne or Bash shell. The commands for Windows are essentially
identical and therefore not shown.

The sl i ce2cpp compiler produces two C++ source files from this definition, Pri nter. h and Pri nt er. cpp.
® Printer.h
The Pri nt er . h header file contains C++ type definitions that correspond to the Slice definitions for our Pri nt er interface. This
header file must be included in both the client and the server source code.
® Printer.cpp
The Pri nt er. cpp file contains the source code for our Pri nt er interface. The generated source contains type-specific run-time
support for both clients and servers. For example, it contains code that marshals parameter data (the string passed to the

print St ring operation) on the client side and unmarshals that data on the server side.
The Pri nt er. cpp file must be compiled and linked into both client and server.

Writing and Compiling a Server in C++

The source code for the server takes only a few lines and is shown in full here:

32 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C++
#i nclude <lce/lce. h>
#i nclude <Printer.h>
usi ng nanespace std;
usi ng namespace Denv;
class Printerl : public Printer {
public:
virtual void printString(const string& s, const Ice::Current&);
b
voi d
Printerl::
printString(const string& s, const Ice::Current&)
{
cout << s << endl;
}
int
mai n(int argc, char* argv[])
{
int status = 0;
I ce:: Communi catorPtr ic;
try {
ic = lce::initialize(argc, argv);
I ce:: Cbj ect AddapterPtr adapter =
i c->creat eCbj ect Adapt er Wt hEndpoi nt s(" Si npl ePri nter Adapter"”, "default -p 10000");
Ice::CbjectPtr object = new Printerl;
adapt er - >add(obj ect, ic->stringToldentity("SinplePrinter"));
adapt er->activate();
i c->wai t For Shut down() ;
} catch (const Ice::Exception& e) {
cerr << e << endl;
status = 1;
} catch (const char* nsg) {
cerr << msg << endl;
status = 1;
}
if (ic) {
try {
i c->destroy();
} catch (const |ce::Exception& e) {
cerr << e << endl;
status = 1,
}
}
return status;
}

There appears to be a lot of code here for something as simple as a server that just prints a string. Do not be concerned by this: most of the
preceding code is boiler plate that never changes. For this very simple server, the code is dominated by this boiler plate.

Every Ice source file starts with an include directive for | ce. h, which contains the definitions for the Ice run time. We also include

Pri nt er. h, which was generated by the Slice compiler and contains the C++ definitions for our printer interface, and we import the
contents of the st d and Deno namespaces for brevity in the code that follows:

Copyright © 2011, ZeroC, Inc.

34

Ice 3.4.2 Documentation

C++

#i nclude <lce/lce. h>
#i nclude <Printer.h>

usi ng nanespace std;
usi ng namespace Denv;

Our server implements a single printer servant, of type Pri nt er | . Looking at the generated code in Pri nt er . h, we find the following
(tidied up a little to get rid of irrelevant detail):

C++
nanespace Denpo {
class Printer : virtual public Ice:: Cbject {
public:
virtual void printString(const std::string& const lce::Current& = Ice::Current()) = O;
H
H

The Pri nt er skeleton class definition is generated by the Slice compiler. (Note that the pri nt St ri ng method is pure virtual so the
skeleton class cannot be instantiated.) Our servant class inherits from the skeleton class to provide an implementation of the pure virtual
print St ri ng method. (By convention, we use an | -suffix to indicate that the class implements an interface.)

C++

class Printerl : public Printer {
public:
virtual void printString(const string& s, const lce::Current&);

}

The implementation of the pri nt St ri ng method is trivial: it simply writes its string argument to st dout :

C++
voi d
Printerl::
printString(const string& s, const Ice::Current&)
{

cout << s << endl;

}

Note that pri nt St ri ng has a second parameter of type | ce: : Current . As you can see from the definition of Pri nter:: printString,
the Slice compiler generates a default argument for this parameter, so we can leave it unused in our implementation. (We will examine the
purpose of the | ce: : Curr ent parameter later.)

What follows is the server main program. Note the general structure of the code:

Copyright © 2011, ZeroC, Inc.

35

Ice 3.4.2 Documentation

C++

int
mai n(int argc, char* argv[])
{

int status = 0;

| ce:: Communi catorPtr ic;

try {

/1 Server inplenentation here...

} catch (const Ice::Exception& e) {
cerr << e << endl;
status = 1;
} catch (const char* nsg) {
cerr << meg << endl;
status = 1;
}
if (ic) {
try {
i c->destroy();
} catch (const Ice::Exception& e) {
cerr << e << endl;
status = 1;
}
}

return status;

The body of mai n contains the declaration of two variables, st at us and i c. The st at us variable contains the exit status of the program
and the i ¢ variable, of type | ce: : Comruni cat or Pt r, contains the main handle to the Ice run time.

Following these declarations is a t r y block in which we place all the server code, followed by two cat ch handlers. The first handler catches
all exceptions that may be thrown by the Ice run time; the intent is that, if the code encounters an unexpected Ice run-time exception
anywhere, the stack is unwound all the way back to mai n, which prints the exception and then returns failure to the operating system. The
second handler catches string constants; the intent is that, if we encounter a fatal error condition somewhere in our code, we can simply
throw a string literal with an error message. Again, this unwinds the stack all the way back to mai n, which prints the error message and then
returns failure to the operating system.

Following the t r y block, we see a bit of cleanup code that calls the dest r oy method on the communicator (provided that the communicator
was initialized). The cleanup call is outside the first t r y block for a reason: we must ensure that the Ice run time is finalized whether the
code terminates normally or terminates due to an exception.

'@ Failure to call dest r oy on the communicator before the program exits results in undefined behavior.

The body of the first t ry block contains the actual server code:

C++

ic =lce::initialize(argc, argv);
I ce:: Cbject AdapterPtr adapter =
i c- >creat eCbj ect Adapt er Wt hEndpoi nt s(" Si npl ePri nter Adapter”, "default -p 10000");
Ice::CbjectPtr object = new Printerl;
adapt er - >add(obj ect, ic->stringToldentity("SinplePrinter"));
adapt er - >acti vate();
i c->wai t For Shut down() ;

The code goes through the following steps:
1. We initialize the Ice run time by calling | ce: : i ni ti al i ze. (We pass ar gc and ar gv to this call because the server may have

command-line arguments that are of interest to the run time; for this example, the server does not require any command-line
arguments.) The calltoi ni ti al i ze returns a smart pointer to an | ce: : Conmuni cat or object, which is the main object in the Ice

Copyright © 2011, ZeroC, Inc.

36

Ice 3.4.2 Documentation

run time.

2. We create an object adapter by calling cr eat eObj ect Adapt er Wt hEndpoi nt s on the Conmruni cat or instance. The arguments
we pass are " Si npl ePri nt er Adapt er" (which is the name of the adapter) and " def aul t -p 10000", which instructs the
adapter to listen for incoming requests using the default protocol (TCP/IP) at port number 10000.

3. At this point, the server-side run time is initialized and we create a servant for our Pri nt er interface by instantiating a Pri nt er |
object.

4. We inform the object adapter of the presence of a new servant by calling add on the adapter; the arguments to add are the servant
we have just instantiated, plus an identifier. In this case, the string " Si npl ePri nt er" is the name of the servant. (If we had
multiple printers, each would have a different name or, more correctly, a different object identity.)

5. Next, we activate the adapter by calling its act i vat e method. (The adapter is initially created in a holding state; this is useful if we
have many servants that share the same adapter and do not want requests to be processed until after all the servants have been
instantiated.) The server starts to process incoming requests from clients as soon as the adapter is activated.

6. Finally, we call wai t For Shut down. This call suspends the calling thread until the server implementation terminates, either by
making a call to shut down the run time, or in response to a signal. (For now, we will simply interrupt the server on the command line
when we no longer need it.)

Note that, even though there is quite a bit of code here, that code is essentially the same for all servers. You can put that code into a helper
class and, thereafter, will not have to bother with it again. (Ice provides such a helper class, called | ce: : Appl i cat i on.) As far as actual
application code is concerned, the server contains only a few lines: six lines for the definition of the Pri nt er | class, plus three lines to
instantiate a Pri nt er | object and register it with the object adapter.

Assuming that we have the server code in a file called Ser ver . cpp, we can compile it as follows:

$ c++ -1. -1$ICE_HOWE/ include -c Printer.cpp Server.cpp

This compiles both our application code and the code that was generated by the Slice compiler. We assume that the | CE_HOME environment
variable is set to the top-level directory containing the Ice run time. (For example, if you have installed Ice in / opt / | ce, set | CE_HOVE to
that path.) Depending on your platform, you may have to add additional include directives or other options to the compiler; please see the
demo programs that ship with Ice for the details.

Finally, we need to link the server into an executable:

$ c++ -0 server Printer.o Server.o -L$ICE_ HOVE/ lib -llce -llceltil

Again, depending on the platform, the actual list of libraries you need to link against may be longer. The demo programs that ship with Ice
contain all the detail. The important point to note here is that the Ice run time is shipped in two libraries, | i bl ce and I i bl ceUti | .

Writing and Compiling a Client in C++

The client code looks very similar to the server. Here it is in full:

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C++

#i nclude <lce/lce. h>
#i nclude <Printer.h>

usi ng nanespace std;
usi ng namespace Denp;

int
mai n(int argc, char* argv[])
{
int status = 0;
I ce:: Communi catorPtr ic;
try {
ic =lce::initialize(argc, argv);
I ce::CbjectPrx base = ic->stringToProxy("SinplePrinter:default -p 10000");
PrinterPrx printer = PrinterPrx::checkedCast (base);
if (!printer)
throw "I nvalid proxy";

printer->printString("Hello World!l");
} catch (const Ice::Exception& ex) {
cerr << ex << endl;
status = 1;
} catch (const char* nsg) {
cerr << nmsg << endl;
status = 1;
}
if (ic)
i c->destroy();
return status;

Note that the overall code layout is the same as for the server: we include the headers for the Ice run time and the header generated by the
Slice compiler, and we use the same t ry block and cat ch handlers to deal with errors.

The code in the t r y block does the following:

1. As for the server, we initialize the Ice run time by calling I ce: :initiali ze.

2. The next step is to obtain a proxy for the remote printer. We create a proxy by calling st ri ngToPr oxy on the communicator, with
the string " Si npl ePrinter:default -p 10000". Note that the string contains the object identity and the port number that were
used by the server. (Obviously, hard-coding object identities and port numbers into our applications is a bad idea, but it will do for
now; we will see more architecturally sound ways of doing this when we discuss IceGrid.)

3. The proxy returned by st ri ngToPr oxy is of type | ce: : Obj ect Pr x, which is at the root of the inheritance tree for interfaces and
classes. But to actually talk to our printer, we need a proxy for a Pri nt er interface, not an Obj ect interface. To do this, we need to
do a down-cast by calling Pri nt er Prx: : checkedCast . A checked cast sends a message to the server, effectively asking "is this
a proxy for a Pri nt er interface?" If so, the call returns a proxy to a Pr i nt er ; otherwise, if the proxy denotes an interface of some
other type, the call returns a null proxy.

4. We test that the down-cast succeeded and, if not, throw an error message that terminates the client.

5. We now have a live proxy in our address space and can call the pri nt St ri ng method, passing it the time-honored " Hel | o
Wor | d!'" string. The server prints that string on its terminal.

Compiling and linking the client looks much the same as for the server:

$ c++ -1. -1$ICE_HOWE/ include -c Printer.cpp dient.cpp
$ c++ -o client Printer.o Cient.o -L$ICE_ HOW/ lib -llce -Illceltil

Running Client and Server in C++

To run client and server, we first start the server in a separate window:

Copyright © 2011, ZeroC, Inc.

38

Ice 3.4.2 Documentation

$./server

At this point, we won't see anything because the server simply waits for a client to connect to it. We run the client in a different window:

$./client
$

The client runs and exits without producing any output; however, in the server window, we see the "Hel | o Wor | d! " that is produced by
the printer. To get rid of the server, we interrupt it on the command line for now. (We will see cleaner ways to terminate a server in our
discussion of | ce: : Appl i cation.)

If anything goes wrong, the client will print an error message. For example, if we run the client without having first started the server, we get:

Net wor k. cpp: 471: |ce:: Connect Fai | edExcepti on:
connect failed: Connection refused

Note that, to successfully run client and server, you will have to set some platform-dependent environment variables. For example, under
Linux, you need to add the Ice library directory to your LD_LI BRARY_PATH. Please have a look at the demo applications that ship with Ice
for the details for your platform.

See Also

Client-Side Slice-to-C++ Mapping
Server-Side Slice-to-C++ Mapping
The l ce: : Appl i cati on Class
The Current Object

IceGrid

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Writing an Ice Application with Java

This page shows how to create an Ice application with Java.
On this page:

Compiling a Slice Definition for Java

Writing and Compiling a Server in Java

°
L]
® Writing and Compiling a Client in Java
® Running Client and Server in Java

Compiling a Slice Definition for Java

The first step in creating our Java application is to compile our Slice definition to generate Java proxies and skeletons. Under Unix, you can
compile the definition as follows:

$ nkdir generated
$ slice2java --output-dir generated Printer.ice

Whenever we show Unix commands, we assume a Bourne or Bash shell. The commands for Windows are essentially
identical and therefore not shown.

The - - out put - di r option instructs the compiler to place the generated files into the gener at ed directory. This avoids cluttering the
working directory with the generated files. The sl i ce2j ava compiler produces a number of Java source files from this definition. The exact
contents of these files do not concern us for now — they contain the generated code that corresponds to the Pri nt er interface we defined
inPrinter.ice.

Writing and Compiling a Server in Java

To implement our Pri nt er interface, we must create a servant class. By convention, a servant class uses the name of its interface with an
| -suffix, so our servant class is called Pri nt er | and placed into a source file Printerl.java:

Java

public class Printerl extends Deno._PrinterDi sp {
public void
printString(String s, lce.Current current)
{
System out. println(s);

}

The Printerl class inherits from a base class called _Pri nt er Di sp, which is generated by the sl i ce2j ava compiler. The base class is
abstract and contains a pri nt St ri ng method that accepts a string for the printer to print and a parameter of type | ce. Cur r ent . (For now
we will ignore the | ce. Cur r ent parameter.) Our implementation of the pri nt St ri ng method simply writes its argument to the terminal.

The remainder of the server code is in a source file called Ser ver . j ava, shown in full here:

Copyright © 2011, ZeroC, Inc.

40

Ice 3.4.2 Documentation

Java

public class Server {
public static void
mai n(String[] args)
{
int status = 0
I ce. Communi cator ic = null;
try {
ic = lce. Wil.initialize(args)
| ce. Obj ect Adapt er adapter =
i c.createCbj ect Adapt er Wt hEndpoi nts(" Si npl ePrinter Adapter”,
I ce. Object object = new Printerl();
adapt er. add(obj ect, ic.stringToldentity("SinplePrinter"));
adapter.activate();
i c. wai t For Shut down() ;
} catch (Ice.Local Exception e) {
e.printStackTrace();
status = 1;
} catch (Exception e) {
Systemerr.println(e.get Message());
status = 1
}
if (ic!=null) {
/1 dean up
/1
try {
ic.destroy();
} catch (Exception e) {
Systemerr.println(e.get Message());
status = 1;
}
}

System exit(status);

"default -p 10000");

Note the general structure of the code:

Copyright © 2011, ZeroC, Inc.

41

Ice 3.4.2 Documentation

Java

public class Server {
public static void
mai n(String[] args)
{
int status = 0;
I ce. Communi cator ic = null;
try {

/1 Server inplenentation here...

} catch (lce.Local Exception e) {
e.printStackTrace();
status = 1;

} catch (Exception e) {
Systemerr.println(e.get Message());
status = 1;

}

if (ic!=null) {

/1 Cean up

11

try {
ic.destroy();

} catch (Exception e) {
Systemerr.println(e.get Message());
status = 1;

}

}

System exit(status);

The body of mai n contains a t ry block in which we place all the server code, followed by two cat ch blocks. The first block catches all
exceptions that may be thrown by the Ice run time; the intent is that, if the code encounters an unexpected Ice run-time exception anywhere,
the stack is unwound all the way back to mai n, which prints the exception and then returns failure to the operating system. The second block
catches Except i on exceptions; the intent is that, if we encounter a fatal error condition somewhere in our code, we can simply throw an
exception with an error message. Again, this unwinds the stack all the way back to mai n, which prints the error message and then returns

failure to the operating system.

Before the code exits, it destroys the communicator (if one was created successfully). Doing this is essential in order to correctly finalize the
Ice run time: the program must call dest r oy on any communicator it has created; otherwise, undefined behavior results.

The body of our t ry block contains the actual server code:

Java

ic =lce.Wil.initialize(args);
I ce. Obj ect Adapter adapter =

i c.createCbj ect Adapt er Wt hEndpoi nts(" Si npl ePrinter Adapter”, "default -p 10000");
I ce. Object object = new Printerl();
adapt er. add(obj ect, ic.stringToldentity("SinplePrinter"));
adapter. activate();
i c. wai t For Shut down() ;
The code goes through the following steps:
1. We initialize the Ice run time by calling I ce. Uti |l .initialize.(We pass ar gs to this call because the server may have

command-line arguments that are of interest to the run time; for this example, the server does not require any command-line
arguments.) The calltoi ni ti al i ze returns an | ce. Conmmuni cat or reference, which is the main object in the Ice run time.

2. We create an object adapter by calling cr eat eCbj ect Adapt er Wt hEndpoi nt s on the Conmruni cat or instance. The arguments
we pass are " Si npl ePri nt er Adapt er " (which is the name of the adapter) and "def ault -p 10000", which instructs the

adapter to listen for incoming requests using the default protocol (TCP/IP) at port number 10000.

3. At this point, the server-side run time is initialized and we create a servant for our Pri nt er interface by instantiating a Pri nt er |

Copyright © 2011, ZeroC, Inc.

42

Ice 3.4.2 Documentation

object.

4. We inform the object adapter of the presence of a new servant by calling add on the adapter; the arguments to add are the servant
we have just instantiated, plus an identifier. In this case, the string " Si npl ePri nter" is the name of the servant. (If we had
multiple printers, each would have a different name or, more correctly, a different object identity.)

5. Next, we activate the adapter by calling its act i vat e method. (The adapter is initially created in a holding state; this is useful if we
have many servants that share the same adapter and do not want requests to be processed until after all the servants have been
instantiated.)

6. Finally, we call wai t For Shut down. This call suspends the calling thread until the server implementation terminates, either by
making a call to shut down the run time, or in response to a signal. (For now, we will simply interrupt the server on the command line
when we no longer need it.)

Note that, even though there is quite a bit of code here, that code is essentially the same for all servers. You can put that code into a helper
class and, thereafter, will not have to bother with it again. (Ice provides such a helper class, called | ce. Appl i cati on.) As far as actual
application code is concerned, the server contains only a few lines: seven lines for the definition of the Pri nt er | class, plus three lines to
instantiate a Pri nt er | object and register it with the object adapter.

We can compile the server code as follows:

$ nkdir classes
$ javac -d classes -classpath classes: $I CE HOVE/ | i b/lce.jar \
Server.java Printerl.java generated/ Denpo/*.java

This compiles both our application code and the code that was generated by the Slice compiler. We assume that the | CE_HOME environment
variable is set to the top-level directory containing the Ice run time. (For example, if you have installed Ice in / opt / | ce, set | CE_HOVE to
that path.) Note that Ice for Java uses the ant build environment to control building of source code. (ant is similar to nake, but more flexible
for Java applications.) You can have a look at the demo code that ships with Ice to see how to use this tool.

Writing and Compiling a Client in Java

The client code, in d i ent . j ava, looks very similar to the server. Here it is in full:

Copyright © 2011, ZeroC, Inc.

43

Ice 3.4.2 Documentation

public class dient {
public static void
mai n(String[] args)
{

int status = O;
I ce. Cormuni cator ic = null;
try {
ic =lce.Wil.initialize(args);
Ice. CbjectPrx base = ic.stringToProxy("SinplePrinter:default -p 10000");
Deno. PrinterPrx printer = Denp. PrinterPrxHel per.checkedCast (base);
if (printer == null)
throw new Error("lInvalid proxy");

printer.printString("Hello World!l");
} catch (Ice.Local Exception e) {
e.printStackTrace();
status = 1;
} catch (Exception e) {
Systemerr.println(e. get Message());
status = 1;

}
if (ic!=null) {
/1 dean up
11
try {
ic.destroy();
} catch (Exception e) {
Systemerr.println(e.get Message());
status = 1;
}
}

System exit(status);

Note that the overall code layout is the same as for the server: we use the same t ry and cat ch blocks to deal with errors. The code in the
t ry block does the following:

1.
2.

As for the server, we initialize the Ice run time by calling I ce. Uti |l .initialize.

The next step is to obtain a proxy for the remote printer. We create a proxy by calling st ri ngToPr oxy on the communicator, with
the string " Si npl ePrinter:default -p 10000". Note that the string contains the object identity and the port number that were
used by the server. (Obviously, hard-coding object identities and port numbers into our applications is a bad idea, but it will do for
now; we will see more architecturally sound ways of doing this when we discuss IceGrid.)

. The proxy returned by st ri ngToPr oxy is of type | ce. Obj ect Pr x, which is at the root of the inheritance tree for interfaces and

classes. But to actually talk to our printer, we need a proxy for a Pri nt er interface, not an Obj ect interface. To do this, we need to
do a down-cast by calling Pri nt er Pr xHel per. checkedCast . A checked cast sends a message to the server, effectively asking
"is this a proxy for a Pri nt er interface?" If so, the call returns a proxy of type Deno: : Pri nt er ; otherwise, if the proxy denotes an
interface of some other type, the call returns null.

. We test that the down-cast succeeded and, if not, throw an error message that terminates the client.
. We now have a live proxy in our address space and can call the pri nt St ri ng method, passing it the time-honored " Hel | o

Wor | d!'" string. The server prints that string on its terminal.

Compiling the client looks much the same as for the server:

$ javac -d classes -classpath classes: $ICE HOW/ lib/lce.jar \
Client.java Printerl.java generated/ Deno/*.java

Running Client and Server in Java

To run client and server, we first start the server in a separate window:

Copyright © 2011, ZeroC, Inc.

44

Ice 3.4.2 Documentation

$ java Server

At this point, we won't see anything because the server simply waits for a client to connect to it. We run the client in a different window:

$ java Cient
$

The client runs and exits without producing any output; however, in the server window, we see the "Hel | o Wor | d! " that is produced by
the printer. To get rid of the server, we interrupt it on the command line for now. (We will see cleaner ways to terminate a server in our
discussion of | ce. Appl i cati on.)

If anything goes wrong, the client will print an error message. For example, if we run the client without having first started the server, we get
something like the following:

| ce. Connect i onRef usedExcepti on
error =0
at |celnternal.Connect Request Handl er. get Connecti on(Connect Request Handl er . j ava: 240)
at |celnternal.Connect Request Handl er. sendRequest (Connect Request Handl er . j ava: 138)
at Icelnternal.Qutgoing.invoke(Qutgoing.java: 66)
at lce._QObjectDel Mice_i sA(_ObjectDel Mjava: 30)
at |ce. Qbj ect PrxHel perBase. i ce_i sA(bj ect PrxHel per Base. j ava: 111)
at |ce. Obj ect PrxHel perBase. i ce_i SA(Obj ect PrxHel per Base. j ava: 77)
at Denp. Hel | oPr xHel per. checkedCast (Hel | oPr xHel per.j ava: 228)
at Cient.run(Cient.java: 65)
Caused by: java.net.Connect Exception: Connection refused

Note that, to successfully run client and server, your CLASSPATH must include the Ice library and the classes directory, for example:

$ export CLASSPATH=$CLASSPATH: ./ cl asses: $| CE_HOVE/ | i b/ | ce. j ar

Please have a look at the demo applications that ship with Ice for the details for your platform.

See Also

Client-Side Slice-to-Java Mapping
Server-Side Slice-to-Java Mapping
The | ce. Appl i cati on Class
The Current Object

IceGrid

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Writing an Ice Application with C-Sharp

This page shows how to create an Ice application with C#.
On this page:

Compiling a Slice Definition for C#

Writing and Compiling a Server in C#

°
L]
® Writing and Compiling a Client in C#
® Running Client and Server in C#

Compiling a Slice Definition for C#

The first step in creating our C# application is to compile our Slice definition to generate C# proxies and skeletons. You can compile the
definition as follows:

$ nkdir generated
$ slice2cs --output-dir generated Printer.ice

Whenever we show Unix commands, we assume a Bourne or Bash shell. The commands for Windows are essentially
identical and therefore not shown.

The - - out put - di r option instructs the compiler to place the generated files into the gener at ed directory. This avoids cluttering the
working directory with the generated files. The sl i ce2cs compiler produces a single source file, Pri nt er . cs, from this definition. The
exact contents of this file do not concern us for now — it contains the generated code that corresponds to the Pri nt er interface we defined
inPrinter.ice.

Writing and Compiling a Server in C#

To implement our Pri nt er interface, we must create a servant class. By convention, a servant class uses the name of its interface with an
| -suffix, so our servant class is called Pri nt er | and placed into a source file Server. cs:

C#

usi ng System

public class Printerl : Deno.PrinterDisp_
{
public override void printString(string s, Ice.Current current)
{
Consol e. WiteLine(s);
}

The Printerl class inherits from a base class called Pri nt er Di sp_, which is generated by the sl i ce2cs compiler. The base class is
abstract and contains a pri nt St ri ng method that accepts a string for the printer to print and a parameter of type | ce. Cur r ent . (For now
we will ignore the | ce. Cur r ent parameter.) Our implementation of the pri nt St ri ng method simply writes its argument to the terminal.

The remainder of the server code follows in Ser ver. cs and is shown in full here:

Copyright © 2011, ZeroC, Inc.

46

Ice 3.4.2 Documentation

C#

public class Server

{

public static void Main(string[] args)

{

int status = 0;
I ce. Communi cator ic = null;
try {
ic = lce.UWil.initialize(ref args);
| ce. Obj ect Adapt er adapter =
i c.createCbj ect Adapt er Wt hEndpoi nts(" Si npl ePrinter Adapter”,
Ice. Cbject obj = new Printerl();
adapt er. add(obj, ic.stringToldentity("SinplePrinter"));
adapter.activate();
i c. wai t For Shut down() ;
} catch (Exception e) {
Consol e. Error. WiteLine(e);
status = 1;
}
if (ic!=null) {
/1 dean up
/1
try {
ic.destroy();
} catch (Exception e) {
Consol e. Error. WiteLine(e);
status = 1;
}
}

Envi ronnment . Exi t (st atus);

"default -p 10000");

Note the general structure of the code:

Copyright © 2011, ZeroC, Inc.

47

Ice 3.4.2 Documentation

C#
public class Server
{
public static void Main(string[] args)
{
int status = 0;
I ce. Communi cator ic = null;
try {
/1 Server inplenentation here...
} catch (Exception e) {
Consol e. Error. WiteLine(e);
status = 1;
}
if (ic!=null) {
/1 dean up
11
try {
ic.destroy();
} catch (Exception e) {
Consol e. Error. WiteLine(e);
status = 1;
}
}
Envi ronnent . Exi t (status);
}
}

The body of Mai n contains a t ry block in which we place all the server code, followed by a cat ch block. The catch block catches all
exceptions that may be thrown by the code; the intent is that, if the code encounters an unexpected run-time exception anywhere, the stack
is unwound all the way back to Mai n, which prints the exception and then returns failure to the operating system.

Before the code exits, it destroys the communicator (if one was created successfully). Doing this is essential in order to correctly finalize the
Ice run time: the program must call dest r oy on any communicator it has created; otherwise, undefined behavior results.

The body of our t ry block contains the actual server code:

C#

ic = lce. Uil.initialize(ref args);
| ce. Obj ect Adapt er adapter =
i c.createObject Adapt er Wt hEndpoi nts("Si npl ePrinterAdapter”, "default -p 10000");
Ice. Object obj = new Printerl();
adapt er. add(obj, ic.stringToldentity("SinmplePrinter"));
adapter. activate();
i c. wai t For Shut down() ;

The code goes through the following steps:

1. We initialize the Ice run time by calling I ce. Uti |l .initial i ze. (We pass ar gs to this call because the server may have
command-line arguments that are of interest to the run time; for this example, the server does not require any command-line
arguments.) The calltoi ni tial i ze returns an | ce. Communi cat or reference, which is the main object in the Ice run time.

2. We create an object adapter by calling cr eat eObj ect Adapt er Wt hEndpoi nt s on the Conmruni cat or instance. The arguments
we pass are " Si nmpl ePri nt er Adapt er" (which is the name of the adapter) and "def aul t -p 10000", which instructs the
adapter to listen for incoming requests using the default protocol (TCP/IP) at port number 10000.

3. At this point, the server-side run time is initialized and we create a servant for our Pri nt er interface by instantiating a Pri nt er |
object.

4. We inform the object adapter of the presence of a new servant by calling add on the adapter; the arguments to add are the servant
we have just instantiated, plus an identifier. In this case, the string " Si npl ePri nt er" is the name of the servant. (If we had
multiple printers, each would have a different name or, more correctly, a different object identity.)

5. Next, we activate the adapter by calling its act i vat e method. (The adapter is initially created in a holding state; this is useful if we
have many servants that share the same adapter and do not want requests to be processed until after all the servants have been

Copyright © 2011, ZeroC, Inc.

48

Ice 3.4.2 Documentation

instantiated.)

6. Finally, we call wai t For Shut down. This call suspends the calling thread until the server implementation terminates, either by
making a call to shut down the run time, or in response to a signal. (For now, we will simply interrupt the server on the command line
when we no longer need it.)

Note that, even though there is quite a bit of code here, that code is essentially the same for all servers. You can put that code into a helper
class and, thereafter, will not have to bother with it again. (Ice provides such a helper class, called | ce. Appl i cati on.) As far as actual
application code is concerned, the server contains only a few lines: seven lines for the definition of the Pri nt er | class, plus three lines to
instantiate a Pri nt er | object and register it with the object adapter.

We can compile the server code as follows:

$ csc /reference:lce.dll /lib:% CE_HOVE% bin Server.cs generated\Printer.cs

This compiles both our application code and the code that was generated by the Slice compiler. We assume that the | CE_HOVE environment
variable is set to the top-level directory containing the Ice run time. (For example, if you have installed Ice in C: \ | ce, set | CE_HOME to that

path.)

Writing and Compiling a Client in C#

The client code, in C i ent . cs, looks very similar to the server.

Here it is in full:

C#
usi ng System
usi ng Denvp;
public class dient
{
public static void Main(string[] args)
{
int status = 0;
| ce. Conmruni cator ic = null;
try {
ic = lce. UWil.initialize(ref args);
lce.ObjectPrx obj = ic.stringToProxy("SinplePrinter:default -p 10000");
PrinterPrx printer = PrinterPrxHel per.checkedCast (obj);
if (printer == null)
t hrow new ApplicationException("Invalid proxy");
printer.printString("Hello World!'");
} catch (Exception e) {
Consol e. Error. WiteLine(e);
status = 1;
}
if (ic!=null) {
/1 dean up
11
try {
ic.destroy();
} catch (Exception e) {
Consol e. Error. WiteLine(e);
status = 1;
}
}
Envi ronnent . Exi t (status);
}
}

Note that the overall code layout is the same as for the server: we use the same t ry and cat ch blocks to deal with errors. The code in the
t ry block does the following:

Copyright © 2011, ZeroC, Inc.

49

Compil

Ice 3.4.2 Documentation

. As for the server, we initialize the Ice run time by calling I ce. Wil .initialize.
. The next step is to obtain a proxy for the remote printer. We create a proxy by calling st ri ngToPr oxy on the communicator, with

the string " Si npl ePrinter:default -p 10000". Note that the string contains the object identity and the port number that were
used by the server. (Obviously, hard-coding object identities and port numbers into our applications is a bad idea, but it will do for
now; we will see more architecturally sound ways of doing this when we discuss IceGrid.

. The proxy returned by st ri ngToPr oxy is of type | ce. Cbj ect Pr x, which is at the root of the inheritance tree for interfaces and

classes. But to actually talk to our printer, we need a proxy for a Pri nt er interface, not an Obj ect interface. To do this, we need to
do a down-cast by calling Pri nt er Pr xHel per. checkedCast . A checked cast sends a message to the server, effectively asking
"is this a proxy for a Pri nt er interface?" If so, the call returns a proxy of type Deno: : Pri nt er ; otherwise, if the proxy denotes an
interface of some other type, the call returns null.

. We test that the down-cast succeeded and, if not, throw an error message that terminates the client.
. We now have a live proxy in our address space and can call the pri nt St ri ng method, passing it the time-honored " Hel | o

Wor | d!'" string. The server prints that string on its terminal.

ing the client looks much the same as for the server:

$ csc /reference:lce.dll /lib:% CE_HOVE®%bin Cient.cs generated\Printer.cs

Run

To run

ning Client and Server in C#

client and server, we first start the server in a separate window:

$ server. exe

At this

point, we won't see anything because the server simply waits for a client to connect to it. We run the client in a different window:

$ client.exe
$

The client runs and exits without producing any output; however, in the server window, we see the "Hel | o Worl d! " that is produced by
the printer. To get rid of the server, we interrupt it on the command line for now. (We will see cleaner ways to terminate a server in our
discussion of | ce. Appl i cati on.)

If anything goes wrong, the client will print an error message. For example, if we run the client without having first started the server, we get
something like the following:

I ce. Connect i onRef usedExcepti on
error =0
at lcelnternal.ProxyFactory.checkRetryAfterException(Local Exception ex, Reference ref, Int32 cnt)

Note that, to successfully run client and server, the C# run time must be able to locate the | ce. dl | library. (Under Windows, one way to

ensure this is to copy the library into the current directory. Please consult the documentation for your C# run time to see how it locates
libraries.)
See Also

® Client-Side Slice-to-C-Sharp Mapping

® Server-Side Slice-to-C-Sharp Mapping

® Thelce. Application Class

® The Current Object

® |ceGrid

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Writing an Ice Application with Visual Basic

This page shows how to create an Ice application with Visual Basic.
On this page:

Visual Basic Development Process

Compiling a Slice Definition for Visual Basic
Writing and Compiling a Server in Visual Basic
Writing and Compiling a Client in Visual Basic
Running Client and Server in Visual Basic

Visual Basic Development Process

As of version 3.3, Ice no longer includes a separate compiler to create Visual Basic source code from Slice definitions. Instead, you need to
use the Slice-to-C# compiler sl i ce2cs to create C# source code and compile the generated C# source code with a C# compiler into a DLL
that contains the compiled generated code for your Slice definitions. Your Visual Basic application then links with this DLL and the Ice for
.NETDLL (I ce. dl |).

This approach works not only with Visual Basic, but with any language that targets the .NET run time. However, ZeroC
does not provide support for languages other than C# and Visual Basic.

The following illustration demonstrates this development process:

i - ic Slice-to-C# rinter.cs ;
Printer.ice| | b » Frinter.c »| C# Compiler
Compiler

e —

Slice Developer

Y

Client.vb .| Visual Basic N Client n Stub & Skeleton

] Compiler | Executabls | DLL

Client Developer

RPC

Server.vb C++ [ce Run-time Server Stub & Skeleton

Library | Executabls [DLL
-._r//-_'_‘-““

Developing a Visual Basic application with Ice.

Server Developer

Compiling a Slice Definition for Visual Basic

The first step in creating our VB application is to compile our Slice definition to generate proxies and skeletons. You can compile the
definition as follows:

> nkdi r generated
> slice2cs --output-dir generated Printer.ice

The - - out put - di r option instructs the compiler to place the generated files into the gener at ed directory. This avoids cluttering the
working directory with the generated files. The sl i ce2cs compiler produces a single source file, Pri nt er . cs, from this definition. The
exact contents of this file do not concern us for now — it contains the generated code that corresponds to the Pri nt er interface we defined
inPrinter.ice.

We now need to compile this generated code into a DLL:

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

> csc /reference:lce.dll /lib:% CE_HOVE%Wbin /t:library /out:Printer.dl|l generated\Printer.cs

This creates a DLL called Pri nter. dl | that contains the code we generated from the Slice definitions.

Writing and Compiling a Server in Visual Basic

To implement our Pri nt er interface, we must create a servant class. By convention, a servant class uses the name of its interface with an
| -suffix, so our servant class is called Pri nt er | and placed into a source file Ser ver. vb:

Visual Basic

I nports System
I mports Deno

Public Cass Printerl
Inherits PrinterDisp_

Public Overloads Overrides Sub printString(_
ByVal s As String, _
ByVal current As Ice.Current)
Consol e. Wi teLine(s)
End Sub

End d ass

The Printerl class inherits from a base class called Pri nt er Di sp_, which is generated by the sl i ce2cs compiler. The base class is
abstract and contains a pri nt St ri ng method that accepts a string for the printer to print and a parameter of type | ce. Cur r ent . (For now
we will ignore the | ce. Cur r ent parameter.) Our implementation of the pri nt St ri ng method simply writes its argument to the terminal.

The remainder of the server code follows in Ser ver . vb and is shown in full here:

Copyright © 2011, ZeroC, Inc.

52

Ice 3.4.2 Documentation

Visual Basic

Modul e Server
Public Sub Main(ByVal args() As String)

Dimstatus As Integer = 0
Dimic As |ce. Communi cator = Nothing
Try
ic = lce. Wil.initialize(args)
Di m adapter As |ce. Cbject Adapter = _
i c.createCbj ect Adapt er Wt hEndpoi nts(" Si npl ePrinter Adapter”,
Dimobj As Ice.oject = New Printerl
adapt er. add(obj, ic.stringToldentity("SinplePrinter"))
adapter. activate()
i c. wai t For Shut down()
Catch e As Exception
Consol e. Error. WiteLine(e)

status = 1

End Try

If Not ic I's Nothing Then
' Cean up
Try

ic.destroy()
Catch e As Exception
Consol e. Error. WiteLine(e)
status = 1
End Try
End | f
Envi ronment . Exi t (st at us)
End Sub

End nodul e

"default -p 10000")

Note the general structure of the code:

Copyright © 2011, ZeroC, Inc.

53

Ice 3.4.2 Documentation

Visual Basic

Modul e Server
Public Sub Main(ByVal args() As String)

Dimstatus As Integer = 0
Dimic As |ce. Communi cator = Nothing
Try

Server inplenentation here...

Catch e As Exception
Consol e. Error. WiteLine(e)
status =1

End Try

If Not ic I's Nothing Then
' Clean up
Try

ic.destroy()
Catch e As Exception
Consol e. Error. WiteLine(e)
status = 1
End Try
End | f
Envi ronnent . Exi t (st at us)
End Sub

End nodul e

The body of Mai n contains a Try block in which we place all the server code, followed by a Cat ch block. The catch block catches all
exceptions that may be thrown by the code; the intent is that, if the code encounters an unexpected run-time exception anywhere, the stack
is unwound all the way back to Mai n, which prints the exception and then returns failure to the operating system.

Before the code exits, it destroys the communicator (if one was created successfully). Doing this is essential in order to correctly finalize the
Ice run time: the program must call dest r oy on any communicator it has created; otherwise, undefined behavior results.

The body of our Try block contains the actual server code:

Visual Basic

ic = lce. . Uil.initialize(args)
Di m adapter As |ce. Cbject Adapter = _
i c.createObject Adapt er Wt hEndpoi nts(" Si npl ePrinter Adapter”, "default -p 10000")
Dimobj As lce.Object = New Printerl
adapt er. add(obj, ic.stringToldentity("SinplePrinter"))
adapter. activate()
i c. wai t For Shut down()

The code goes through the following steps:

1. We initialize the Ice run time by calling I ce. Util .initialize.(We pass ar gs to this call because the server may have
command-line arguments that are of interest to the run time; for this example, the server does not require any command-line
arguments.) The calltoi nitial i ze returns an | ce: : Communi cat or reference, which is the main object in the Ice run time.

2. We create an object adapter by calling cr eat eObj ect Adapt er Wt hEndpoi nt s on the Conmuni cat or instance. The arguments
we pass are " Si nmpl ePri nt er Adapt er" (which is the name of the adapter) and "def aul t -p 10000", which instructs the
adapter to listen for incoming requests using the default protocol (TCP/IP) at port number 10000.

3. At this point, the server-side run time is initialized and we create a servant for our Pri nt er interface by instantiating a Pri nt er |
object.

4. We inform the object adapter of the presence of a new servant by calling add on the adapter; the arguments to add are the servant
we have just instantiated, plus an identifier. In this case, the string " Si npl ePri nt er" is the name of the servant. (If we had
multiple printers, each would have a different name or, more correctly, a different object identity.)

5. Next, we activate the adapter by calling its act i vat e method. (The adapter is initially created in a holding state; this is useful if we

Copyright © 2011, ZeroC, Inc.

54

Ice 3.4.2 Documentation

have many servants that share the same adapter and do not want requests to be processed until after all the servants have been

instantiated.)

6. Finally, we call wai t For Shut down. This call suspends the calling thread until the server implementation terminates, either by
making a call to shut down the run time, or in response to a signal. (For now, we will simply interrupt the server on the command line

when we no longer need it.)

Note that, even though there is quite a bit of code here, that code is essentially the same for all servers. You can put that code into a helper
class and, thereafter, will not have to bother with it again. (Ice provides such a helper class, called | ce. Appl i cati on.) As far as actual
application code is concerned, the server contains only a few lines: ten lines for the definition of the Pri nt er | class, plus three lines to

instantiate a Pri nt er | object and register it with the object adapter.

We can compile the server code as follows:

> vbc /reference:lce.dll /libpath: % CE_HOVEW bin /reference: Printer.dl|

/out:server.exe Server.vb

This compiles our application code and links it with the Ice run time and the DLL we generated earlier. We assume that the | CE_HOVE
environment variable is set to the top-level directory containing the Ice run time. (For example, if you have installed Ice in C: \ | ce, set

| CE_HOME to that path.)

Writing and Compiling a Client in Visual Basic

The client code, in C i ent . vb, looks very similar to the server. Here it is in full:

Visual Basic

I nports System
I mports Deno

Mbdul e d i ent

Public Sub Main(ByVal args() As String)
Dimstatus As Integer = 0
Dimic As |ce.Communicator = Nothing
Try
ic = lce. . Uil.initialize(args)

If printer Is Nothing Then
Throw New Appl i cati onException("Invalid proxy")
End | f

printer.printString("Hello World!'")
Catch e As Exception

Consol e. Error. WiteLine(e)

status = 1

End Try
If Not ic I's Nothing Then
Cl ean up
Try

ic.destroy()
Catch e As Exception
Consol e. Error. WiteLine(e)
status = 1
End Try
End | f
Envi ronnent . Exi t (st at us)
End Sub

End Modul e

Dimobj As Ice.ObjectPrx = ic.stringToProxy("SinplePrinter:default -p 10000")
Dimprinter As PrinterPrx = PrinterPrxHel per.checkedCast (obj)

Note that the overall code layout is the same as for the server: we use the same Try and Cat ch blocks to deal with errors. The code in the

Try block does the following:

Copyright © 2011, ZeroC, Inc.

55

Compil

Ice 3.4.2 Documentation

. As for the server, we initialize the Ice run time by calling I ce. Wil .initialize.
. The next step is to obtain a proxy for the remote printer. We create a proxy by calling st ri ngToPr oxy on the communicator, with

the string " Si npl ePrinter:default -p 10000". Note that the string contains the object identity and the port number that were
used by the server. (Obviously, hard-coding object identities and port numbers into our applications is a bad idea, but it will do for
now; we will see more architecturally sound ways of doing this when we discuss IceGrid.)

. The proxy returned by st ri ngToPr oxy is of type | ce. Cbj ect Pr x, which is at the root of the inheritance tree for interfaces and

classes. But to actually talk to our printer, we need a proxy for a Pri nt er interface, not an Obj ect interface. To do this, we need to
do a down-cast by calling Pri nt er Pr xHel per. checkedCast . A checked cast sends a message to the server, effectively asking
"is this a proxy for a Pri nt er interface?" If so, the call returns a proxy of type Deno: : Pri nt er ; otherwise, if the proxy denotes an
interface of some other type, the call returns null.

. We test that the down-cast succeeded and, if not, throw an error message that terminates the client.
. We now have a live proxy in our address space and can call the pri nt St ri ng method, passing it the time-honored " Hel | o

Wor | d!'" string. The server prints that string on its terminal.

ing the client looks much the same as for the server:

> vbc /reference:lce.dll /libpath: % CE_ HOVE% bin /reference: Printer.dll /out:client.exe Cient.vb

Run

To run

ning Client and Server in Visual Basic

client and server, we first start the server in a separate window:

> server. exe

At this

point, we won't see anything because the server simply waits for a client to connect to it. We run the client in a different window:

> client.exe
>

The client runs and exits without producing any output; however, in the server window, we see the "Hel | o Wor| d! " that is produced by
the printer. To get rid of the server, we interrupt it on the command line for now. (We will see cleaner ways to terminate a server in our
discussion of | ce. Appl i cati on.)

If anything goes wrong, the client will print an error message. For example, if we run the client without having first started the server, we get
something like the following:

I ce. Connect i onRef usedExcepti on
error =0
at lcelnternal.ProxyFactory.checkRetryAfterException(Local Exception ex, Reference ref, Int32 cnt)

Note that, to successfully run client and server, the VB run time must be able to locate the | ce. dl | library. (Under Windows, one way to

ensure this is to copy the library into the current directory. Please consult the documentation for your VB run time to see how it locates
libraries.)
See Also

® Client-Side Slice-to-C-Sharp Mapping

® Server-Side Slice-to-C-Sharp Mapping

® Thelce. Application Class

® The Current Object

® |ceGrid

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Writing an Ice Application with Objective-C

This page shows how to create an Ice application with Objective-C.
On this page:

Compiling a Slice Definition for Objective-C

Writing and Compiling a Server in Objective-C

°
L]
® Writing and Compiling a Client in Objective-C
® Running Client and Server in Objective-C

Compiling a Slice Definition for Objective-C

The first step in creating our Objective-C application is to compile our Slice definition to generate Objective-C proxies and skeletons. Under
Unix, you can compile the definition as follows:

$ slice2objc Printer.ice

The sl i ce2obj ¢ compiler produces two Objective-C source files from this definition, Pri nter. hand Pri nter. m

® Printer.h
The Pri nt er. h header file contains Objective-C type definitions that correspond to the Slice definitions for our Pri nt er interface.

This header file must be included in both the client and the server source code.
® Printer.m
The Pri nt er . mfile contains the source code for our Pri nt er interface. The generated source contains type-specific run-time
support for both clients and servers. For example, it contains code that marshals parameter data (the string passed to the
print St ri ng operation) on the client side and unmarshals that data on the server side.
The Pri nt er . mfile must be compiled and linked into both client and server.
Writing and Compiling a Server in Objective-C

The source code for the server takes only a few lines and is shown in full here:

56 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Objective-C
#i mport <lce/lce. h>
#i nmport <Printer.h>
#i nport <Foundati on/ NSAut or el easePool . h>
#i nport <stdio. h>
@nterface Printerl : DenoPrinter <DenoPrinter>
@nd
@npl enentation Printerl
-(void) printString: (NSMutabl eString *)s
current: (1 CECurrent *)current
{
printf("%\n", [s UTF8String]);
}
@nd
int
main(int argc, char* argv[])
{
NSAut or el easePool * pool = [[NSAutorel easePool alloc] init];
int status = 1;
i d<I CECommuni cat or > comuni cator = nil;
@ry {
communi cator = [ICEUti| createComunicator: &rgc argv: argv];
i d<| CEQbj ect Adapt er > adapter =
[communi cat or creat eCbj ect Adapt er Wt hEndpoi nt's:
@ Si npl ePri nt er Adapter"
endpoi nts: @default -p 10000"];
| CEQbj ect *object = [[[Printerl alloc] init] autorel ease];
[adapt er add: obj ect identity:[comunicator stringToldentity: @SinmplePrinter"]];
[adapter activate];
[communi cat or wai t For Shut down] ;
status = 0;
} @atch (NSException* ex) {
NSLog(@ %@, ex);
}
@ry {
[communi cat or destroy];
} @atch (NSException* ex) {
NSLog(@ %@, ex);
}
[pool rel ease];
return status;
}

There appears to be a lot of code here for something as simple as a server that just prints a string. Do not be concerned by this: most of the
preceding code is boiler plate that never changes. For this very simple server, the code is dominated by this boiler plate.

Every Ice source file starts with an include directive for | ce. h, which contains the definitions for the Ice run time. We also include

Pri nt er. h, which was generated by the Slice compiler and contains the Objective-C definitions for our printer interface. In addition, we
import headers to allow us to use an autorelease pool and to produce output:

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Objective-C

#i mport <lce/lce. h>
#i nmport <Printer.h>

#i nport <Foundati on/ NSAut or el easePool . h>
#i nport <stdio. h>

Our server implements a single printer servant, of type Pri nt er | . Looking at the generated code in Pri nt er . h, we find the following
(tidied up a little to get rid of irrelevant detail):

Objective-C

@r ot ocol DenoPrinter <ICEOhject>

-(void) printString: (NSMutabl eString *)s
current: (1 CECurrent *)current;

@nd

@nterface DenmoPrinter : | CEject
/1

@nd

The DenoPr i nt er protocol and class definitions are generated by the Slice compiler. The protocol defines the pri nt St ri ng method,
which we must implement in our servant. The DenoPr i nt er class contains methods that are internal to the mapping, so we are not
concerned with these. However, our servant must derive from this skeleton class:

Objective-C

@nterface Printerl : DenpPrinter <DenoPrinter>

@nd

@npl enentation Printerl
-(void) printString: (NSMutabl eString *)s
current: (1 CECurrent *)current
{
printf("%\n", [s UTF8String]);
}
@nd

As you can see, the implementation of the pri nt St ri ng method is trivial: it simply writes its string argument to st dout .

Note that pri nt St ri ng has a second parameter of type | CECur r ent . The Ice run time passes additional information about an incoming
request to the servant in this parameter. For now, we will ignore it.

What follows is the server main program. Note the general structure of the code:

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Objective-C
int
mai n(int argc, char* argv[])
{
NSAut or el easePool * pool = [[NSAutorel easePool alloc] init];
int status = 1;
i d<I CECommuni cat or > conmmuni cator = nil;
@ry {
communi cator = [ICEUti| createComunicator: &rgc argv:argv];
/1 Server inplenentation here...
status = 0;
} @atch (NSException* ex) {
NSLog(@ %@, ex);
}
@ry {
[comuni cat or destroy];
} @atch (NSException* ex) {
NSLog(@ %@, ex);
}
[pool rel ease];
return status;
}

The body of mai n instantiates an autorelease pool, which it releases before returning to ensure that the program does not leak memory.
mai n contains the declaration of two variables, st at us and comruni cat or . The st at us variable contains the exit status of the program
and the conmuni cat or variable, of type i d<I CECommuni cat or >, contains the main handle to the Ice run time.

Following these declarations is a t r y block in which we place all the server code, followed by a cat ch handler that logs any unhandled
exceptions.

Before returning, mai n executes a bit of cleanup code that calls the dest r oy method on the communicator. The cleanup call is outside the
first t ry block for a reason: we must ensure that the Ice run time is finalized whether the code terminates normally or terminates due to an
exception.

@ Failure to call dest r oy on the communicator before the program exits results in undefined behavior.

The body of the first t ry block contains the actual server code:

Objective-C

communi cator = [ICEUti| createComunicator: &rgc argv:argv];

i d<I CECbj ect Adapt er > adapter =
[communi cat or creat eCbj ect Adapt er Wt hEndpoi nt's:
@ Si npl ePri nt er Adapter"
endpoi nts: @default -p 10000"];

| CEQbj ect *object = [[[Printerl alloc] init] autorel ease];
[adapt er add: obj ect identity:[comunicator stringToldentity: @Si nplePrinter"]];

[adapter activate];

[comuni cat or wai t For Shut down] ;

The code goes through the following steps:

1. We initialize the Ice run time by calling cr eat eConmruni cat or . (We pass ar gc and ar gv to this call because the server may have

Copyright © 2011, ZeroC, Inc.

60

Ice 3.4.2 Documentation

command-line arguments that are of interest to the run time; for this example, the server does not require any command-line
arguments.) The call to cr eat eConmruni cat or returns a value of type i d<I CEConmuni cat or >, which is the main object in the
Ice run time.

2. We create an object adapter by calling cr eat eCbj ect Adapt er Wt hEndpoi nt s on the Conmruni cat or instance. The arguments
we pass are " Si npl ePri nt er Adapt er " (which is the name of the adapter) and "def ault -p 10000", which instructs the
adapter to listen for incoming requests using the default protocol (TCP/IP) at port number 10000.

3. At this point, the server-side run time is initialized and we create a servant for our Pri nt er interface by instantiating a Pri nt er |
object.

4. We inform the object adapter of the presence of a new servant by calling add on the adapter; the arguments to add are the servant
we have just instantiated, plus an identifier. In this case, the string " Si npl ePri nt er " is the name of the servant. (If we had
multiple printers, each would have a different name or, more correctly, a different object identity.)

5. Next, we activate the adapter by calling its act i vat e method. (The adapter is initially created in a holding state; this is useful if we
have many servants that share the same adapter and do not want requests to be processed until after all the servants have been
instantiated.) The server starts to process incoming requests from clients as soon as the adapter is activated.

6. Finally, we call wai t For Shut down. This call suspends the calling thread until the server implementation terminates, either by
making a call to shut down the run time, or in response to a signal. (For now, we will simply interrupt the server on the command line
when we no longer need it.)

Note that, even though there is quite a bit of code here, that code is essentially the same for all servers. You can put that code into a helper
class and, thereafter, will not have to bother with it again. As far as actual application code is concerned, the server contains only a few lines:
nine lines for the definition of the Pri nt er | class, plus three lines to instantiate a Pri nt er | object and register it with the object adapter.

Assuming that we have the server code in a file called Ser ver . m we can compile it as follows:

$cc-c-l. -1$ICE_HOW include Printer.m Server. m

This compiles both our application code and the code that was generated by the Slice compiler. We assume that the | CE_HOME environment
variable is set to the top-level directory containing the Ice run time. (For example, if you have installed Ice in / opt / | ce, set | CE_HOVE to
that path.) Depending on your platform, you may have to add additional include directives or other options to the compiler; please see the
demo programs that ship with Ice for the details.

Finally, we need to link the server into an executable:

$ c++ Printer.o Server.o -0 server -L$ICE_HOWE/ lib -11ceQbj C -framework Foundation

Again, depending on the platform, the actual list of libraries you need to link against may be longer. The demo programs that ship with Ice
contain all the detail.

Writing and Compiling a Client in Objective-C

The client code looks very similar to the server. Here it is in full:

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Objective-C

#i mport <lce/lce. h>
#i nmport <Printer.h>

#i nport <Foundati on/ NSAut or el easePool . h>
#i nport <stdio. h>

int
mai n(int argc, char* argv[])
{

NSAut or el easePool * pool = [[NSAutorel easePool alloc] init];

int status = 1;
i d<I CECommuni cat or > comuni cator = nil;
@ry {
communi cator = [ICEUti| createComunicator: &rgc argv:argv];
i d<| CEObj ect Prx> base = [comuni cator stringToProxy: @Si npl ePrinter:default -p 10000"];
i d<DenoPrinterPrx> printer = [DenoPrinterPrx checkedCast: base];
if(!printer)
[NSException raise: @l nvalid proxy" format:nil];

[printer printString: @Hello Wrld!'"];

status = 0;

} @atch (NSException* ex) {
NSLog(@ %@, ex);

}

@ry {
[communi cat or destroy];
} @atch (NSException* ex) {
NSLog(@ Y@, ex);
}

[pool rel ease];
return status;

Note that the overall code layout is the same as for the server: we include the headers for the Ice run time and the header generated by the
Slice compiler, and we use the same t ry block and cat ch handlers to deal with errors.

The code in the t r y block does the following:

1.
2.

As for the server, we initialize the Ice run time by calling cr eat eConmuni cat or.

The next step is to obtain a proxy for the remote printer. We create a proxy by calling st ri ngToPr oxy on the communicator, with
the string " Si npl ePrinter:default -p 10000". Note that the string contains the object identity and the port number that were
used by the server. (Obviously, hard-coding object identities and port numbers into our applications is a bad idea, but it will do for
now; we will see more architecturally sound ways of doing this when we discuss IceGrid.)

. The proxy returned by st ri ngToPr oxy is of type i d<| CEObj ect Pr x>, which is at the root of the inheritance tree for interfaces

and classes. But to actually talk to our printer, we need a proxy for a Pri nt er interface, not an Obj ect interface. To do this, we
need to do a down-cast by calling the checkedCast class method on the DenpPr i nt er Pr x class. A checked cast sends a
message to the server, effectively asking "is this a proxy for a Pri nt er interface?" If so, the call returns a proxy toa Pri nter;
otherwise, if the proxy denotes an interface of some other type, the call returns a null proxy.

. We test that the down-cast succeeded and, if not, throw an error message that terminates the client.
. We now have a live proxy in our address space and can call the pri nt St ri ng method, passing it the time-honored " Hel | o

Wor | d!'" string. The server prints that string on its terminal.

Compiling and linking the client looks much the same as for the server:

$cc-c-1. -1$ICE_HOW/ include Printer.mClient. m
$ c++ Printer.o Cient.o -o client -L$ICE_HOME/lib -11ceCbj C -framework Foundation

Copyright © 2011, ZeroC, Inc.

62

Ice 3.4.2 Documentation

Running Client and Server in Objective-C

To run client and server, we first start the server in a separate window:

$./server

At this point, we won't see anything because the server simply waits for a client to connect to it. We run the client in a different window:

$./client
$

The client runs and exits without producing any output; however, in the server window, we see the "Hel | o Wor | d! " that is produced by
the printer. To get rid of the server, we interrupt it on the command line for now.

If anything goes wrong, the client will print an error message. For example, if we run the client without having first started the server, we get:

Net wor k. cpp: 1218: | ce:: Connecti onRef usedExcepti on:
connection refused: Connection refused

Note that, to successfully run client and server, you may have to set DYLD_LI BRARY_PATH to include the Ice library directory. Please see
the installation instructions and the demo applications that ship with Ice Touch for details.

See Also
Client-Side Slice-to-Objective-C Mapping
Server-Side Slice-to-Objective-C Mapping

°
L]
® The Current Object
® |ceGrid

Copyright © 2011, ZeroC, Inc.

63

Ice 3.4.2 Documentation

Writing an Ice Application with Python

This page shows how to create an Ice application with Python.
On this page:

Compiling a Slice Definition for Python

Writing a Server in Python

°

L]

® Writing a Client in Python

® Running Client and Server in Python

Compiling a Slice Definition for Python

The first step in creating our Python application is to compile our Slice definition to generate Python proxies and skeletons. You can compile
the definition as follows:

$ slice2py Printer.ice

Whenever we show Unix commands, we assume a Bourne or Bash shell. The commands for Windows are essentially
identical and therefore not shown.

The sl i ce2py compiler produces a single source file, Pri nt er _i ce. py, from this definition. The compiler also creates a Python package
for the Denb module, resulting in a subdirectory named Denp. The exact contents of the source file do not concern us for now — it contains
the generated code that corresponds to the Pri nt er interface we defined in Pri nter.i ce.

Writing a Server in Python

To implement our Pri nt er interface, we must create a servant class. By convention, a servant class uses the name of its interface with an
| -suffix, so our servant class is called Printerl:

Python

class Printerl(Deno.Printer):
def printString(self, s, current=None):
print s

The Printerl class inherits from a base class called Deno. Pri nt er, which is generated by the sl i ce2py compiler. The base class is
abstract and contains a pri nt St ri ng method that accepts a string for the printer to print and a parameter of type | ce. Cur r ent . (For now
we will ignore the | ce. Cur r ent parameter.) Our implementation of the pri nt St ri ng method simply writes its argument to the terminal.

The remainder of the server code, in Ser ver . py, follows our servant class and is shown in full here:

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Python

inmport sys, traceback, Ice
inmport Deno

class Printerl (Denmo.Printer):
def printString(self, s, current=None):

print s
status = 0
ic = None
try:
ic = lce.initialize(sys.argv)
adapter = ic.createOject Adapt er Wt hEndpoi nts("Si npl ePrinterAdapter”, "default -p 10000")
object = Printerl ()
adapt er. add(obj ect, ic.stringToldentity("SinplePrinter"))
adapter. activate()
i c. wai t For Shut down()
except :
traceback. print_exc()
status = 1
if ic:
Clean up
try:

ic.destroy()

except :
traceback. print_exc()
status = 1

sys. exit(status)

Note the general structure of the code:

Python
status = 0
ic = None
try:

Server inplenentation here...

except :
traceback. print _exc()
status = 1

if ic:
Cean up
try:
ic.destroy()
except :
traceback. print_exc()
status = 1

sys. exit(status)

The body of the main program contains a t r y block in which we place all the server code, followed by an except block. The except block
catches all exceptions that may be thrown by the code; the intent is that, if the code encounters an unexpected run-time exception anywhere,
the stack is unwound all the way back to the main program, which prints the exception and then returns failure to the operating system.

Before the code exits, it destroys the communicator (if one was created successfully). Doing this is essential in order to correctly finalize the
Ice run time: the program must call dest r oy on any communicator it has created; otherwise, undefined behavior results.

The body of our t ry block contains the actual server code:

Copyright © 2011, ZeroC, Inc.

65

Ice 3.4.2 Documentation

Python

ic = lce.initialize(sys.argv)

adapter = ic.createject Adapter Wt hEndpoi nts("Si npl ePrinterAdapter”, "default -p 10000")
object = Printerl ()

adapt er. add(obj ect, ic.stringToldentity("SinplePrinter"))

adapter. activate()

i c. wai t For Shut down()

The code goes through the following steps:

1. We initialize the Ice run time by calling I ce. i niti al i ze. (We pass sys. ar gv to this call because the server may have
command-line arguments that are of interest to the run time; for this example, the server does not require any command-line
arguments.) The calltoi ni ti al i ze returns an | ce. Conmuni cat or reference, which is the main object in the Ice run time.

2. We create an object adapter by calling cr eat eCbj ect Adapt er Wt hEndpoi nt s on the Conmruni cat or instance. The arguments
we pass are " Si npl ePri nt er Adapt er " (which is the name of the adapter) and "default -p 10000", which instructs the
adapter to listen for incoming requests using the default protocol (TCP/IP) at port number 10000.

3. At this point, the server-side run time is initialized and we create a servant for our Pri nt er interface by instantiating a Pri nt er |
object.

4. We inform the object adapter of the presence of a new servant by calling add on the adapter; the arguments to add are the servant
we have just instantiated, plus an identifier. In this case, the string " Si npl ePri nt er " is the name of the servant. (If we had
multiple printers, each would have a different name or, more correctly, a different object identity.)

5. Next, we activate the adapter by calling its act i vat e method. (The adapter is initially created in a holding state; this is useful if we
have many servants that share the same adapter and do not want requests to be processed until after all the servants have been
instantiated.)

6. Finally, we call wai t For Shut down. This call suspends the calling thread until the server implementation terminates, either by
making a call to shut down the run time, or in response to a signal. (For now, we will simply interrupt the server on the command line
when we no longer need it.)

Note that, even though there is quite a bit of code here, that code is essentially the same for all servers. You can put that code into a helper
class and, thereafter, will not have to bother with it again. (Ice provides such a helper class, called | ce. Appl i cati on.) As far as actual

application code is concerned, the server contains only a few lines: three lines for the definition of the Pri nt er | class, plus two lines to
instantiate a Pri nt er | object and register it with the object adapter.

Writing a Client in Python

The client code, in O i ent . py, looks very similar to the server. Here it is in full:

Copyright © 2011, ZeroC, Inc.

66

Ice 3.4.2 Documentation

Python

inmport sys, traceback, Ice
inmport Deno

status = 0
ic = None
try:
ic = lce.initialize(sys.argv)
base = ic.stringToProxy("SinplePrinter:default -p 10000")
printer = Deno. PrinterPrx.checkedCast (base)
if not printer:
raise RuntineError("lnvalid proxy")

printer.printString("Hello Wrld!'")
except :

traceback. print_exc()

status = 1

if ic:
Cean up
try:
ic.destroy()
except :
traceback. print _exc()
status =1

sys. exit(status)

Note that the overall code layout is the same as for the server: we use the same t ry and except blocks to deal with errors. The code in the
t ry block does the following:

1.
2.

As for the server, we initialize the Ice run time by calling | ce.initiali ze.

The next step is to obtain a proxy for the remote printer. We create a proxy by calling st ri ngToPr oxy on the communicator, with
the string " Si npl ePrinter:default -p 10000". Note that the string contains the object identity and the port number that were
used by the server. (Obviously, hard-coding object identities and port numbers into our applications is a bad idea, but it will do for
now; we will see more architecturally sound ways of doing this when we discuss IceGrid.)

. The proxy returned by st ri ngToPr oxy is of type | ce. Obj ect Pr x, which is at the root of the inheritance tree for interfaces and
classes. But to actually talk to our printer, we need a proxy for a Deno: : Pri nt er interface, not an Obj ect interface. To do this, we
need to do a down-cast by calling Deno. Pri nt er Pr x. checkedCast . A checked cast sends a message to the server, effectively
asking "is this a proxy for a Deno: : Pri nt er interface?" If so, the call returns a proxy of type Deno. Pri nt er Pr x; otherwise, if the
proxy denotes an interface of some other type, the call returns None.

4. We test that the down-cast succeeded and, if not, throw an error message that terminates the client.
5. We now have a live proxy in our address space and can call the pri nt St ri ng method, passing it the time-honored " Hel | o

Wor | d!'" string. The server prints that string on its terminal.

Running Client and Server in Python

To run

client and server, we first start the server in a separate window:

$ python Server. py

At this

point, we won't see anything because the server simply waits for a client to connect to it. We run the client in a different window:

$ python dient.py
$

The cl
the pri

ient runs and exits without producing any output; however, in the server window, we see the "Hel | o Wor | d! " that is produced by
nter. To get rid of the server, we interrupt it on the command line for now. (We will see cleaner ways to terminate a server in our

discussion of | ce. Appl i cation.)

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

If anything goes wrong, the client will print an error message. For example, if we run the client without having first started the server, we get
something like the following:

Traceback (nost recent call last):
File "Client.py", line 10, in ?
printer = Denp. PrinterPrx.checkedCast (base)
File "Printer_ice.py", line 43, in checkedCast
return Deno. PrinterPrx.ice_checkedCast(proxy, '::Demp::Printer', facet)
Connecti onRef usedExcepti on: | ce. Connecti onRef usedExcepti on:
Connection refused

Note that, to successfully run the client and server, the Python interpreter must be able to locate the Ice extension for Python. See the Ice for
Python installation instructions for more information.

See Also

Client-Side Slice-to-Python Mapping
Server-Side Slice-to-Python Mapping
The | ce. Appl i cati on Class

The Current Object

IceGrid

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Writing an Ice Application with Ruby

This page shows how to create an Ice client application with Ruby.
On this page:
® Compiling a Slice Definition for Ruby

® Writing a Client in Ruby
® Running the Client in Ruby

Compiling a Slice Definition for Ruby

The first step in creating our Ruby application is to compile our Slice definition to generate Ruby proxies. You can compile the definition as

follows:

$ slice2rb Printer.ice

Whenever we show Unix commands, we assume a Bourne or Bash shell. The commands for Windows are essentially

identical and therefore not shown.

The sl i ce2r b compiler produces a single source file, Pri nt er. r b, from this definition. The exact contents of the source file do not
concern us for now — it contains the generated code that corresponds to the Pri nt er interface we defined in Pri nter.i ce.

Writing a Client in Ruby

The client code, in d i ent . r b, is shown below in full:

68

Copyright © 2011, ZeroC, Inc.

69

Ice 3.4.2 Documentation

Ruby

require 'Printer.rb’

status = 0
ic =nil
begin
ic =lce::initialize(ARGY)
base = ic.stringToProxy("SinmplePrinter:default -p 10000")
printer = Denp::PrinterPrx::checkedCast (base)
if not printer
raise "lnvalid proxy"
end

printer.printString("Hello Wrld!'")

rescue
puts $!
puts $!.backtrace.join("\n")
status = 1
end
ific
Clean up
begi n
ic.destroy()
rescue
puts $!
puts $!.backtrace.join("\n")
status = 1
end
end

exit(status)

The program begins with a r equi r e statement, which loads the Ruby code we generated from our Slice definition in the previous section. It
is not necessary for the client to explicitly load the | ce module because Pri nt er . r b does that for you.

The body of the main program contains a begi n block in which we place all the client code, followed by a r escue block. The r escue block
catches all exceptions that may be thrown by the code; the intent is that, if the code encounters an unexpected run-time exception anywhere,
the stack is unwound all the way back to the main program, which prints the exception and then returns failure to the operating system.

The body of our begi n block goes through the following steps:

1.

Before

We initialize the Ice run time by calling | ce: : i ni ti al i ze. (We pass ARGV to this call because the client may have command-line
arguments that are of interest to the run time; for this example, the client does not require any command-line arguments.) The call to
initializereturnsanlce:: Comuni cat or reference, which is the main object in the Ice run time.

. The next step is to obtain a proxy for the remote printer. We create a proxy by calling st ri ngToPr oxy on the communicator, with

the string " Si npl ePrinter:default -p 10000". Note that the string contains the object identity and the port number that were
used by the server. (Obviously, hard-coding object identities and port numbers into our applications is a bad idea, but it will do for
now; we will see more architecturally sound ways of doing this when we discuss IceGrid.)

. The proxy returned by st ri ngToPr oxy is of type | ce: : Obj ect Pr x, which is at the root of the inheritance tree for interfaces and

classes. But to actually talk to our printer, we need a proxy for a Deno: : Pri nt er interface, not an Obj ect interface. To do this, we
need to do a down-cast by calling Deno: : Pri nt er Pr x: : checkedCast . A checked cast sends a message to the server,
effectively asking "is this a proxy for a Deno: : Pri nt er interface?" If so, the call returns a proxy of type Deno: : Pri nt er Pr x;
otherwise, if the proxy denotes an interface of some other type, the call returns ni | .

. We test that the down-cast succeeded and, if not, throw an error message that terminates the client.
. We now have a live proxy in our address space and can call the pri nt St ri ng method, passing it the time-honored " Hel | o

Wor | d!'" string. The server prints that string on its terminal.

the code exits, it destroys the communicator (if one was created successfully). Doing this is essential in order to correctly finalize the

Ice run time: the program must call dest r oy on any communicator it has created; otherwise, undefined behavior results.

Running the Client in Ruby

The server must be started before the client. Since Ice for Ruby does not support server-side behavior, we need to use a server from

Copyright © 2011, ZeroC, Inc.

70

Ice 3.4.2 Documentation

another language mapping. In this case, we will use the C++ server:

$ server

At this point, we won't see anything because the server simply waits for a client to connect to it. We run the client in a different window:

$ ruby dient.rb
$

The client runs and exits without producing any output; however, in the server window, we see the "Hel | o Wor | d! " that is produced by
the printer. To get rid of the server, we interrupt it on the command line.

If anything goes wrong, the client will print an error message. For example, if we run the client without having first started the server, we get
something like the following:

exception ::lce:: ConnectionRefusedException
{

error = 111
}

Note that, to successfully run the client, the Ruby interpreter must be able to locate the Ice extension for Ruby. See the Ice for Ruby
installation instructions for more information.

See Also

® Client-Side Slice-to-Ruby Mapping
® |ceGrid

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Writing an Ice Application with PHP

This page shows how to create an Ice client application with PHP.
On this page:
® Compiling a Slice Definition for PHP

® Writing a Client in PHP
® Running the Client in PHP

Compiling a Slice Definition for PHP

The first step in creating our PHP application is to compile our Slice definition to generate PHP code. You can compile the definition as

follows:

$ slice2php Printer.ice

Whenever we show Unix commands, we assume a Bourne or Bash shell. The commands for Windows are essentially

identical and therefore not shown.

The sl i ce2php compiler produces a single source file, Pri nt er . php, from this definition. The exact contents of the source file do not
concern us for now — it contains the generated code that corresponds to the Pri nt er interface we defined in Pri nter.i ce.

Writing a Client in PHP

The client code, in C i ent . php, is shown below in full:

71

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

PHP

<?php
require 'lce.php';
require 'Printer.php';

$ic = null;
try
{
$ic = lce_initialize();

$base = $ic->stringToProxy("SinmplePrinter:default -p 10000");
$printer = Deno_PrinterPrxHel per::checkedCast ($base);
if(!$printer)

t hrow new Runti neException("Invalid proxy");

$printer->printString("Hello World!");

}
cat ch(Exception $ex)
{
echo $ex;
}
if($ic)
{
/1 Cean up
try
{
$i c->destroy();
}
cat ch(Exception $ex)
{
echo $ex;
}
}
?>

The program begins with r equi r e statements to load the Ice run-time definitions (I ce. php) and the code we generated from our Slice
definition in the previous section (Pri nt er . php).

The body of the main program contains a t r y block in which we place all the client code, followed by a cat ch block. The cat ch block
catches all exceptions that may be thrown by the code; the intent is that, if the code encounters an unexpected run-time exception anywhere,
the stack is unwound all the way back to the main program, which prints the exception and then returns failure to the operating system.

The body of our t ry block goes through the following steps:

1. We initialize the Ice run time by calling I ce_initi alize. Thecalltoinitialize returnsan | ce_Conmuni cat or reference,
which is the main object in the Ice run time.

2. The next step is to obtain a proxy for the remote printer. We create a proxy by calling st ri ngToPr oxy on the communicator, with
the string " Si npl ePrinter:default -p 10000". Note that the string contains the object identity and the port number that were
used by the server. (Obviously, hard-coding object identities and port numbers into our applications is a bad idea, but it will do for
now; we will see more architecturally sound ways of doing this when we discuss IceGrid.)

3. The proxy returned by st ri ngToPr oxy is of type | ce_Obj ect Pr x, which is at the root of the inheritance tree for interfaces and
classes. But to actually talk to our printer, we need a proxy for a Deno: : Pri nt er interface, not an Obj ect interface. To do this, we
need to do a down-cast by calling Demo_Pr i nt er Pr xHel per: : checkedCast . A checked cast sends a message to the server,
effectively asking "is this a proxy for a Deno: : Pri nt er interface?" If so, the call returns a proxy narrowed to the Pri nt er
interface; otherwise, if the proxy denotes an interface of some other type, the call returns nul | .

4. We test that the down-cast succeeded and, if not, throw an exception that terminates the client.

5. We now have a live proxy in our address space and can call the pri nt St ri ng method, passing it the time-honored " Hel | o
Wor | d!'" string. The server prints that string on its terminal.

Before the code exits, it destroys the communicator (if one was created successfully). Doing this is essential in order to correctly finalize the
Ice run time. If a script neglects to destroy the communicator, Ice destroys it automatically.

Running the Client in PHP

72 Copyright © 2011, ZeroC, Inc.

73

Ice 3.4.2 Documentation

The server must be started before the client. Since Ice for PHP does not support server-side behavior, we need to use a server from another
language mapping. In this case, we will use the C++ server:

$ server

At this point, we won't see anything because the server simply waits for a client to connect to it. We run the client in a different window using
PHP's command-line interpreter:

$ php -f dient.php
$

The client runs and exits without producing any output; however, in the server window, we see the "Hel | o Wor | d! " that is produced by
the printer. To get rid of the server, we interrupt it on the command line.

If anything goes wrong, the client will print an error message. For example, if we run the client without having first started the server, we get
something like the following:

exception ::lce:: ConnectionRefusedException
{

error = 111
}

Note that, to successfully run the client, the PHP interpreter must be able to locate the Ice extension for PHP. See the Ice for PHP
installation instructions for more information.

See Also

® Client-Side Slice-to-PHP Mapping
® |ceGrid

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

The Slice Language

Here, we present the Slice language. Slice (Specification Language for Ice) is the fundamental abstraction mechanism for separating object
interfaces from their implementations. Slice establishes a contract between client and server that describes the types and object interfaces
used by an application. This description is independent of the implementation language, so it does not matter whether the client is written in
the same language as the server.

ﬂ Even though Slice is an acronym, it is pronounced as a single syllable, like a slice of bread.

Slice definitions are compiled for a particular implementation language by a compiler. The compiler translates the language-independent
definitions into language-specific type definitions and APIs. These types and APIs are used by the developer to provide application
functionality and to interact with Ice. The translation algorithms for various implementation languages are known as language mappings.
Currently, Ice defines language mappings for C++, Java, C#, Python, Objective-C, Ruby, and PHP.

Because Slice describes interfaces and types (but not implementations), it is a purely declarative language; there is no way to write
executable statements in Slice.

Slice definitions focus on object interfaces, the operations supported by those interfaces, and exceptions that may be raised by operations.
In addition, Slice offers features for object persistence. This requires quite a bit of supporting machinery; in particular, much of Slice is
concerned with the definition of data types. This is because data can be exchanged between client and server only if their types are defined
in Slice. You cannot exchange arbitrary C++ data between client and server because it would destroy the language independence of Ice.
However, you can always create a Slice type definition that corresponds to the C++ data you want to send, and then you can transmit the
Slice type.

We present the full syntax and semantics of Slice here. Because much of Slice is based on C++ and Java, we focus on those areas where
Slice differs from C++ or Java or constrains the equivalent C++ or Java feature in some way. Slice features that are identical to C++ and
Java are mentioned mostly by example.

Topics

Slice Compilation

Slice Source Files

Lexical Rules

Modules

Basic Types

User-Defined Types
Interfaces, Operations, and Exceptions
Classes

Forward Declarations

Type IDs

Operations on Object

Local Types

Names and Scoping
Metadata

Serializable Objects
Deprecating Slice Definitions
Using the Slice Compilers
Slice Checksums

Generating Slice Documentation
Slice Keywords

Slice Metadata Directives
Slice for a Simple File System

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Slice Compilation

On this page:
® Compilation

® Single Development Environment for Client and Server
® Different Development Environments for Client and Server

Compilation

A Slice compiler produces source files that must be combined with application code to produce client and server executables.

The outcome of the development process is a client executable and a server executable. These executables can be deployed anywhere,
whether the target environments use the same or different operating systems and whether the executables are implemented using the same

or different languages. The only constraint is that the host machines must provide the necessary run-time environment, such as any required
dynamic libraries, and that connectivity can be established between them.

Single Development Environment for Client and Server

The figure below shows the situation when both client and server are developed in C++. The Slice compiler generates two files from a Slice
definition in a source file Pri nt er . i ce: a header file (Pri nt er . h) and a source file (Pri nt er. cpp)

Slice Printer.ice N Slice-to-C++ Server
Developer - Compiler Developer

MH_’J;""“%

'

Printer.cpp

Server.cpp

8

Client Client.cpp C**!CE
Developer Ru_n-llma
Library

RPC

Client Executable V Server Executable

Development process if client and server share the same development environment.

®* The Pri nt er. h header file contains definitions that correspond to the types used in the Slice definition. It is included in the source
code of both client and server to ensure that client and server agree about the types and interfaces used by the application.

® The Pri nt er. cpp source file provides an API to the client for sending messages to remote objects. The client source code (
C i ent. cpp, written by the client developer) contains the client-side application logic. The generated source code and the client
code are compiled and linked into the client executable.

The Pri nt er . cpp source file also contains source code that provides an up-call interface from the Ice run time into the server code written

75 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

by the developer and provides the connection between the networking layer of Ice and the application code. The server implementation file (
Ser ver . cpp, written by the server developer) contains the server-side application logic (the object implementations, properly termed
servants). The generated source code and the implementation source code are compiled and linked into the server executable.

Both client and server also link with an Ice library that provides the necessary run-time support.

You are not limited to a single implementation of a client or server. For example, you can build multiple servers, each of which implements
the same interfaces but uses different implementations (for example, with different performance characteristics). Multiple such server
implementations can coexist in the same system. This arrangement provides one fundamental scalability mechanism in Ice: if you find that a
server process starts to bog down as the number of objects increases, you can run an additional server for the same interfaces on a different
machine. Such federated servers provide a single logical service that is distributed over a number of processes on different machines. Each
server in the federation implements the same interfaces but hosts different object instances. (Of course, federated servers must somehow
ensure consistency of any databases they share across the federation.)

Ice also provides support for replicated servers. Replication permits multiple servers to each implement the same set of object instances.
This improves performance and scalability (because client load can be shared over a number of servers) as well as redundancy (because
each object is implemented in more than one server).

Different Development Environments for Client and Server

Client and server cannot share any source or binary components if they are developed in different languages. For example, a client written in
Java cannot include a C++ header file.

This figure shows the situation when a client written in Java and the corresponding server is written in C++. In this case, the client and server
developers are completely independent, and each uses his or her own development environment and language mapping. The only link
between client and server developers is the Slice definition each one uses.

Slice
Developer

C++

Java
h 4

Client.java

Client Slice-ta-Java
Developer Compiler

Slice-to-C++ Server
Compiler Developer

|
|
|
|
|
|
i
|
: J \\u ¥
|
|
|
|
|
|
|
|
|
|
|

Frinter.h

Frinter.cpp Server.cpp

_J

Java lce Run-time C++ Ice Run-time

Library —» Client Executable \Th Server Executable [Library
|

Development process for different development environments.

For Java, the slice compiler creates a number of files whose names depend on the names of various Slice constructs. (These files are
collectively referred to as *. j ava in the above figure.)

See Also

® Using the Slice Compilers

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Slice Source Files

Slice defines a number of rules for the naming and contents of Slice source files.
On this page:

File Naming
File Format
Preprocessing
Definition Order

File Naming

Files containing Slice definitions must end in a . i ce file extension, for example, G ock. i ce is a valid file name. Other file extensions are
rejected by the compilers.

For case-insensitive file systems (such as DOS), the file extension may be written as uppercase or lowercase, so C ock. | CEis legal. For
case-sensitive file systems (such as Unix), Cl ock. | CE is illegal. (The extension must be in lowercase.)

File Format

Slice is a free-form language so you can use spaces, horizontal and vertical tab stops, form feeds, and newline characters to lay out your
code in any way you wish. (White space characters are token separators). Slice does not attach semantics to the layout of a definition. You
may wish to follow the style we have used for the Slice examples throughout this book.

Slice files can be ASCII text files or use the UTF-8 character encoding with a byte order marker (BOM) at the beginning of each file.
However, Slice identifiers are limited to ASCII letters and digits; non-ASCI!I letters can appear only in comments.

Preprocessing

Slice is preprocessed by the C++ preprocessor, so you can use the usual preprocessor directives, such as #i ncl ude and macro definitions.
However, Slice permits #i ncl ude directives only at the beginning of a file, before any Slice definitions.

If you use #i ncl ude directives, it is a good idea to protect them with guards to prevent double inclusion of a file:

Slice

/1l File Cock.ice
#i f ndef _CLOCK_I CE
#define _CLOCK_I CE

/'l #include directives here...
/1 Definitions here...

#endif _CLOCK | CE

#i ncl ude directives permit a Slice definition to use types defined in a different source file. The Slice compilers parse all of the code in a
source file, including the code in subordinate #i ncl ude files. However, the compilers generate code only for the top-level file(s) nominated
on the command line. You must separately compile subordinate #i ncl ude files to obtain generated code for all the files that make up your
Slice definition.

Note that you should avoid #i ncl ude with double quotes:

Slice

#i nclude "C ock.ice" // Not recomended!

While double quotes will work, the directory in which the preprocessor tries to locate the file can vary depending on the operating system, so
the included file may not always be found where you expect it. Instead, use angle brackets (<>); you can control which directories are
searched for the file with the - | option of the Slice compiler.

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Also note that, if you include a path separator in a #i ncl ude directive, you must use a forward slash:

Slice
#i nclude <SliceDefs/dock.ice> // K
You cannot use a backslash in #i ncl ude directives:
Slice
#include <SliceDefs\Cock.ice> // 11]egal

Definition Order

Slice constructs, such as modules, interfaces, or type definitions, can appear in any order you prefer. However, identifiers must be declared
before they can be used.

See Also

® Using the Slice Compilers

Copyright © 2011, ZeroC, Inc.

79

Ice 3.4.2 Documentation

Lexical Rules

Slice's lexical rules are very similar to those of C++ and Java, except for some differences for identifiers.
On this page:

® Comments
® Keywords
® |dentifiers
® Case Sensitivity
® |dentifiers That Are Keywords
® Escaped ldentifiers
® Reserved ldentifiers

Comments

Slice definitions permit both the C and the C++ style of writing comments:

Slice

/*
* C-style coment.
*/

/'l C++-style comrent extending to the end of this line.

Keywords

Slice uses a number of keywords, which must be spelled in lowercase. For example, cl ass and di cti onary are keywords and must be
spelled as shown. There are two exceptions to this lowercase rule: Cbj ect and Local Obj ect are keywords and must be capitalized as
shown.

Identifiers

Identifiers begin with an alphabetic character followed by any number of alphabetic characters or digits. Underscores are also permitted in
identifiers with the following limitations:

® an identifier cannot begin or end with an underscore
® an identifier cannot contain multiple consecutive underscores

Given these rules, the identifier get _account _nane is legal but not _account, account _, orget __account.

Slice identifiers are restricted to the ASCII range of alphabetic characters and cannot contain non-English letters, such as A. (Supporting
non-ASCII identifiers would make it very difficult to map Slice to target languages that lack support for this feature.)

Case Sensitivity

Identifiers are case-insensitive but must be capitalized consistently. For example, Ti mreCf Day and TI MEOFDAY are considered the same
identifier within a naming scope. However, Slice enforces consistent capitalization. After you have introduced an identifier, you must
capitalize it consistently throughout; otherwise, the compiler will reject it as illegal. This rule exists to permit mappings of Slice to languages
that ignore case in identifiers as well as to languages that treat differently capitalized identifiers as distinct.

Identifiers That Are Keywords

You can define Slice identifiers that are keywords in one or more implementation languages. For example, swi t ch is a perfectly good Slice
identifier but is a C++ and Java keyword. Each language mapping defines rules for dealing with such identifiers. The solution typically
involves using a prefix to map away from the keyword. For example, the Slice identifier swi t ch is mapped to _cpp_swi t ch in C++ and
_swi tchinJava.

The rules for dealing with keywords can result in hard-to-read source code. Identifiers such as nati ve, t hr ow, or export will clash with

Copyright © 2011, ZeroC, Inc.

80

Ice 3.4.2 Documentation

C++ or Java keywords (or both). To make life easier for yourself and others, try to avoid Slice identifiers that are implementation language
keywords. Keep in mind that mappings for new languages may be added to Ice in the future. While it is not reasonable to expect you to
compile a list of all keywords in all popular programming languages, you should make an attempt to avoid at least common keywords. Slice
identifiers such as sel f, i nport, and whi | e are definitely not a good idea.

Escaped Identifiers

It is possible to use a Slice keyword as an identifier by prefixing the keyword with a backslash, for example:

Slice
struct dictionary { /1l Error!
/1
b
struct \dictionary { Il K
/1
b
struct \foo { /1 Legal, same as "struct foo"
/1
H

he backslash escapes the usual meaning of a keyword; in the preceding example, \ di cti onary is treated as the identifier di cti onary.
The escape mechanism exists to permit keywords to be added to the Slice language over time with minimal disruption to existing
specifications: if a pre-existing specification happens to use a newly-introduced keyword, that specification can be fixed by simply
prepending a backslash to the new keyword. Note that, as a matter of style, you should avoid using Slice keywords as identifiers (even
though the backslash escapes allow you to do this).

It is legal (though redundant) to precede an identifier that is not a keyword with a backslash — the backslash is ignored in that case.

Reserved Identifiers

Slice reserves the identifier | ce and all identifiers beginning with | ce (in any capitalization) for the Ice implementation. For example, if you
try to define a type named | cecr eam the Slice compiler will issue an error message.

You can suppress this behavior by using the - - i ce compiler option, which enables definition of identifiers beginning with
| ce. However, do not use this option unless you are compiling the Slice definitions for the Ice run time itself.

Slice identifiers ending in any of the suffixes Hel per, Hol der, Pr x, and Pt r are also reserved. These endings are used by the various
language mappings and are reserved to prevent name clashes in the generated code.

See Also

® Slice Keywords

Copyright © 2011, ZeroC, Inc.

81

Ice 3.4.2 Documentation

Modules

On this page:

Modules Reduce Clutter
Modules are Mandatory
Reopening Modules
Module Mapping

The Ice Module

Modules Reduce Clutter

A common problem in large systems is pollution of the global namespace: over time, as isolated systems are integrated, name clashes

become quite likely. Slice provides the nodul e construct to alleviate this problem:

Slice

nmodul e ZeroC {
nodul e dient {
/1 Definitions here...
I
nodul e Server {
/1 Definitions here...
}
b

A module can contain any legal Slice construct, including other module definitions. Using modules to group related definitions together
avoids polluting the global namespace and makes accidental name clashes quite unlikely. (You can use a well-known name, such as a

company or product name, as the name of the outermost module.)

Modules are Mandatory

Slice requires all definitions to be nested inside a module, that is, you cannot define anything other than a module at global scope. For

example, the following is illegal:

Slice

interface | { Il Error:

/1
}

only nodul es can appear at gl obal

scope

Definitions at global scope are prohibited because they cause problems with some implementation languages (such as Python, which does

not have a true global scope).

.ﬂ Throughout the Ice manual, you will occasionally see Slice definitions that are not nested inside a module. This is to keep
the examples short and free of clutter. Whenever you see such a definition, assume that it is nested in a module.

Reopening Modules

Modules can be reopened:

Copyright © 2011, ZeroC, Inc.

82

Ice 3.4.2 Documentation

Slice

nmodul e ZeroC {
/1 Definitions here...

H
/] Possibly in a different source file:

nmodul e ZeroC { // OK, reopened nodul e
/'l More definitions here...

}s

Reopened modules are useful for larger projects: they allow you to split the contents of a module over several different source files. The
advantage of doing this is that, when a developer makes a change to one part of the module, only files dependent on the changed part need
be recompiled (instead of having to recompile all files that use the module).

Module Mapping

Modules map to a corresponding scoping construct in each programming language. (For example, for C++ and C#, Slice modules map to

namespaces whereas, for Java, they map to packages.) This allows you to use an appropriate C++ usi ng or Java i nport declaration to
avoid excessively long identifiers in your source code.

The Ice Module
APIs for the Ice run time, apart from a small number of language-specific calls that cannot be expressed in Ice, are defined in the | ce
module. In other words, most of the Ice API is actually expressed as Slice definitions. The advantage of doing this is that a single Slice

definition is sufficient to define the API for the Ice run time for all supported languages. The respective language mapping rules then
determine the exact shape of each Ice API for each implementation language.

We will incrementally explore the contents of the | ce module throughout this manual.

See Also

® Slice Source Files

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Basic Types

On this page:

Built-In Basic Types
Integer Types
Floating-Point Types
Strings

Booleans

Bytes

Built-In Basic Types

Slice provides a number of built-in basic types, as shown in this table:

Type Range of Mapped Type Size of Mapped Type
bool falseortrue ? 1bit

byte .128-127 or 0-255 2 ? 8 bits

short 21540215 9 ? 16 bits

i nt 231492319 ? 32 bits

| ong 26315263 1 ? 64 bits

fl oat IEEE single-precision ? 32 bits

doubl e ' IEEE double-precision ? 64 bits

string All Unicode characters, excluding = Variable-length

the character with all bits zero.

@ The range depends on whether byt e maps to a signed or an unsigned type.
All the basic types (except byt e) are subject to changes in representation as they are transmitted between clients and servers. For example,
a | ong value is byte-swapped when sent from a little-endian to a big-endian machine. Similarly, strings undergo translation in representation

if they are sent, for example, from an EBCDIC to an ASCII implementation, and the characters of a string may also change in size. (Not all
architectures use 8-bit characters). However, these changes are transparent to the programmer and do exactly what is required.

Integer Types

Slice provides integer types short , i nt, and | ong, with 16-bit, 32-bit, and 64-bit ranges, respectively. Note that, on some architectures,
any of these types may be mapped to a native type that is wider. Also note that no unsigned types are provided. (This choice was made
because unsigned types are difficult to map into languages without native unsigned types, such as Java. In addition, the unsigned integers
add little value to a language. (See [1] for a good treatment of the topic.)

Floating-Point Types

These types follow the IEEE specification for single- and double-precision floating-point representation [2]. If an implementation cannot
support IEEE format floating-point values, the Ice run time converts values into the native floating-point representation (possibly at a loss of
precision or even magnitude, depending on the capabilities of the native floating-point format).

Strings

Slice strings use the Unicode character set. The only character that cannot appear inside a string is the zero character.

Copyright © 2011, ZeroC, Inc.

84

Ice 3.4.2 Documentation

This decision was made as a concession to C++, with which it becomes impossibly difficult to manipulate strings with
embedded zero characters using standard library routines, such as strl en or strcat .

The Slice data model does not have the concept of a null string (in the sense of a C++ null pointer). This decision was made because null
strings are difficult to map to languages without direct support for this concept (such as Python). Do not design interfaces that depend on a
null string to indicate "not there" semantics. If you need the notion of an optional string, use a class, a sequence of strings, or use an empty
string to represent the idea of a null string. (Of course, the latter assumes that the empty string is not otherwise used as a legitimate string
value by your application.)

Booleans

Boolean values can have only the values f al se and t r ue. Language mappings use the corresponding native boolean type if one is
available.

Bytes
The Slice type byt e is an (at least) 8-bit type that is guaranteed not to undergo any changes in representation as it is transmitted between

address spaces. This guarantee permits exchange of binary data such that it is not tampered with in transit. All other Slice types are subject
to changes in representation during transmission.

See Also

® Sequences
® Classes

References

1. Lakos, J. 1996. Large-Scale C++ Software Design. Reading, MA: Addison-Wesley.
2. Institute of Electrical and Electronics Engineers. 1985. IEEE 754-1985 Standard for Binary Floating-Point Arithmetic. Piscataway,
NJ: Institute of Electrical and Electronic Engineers.

Copyright © 2011, ZeroC, Inc.

http://amzn.com/0201633620

85

Ice 3.4.2 Documentation

User-Defined Types

In addition to providing the built-in basic types, Slice allows you to define complex types: enumerations, structures, sequences, and
dictionaries.

Topics

Enumerations
Structures

Sequences
Dictionaries
Constants and Literals

Copyright © 2011, ZeroC, Inc.

86

Ice 3.4.2 Documentation

Enumerations

A Slice enumerated type definition looks like the C++ version:

Slice

enum Fruit { Apple, Pear, Oange };

This definition introduces a type named Fr ui t that becomes a new type in its own right. Slice does not define how ordinal values are
assigned to enumerators. For example, you cannot assume that the enumerator Or ange will have the value 2 in different implementation
languages. Slice guarantees only that the ordinal values of enumerators increase from left to right, so Appl e compares less than Pear in all
implementation languages.

Unlike C++, Slice does not permit you to control the ordinal values of enumerators (because many implementation languages do not support
such a feature):

Slice

enum Fruit { Apple = 0, Pear = 7, Orange = 2 }; // Syntax error

In practice, you do not care about the values used for enumerators as long as you do not transmit the ordinal value of an enumerator
between address spaces. For example, sending the value 0 to a server to mean Appl e can cause problems because the server may not
use 0 to represent Appl e. Instead, simply send the value Appl e itself. If Appl e is represented by a different ordinal value in the receiving
address space, that value will be appropriately translated by the Ice run time.

As with C++, Slice enumerators enter the enclosing namespace, so the following is illegal:

Slice

enum Fruit { Apple, Pear, Oange };
enum Conput erBrands { Apple, I1BM Sun, HP }; /1 Apple redefined

Slice does not permit empty enumerations.
See Also

Structures

Sequences
Dictionaries
Constants and Literals

Copyright © 2011, ZeroC, Inc.

87

Ice 3.4.2 Documentation

Structures

Slice supports structures containing one or more named members of arbitrary type, including user-defined complex types. For example:

Slice

struct TineOf Day {

short hour; // 0 - 23
short m nute; // 0 - 59
short second; // 0 - 59

}

As in C++, this definition introduces a new type called Ti meCf Day. Structure definitions form a namespace, so the names of the structure

members need to be unique only within their enclosing structure.

Data member definitions using a named type are the only construct that can appear inside a structure. It is impossible to, for example, define

a structure inside a structure:

Slice

struct TwoPoints {

struct Point { /1 1llegal!
short x;
short vy;

I

Poi nt coordl;

Poi nt coord2;

}s

This rule applies to Slice in general: type definitions cannot be nested (except for modules, which do support nesting). The reason for this

rule is that nested type definitions can be difficult to implement for some target languages and, even if implementable, greatly complicate the

scope resolution rules. For a specification language, such as Slice, nested type definitions are unnecessary — you can always write the

above definitions as follows (which is stylistically cleaner as well):

Slice

struct Point {

short x;

short vy;
b
struct TwoPoints { /'l Legal (and cleaner!)

Poi nt coordi;

Poi nt coor d2;
I

You can specify a default value for a data member that has one of the following types:

An integral type (byt e, short,int, | ong)
A floating point type (f | oat or doubl e)
string

bool

enum

For example:

Copyright © 2011, ZeroC, Inc.

88

Ice 3.4.2 Documentation

Slice

struct Location {
string nane;
Poi nt pt;

bool display = true;

string source =

}

"GPS",

The legal syntax for literal values is the same as for Slice constants, and you may also use a constant as a default value. The language
mapping guarantees that data members are initialized to their declared default values using a language-specific mechanism.

See Al

SO

Modules

Basic Types
Enumerations
Sequences
Dictionaries
Constants and Literals

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Sequences
On this page:

® Sequence Syntax and Semantics
® Using Sequences for Optional Values

Sequence Syntax and Semantics

Sequences are variable-length collections of elements:

Slice

sequence<Fruit> FruitPlatter;

A sequence can be empty?—?that is, it can contain no elements, or it can hold any number of elements up to the memory limits of your
platform.

Sequences can contain elements that are themselves sequences. This arrangement allows you to create lists of lists:

Slice

sequence<Frui t Pl atter> FruitBanquet;

Sequences are used to model a variety of collections, such as vectors, lists, queues, sets, bags, or trees. (It is up to the application to decide
whether or not order is important; by discarding order, a sequence serves as a set or bag.)

Using Sequences for Optional Values

One particular use of sequences has become idiomatic, namely, the use of a sequence to indicate an optional value. For example, we might
have a Part structure that records the details of the parts that go into a car. The structure could record things such as the name of the part,
a description, weight, price, and other details. Spare parts commonly have a serial number, which we can model as a | ong value. However,
some parts, such as simple screws, often do not have a serial number, so what are we supposed to put into the serial number field of a
screw? There are a number of options for dealing with this situation:

® Use a sentinel value, such as zero, to indicate the "no serial number" condition.
This approach is workable, provided that a sentinel value is actually available. While it may seem unlikely that anyone would use a
serial number of zero for a part, it is not impossible. And, for other values, such as a temperature value, all values in the range of
their type can be legal, so no sentinel value is available.

® Change the type of the serial number from | ong to stri ng.
Strings come with their own built-in sentinel value, namely the empty string, so we can use an empty string to indicate the "no serial
number" case. This is workable but not ideal: we should not have to change the natural data type of something to st ri ng just so we
get a sentinel value.

® Add an indicator as to whether the contents of the serial number are valid:

Slice
struct Part {
string nane;
string description;
/1
bool seriallsValid; // true if part has serial nunber
| ong seri al Nunber;
b

This is guaranteed to get you into trouble eventually: sooner or later, some programmer will forget to check whether the serial
number is valid before using it and create havoc.

® Use asequence to model the optional field.

Copyright © 2011, ZeroC, Inc.

90

Ice 3.4.2 Documentation

This technique uses the following convention:

Slice

sequence<l ong> Seri al Opt;

struct Part {
string nane;
string descri ption;
11
Seri al Opt serial Nunber; // optional: zero or one el enent

b

By convention, the Opt suffix is used to indicate that the sequence is used to model an optional value. If the sequence is empty, the
value is obviously not there; if it contains a single element, that element is the value. The obvious drawback of this scheme is that
someone could put more than one element into the sequence. This could be rectified by adding a special-purpose Slice construct for
optional values. However, optional values are not used frequently enough to justify the complexity of adding a dedicated language
feature. (As we will see in Classes, you can also use class hierarchies to model optional fields.)

See Also

Enumerations
Structures
Dictionaries
Constants and Literals
Classes

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Dictionaries

On this page:

¢ Dictionary Syntax and Semantics
® Allowable Types for Dictionary Keys and Values

Dictionary Syntax and Semantics

A dictionary is a mapping from a key type to a value type.

For example:

Slice

struct Enpl oyee {
I ong nunber ;
string firstNane;
string | astNane;

}

di ctionary<l ong, Enpl oyee> Enpl oyeeMap;

This definition creates a dictionary named Enpl oyeeMap that maps from an employee number to a structure containing the details for an
employee. Whether or not the key type (the employee number, of type | ong in this example) is also part of the value type (the Enpl oyee
structure in this example) is up to you — as far as Slice is concerned, there is no need to include the key as part of the value.

Dictionaries can be used to implement sparse arrays, or any lookup data structure with non-integral key type. Even though a sequence of
structures containing key-value pairs could be used to model the same thing, a dictionary is more appropriate:

® A dictionary clearly signals the intent of the designer, namely, to provide a mapping from a domain of values to a range of values. (A
sequence of structures of key-value pairs does not signal that same intent as clearly.)

® At the programming language level, sequences are implemented as vectors (or possibly lists), that is, they are not well suited to
model sparsely populated domains and require a linear search to locate an element with a particular value. On the other hand,
dictionaries are implemented as a data structure (typically a hash table or red-black tree) that supports efficient searching in O(log n)
average time or better.

Allowable Types for Dictionary Keys and Values

The key type of a dictionary need not be an integral type. For example, we could use the following definition to translate the names of the
days of the week:

Slice

dictionary<string, string> WekdaysEnglishToGer man;

The server implementation would take care of initializing this map with the key-value pairs Monday- Mont ag, Tuesday- Di enst ag, and so
on.

The value type of a dictionary can be any Slice type. However, the key type of a dictionary is limited to one of the following types:

Integral types (byt e, short, i nt, | ong, bool)

string

enum

Structures containing only data members of integral type or stri ng

Complex nested types, such as nested structures, sequences, or dictionaries, and floating-point types (f | oat and doubl e) cannot be used
as the key type. Complex nested types are disallowed because they complicate the language mappings for dictionaries, and floating-point
types are disallowed because representational changes of values as they cross machine boundaries can lead to ill-defined semantics for

equality.

Copyright © 2011, ZeroC, Inc.

92

See Also

Basic Types
Enumerations
Structures

Sequences

Constants and Literals

Ice 3.4.2 Documentation

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Constants and Literals
On this page:

Allowable Types for Constants
Boolean constants

Integer literals

Floating-point literals

String literals

Allowable Types for Constants

Slice allows you to define constants for the following types:

® Anintegral type (bool , byt e, short,int, | ong)
® A floating point type (f | oat or doubl e)

® string

® enum

Here are a few examples:

Slice
const bool AppendByDef ault = true;
const bhyte Lower Ni bbl e = 0xOf ;
const string Advice = "Don't Panic!";
const short TheAnswer = 42;

const doubl e Pl = 3. 1416;

enum Fruit { Apple, Pear, Oange };
const Fruit FavoriteFruit = Pear;

The syntax for literals is the same as for C++ and Java (with a few minor exceptions).
Boolean constants

Boolean constants can only be initialized with the keywords f al se and t r ue. (You cannot use 0 and 1 to represent f al se and t r ue.)

Integer literals

Integer literals can be specified in decimal, octal, or hexadecimal notation.

For example:
Slice
const byte TheAnswer = 42;
const byte TheAnswer|InCctal = 052;
const byte TheAnswer | nHex = Ox2A; /] or 0x2a

Be aware that, if you interpret byt e as a number instead of a bit pattern, you may get different results in different languages. For example,
for C++, byt e maps to unsi gned char whereas, for Java, byt e maps to byt e, which is a signed type.

Note that suffixes to indicate long and unsigned constants (I , L, u, U, used by C++) are illegal:

Slice

const |ong Wong = Ou; /1 Syntax error
const | ong WongToo = 1000000L; // Syntax error

93 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

The value of an integer literal must be within the range of its constant type, as shown in the Built-In Basic Types table; otherwise the
compiler will issue a diagnostic.

Floating-point literals

Floating-point literals use C++ syntax, except that you cannot use an | or L suffix to indicate an extended floating-point constant; however, f
and F are legal (but are ignored).

Here are a few examples:

Slice
const float P1 = -3.14f; /1 Integer & fraction, with suffix
const float P2 = +3. le-3; /1 Integer, fraction, and exponent
const float P3 = .1; /1 Fraction part only
const float P4 = 1.; /'l Integer part only
const float P5 = .9ES5; // Fraction part and exponent
const float P6 = 5e2; /1 Integer part and exponent

Floating-point literals must be within the range of the constant type (f | oat or doubl e); otherwise, the compiler will issue a diagnostic.

String literals

String literals support the same escape sequences as C++.

Here are some examples:

Slice
const string AnOrdinaryString = "Hello World!";
const string Doubl eQuote = B T
const string TwoSi ngl eQuotes = "'\'"; /1" and \' are OK
const string Newine = "\ n";
const string CarriageReturn = "\r";
const string Horizontal Tab = "\t
const string Vertical Tab = "\v";
const string FornfFeed = "\ f
const string Alert = "\a";
const string Backspace = "\ b";
const string QuestionMark = "\
const string Backslash = "W\
const string Octal Escape = "\ 007"; /] Sanme as \a
const string HexEscape = "\ x07"; /1 Ditto
Note that Slice has no concept of a null string:
Slice

const string nullString = 0; /1 111egal!

Null strings simply do not exist in Slice and, therefore, do not exist as a legal value for a string anywhere in the Ice platform. The reason for
this decision is that null strings do not exist in many programming languages.

Many languages other than C and C++ use a byte array as the internal string representation. Null strings do not exist (and
would be very difficult to map) in such languages.

A constant definition may also refer to another constant. It is not necessary for both constants to have the same Slice type, but the value of
the existing constant must be compatible with the type of the constant being defined.

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Consider the examples below:

Slice

const int SIZE = 500;

const int DEFAULT_SIZE = SIZE;, // K
const short SHORT_SIZE = SIZE;, // K
const byte BYTE_SI ZE = S| ZE; /1 ERROR

The DEFAULT_SI ZE constant is legal because it has the same type as Sl ZE, and SHORT_SI ZE is legal because the value of SI ZE (500) is
within the range of the Slice short type. However, BYTE_SI ZE is illegal because the value of S| ZE is outside the range of the byt e type.

See Also

Enumerations
Structures
Sequences
Dictionaries

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Interfaces, Operations, and Exceptions

The central focus of Slice is on defining interfaces, for example:

Slice

struct TimeOf Day {

short hour; // 0 - 23
short m nute; // 0 - 59
short second; // 0 - 59

}

interface O ock {

Ti meOf Day get Ti me();

void setTime(TimreOfDay tine);
b

This definition defines an interface type called G ock. The interface supports two operations: get Ti me and set Ti ne. Clients access an
object supporting the G ock interface by invoking an operation on the proxy for the object: to read the current time, the client invokes the
get Ti me operation; to set the current time, the client invokes the set Ti nme operation, passing an argument of type Ti meCf Day.

Invoking an operation on a proxy instructs the Ice run time to send a message to the target object. The target object can be in another
address space or can be collocated (in the same process) as the caller — the location of the target object is transparent to the client. If the
target object is in another (possibly remote) address space, the Ice run time invokes the operation via a remote procedure call; if the target is
collocated with the client, the Ice run time uses an ordinary function call instead, to avoid the overhead of marshaling.

You can think of an interface definition as the equivalent of the public part of a C++ class definition or as the equivalent of a Java interface,
and of operation definitions as (virtual) member functions. Note that nothing but operation definitions are allowed to appear inside an
interface definition. In particular, you cannot define a type, an exception, or a data member inside an interface. This does not mean that your
object implementation cannot contain state — it can, but how that state is implemented (in the form of data members or otherwise) is hidden
from the client and, therefore, need not appear in the object's interface definition.

An Ice object has exactly one (most derived) Slice interface type (or class type). Of course, you can create multiple Ice objects that have the
same type; to draw the analogy with C++, a Slice interface corresponds to a C++ class definition, whereas an Ice object corresponds to a
C++ class instance (but Ice objects can be implemented in multiple different address spaces).

Ice also provides multiple interfaces via a feature called facets.

A Slice interface defines the smallest grain of distribution in Ice: each Ice object has a unique identity (encapsulated in its proxy) that
distinguishes it from all other Ice objects; for communication to take place, you must invoke operations on an object's proxy. There is no
other notion of an addressable entity in Ice. You cannot, for example, instantiate a Slice structure and have clients manipulate that structure
remotely. To make the structure accessible, you must create an interface that allows clients to access the structure.

The partition of an application into interfaces therefore has profound influence on the overall architecture. Distribution boundaries must follow
interface (or class) boundaries; you can spread the implementation of interfaces over multiple address spaces (and you can implement
multiple interfaces in the same address space), but you cannot implement parts of interfaces in different address spaces.

Topics

Operations

User Exceptions
Run-Time Exceptions
Proxies

Interface Inheritance

See Also

® Classes
® Facets and Versioning

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Operations
On this page:

Parameters and Return Values
Style of Operation Definition
Overloading Operations
Idempotent Operations

Parameters and Return Values

An operation definition must contain a return type and zero or more parameter definitions. For example, in the Cl ock interface, the get Ti e
operation has a return type of Ti meCf Day and the set Ti e operation has a return type of voi d. You must use voi d to indicate that an

operation returns no value — there is no default return type for Slice operations.

An operation can have one or more input parameters. For example, set Ti ne accepts a single input parameter of type Ti neCf Day called

t i me. Of course, you can use multiple input parameters:

Slice

interface G rcadi anRhyt hm {
voi d set Sl eepPeri od(Ti meOf Day startTime, TimeO Day stopTine);
I

b

Note that the parameter name (as for Java) is mandatory. You cannot omit the parameter name, so the following is in error:

Slice

interface G rcadi anRhyt hm {
voi d set Sl eepPeriod(Ti meOf Day, TimeOfDay); // Error!
/1

b

By default, parameters are sent from the client to the server, that is, they are input parameters. To pass a value from the server to the client,
you can use an output parameter, indicated by the out keyword. For example, an alternative way to define the get Ti nme operation in the

Cl ock interface would be:

Slice

void getTime(out TimeOfDay tine);

This achieves the same thing but uses an output parameter instead of the return value. As with input parameters, you can use multiple
output parameters:

Slice

interface G rcadi anRhyt hm {
voi d set Sl eepPeriod(Ti meOf Day startTine, TineOf Day stopTine);
voi d get Sl eepPeri od(out TineOfDay startTine, out TinmeCOf Day stopTine);
11

}s

If you have both input and output parameters for an operation, the output parameters must follow the input parameters:

Copyright © 2011, ZeroC, Inc.

98

Ice 3.4.2 Documentation

Slice

voi d changeS| eepPeri od(Ti meOf Day startTine, Ti meOf Day stopTi ne, Il K
out TimeCOf Day prevStartTi me, out TineOf Day prevStopTine);

voi d changeSl| eepPeri od(out TimeOfDay prevStartTine, out TineOf Day prevStopTinme, // Error
Ti meCf Day startTine, Ti meOf Day stopTi ne);

Slice does not support parameters that are both input and output parameters (call by reference). The reason is that, for remote calls,
reference parameters do not result in the same savings that one can obtain for call by reference in programming languages. (Data still needs
to be copied in both directions and any gains in marshaling efficiency are negligible.) Also, reference (or input-output) parameters result in
more complex language mappings, with concomitant increases in code size.

Style of Operation Definition

As you would expect, language mappings follow the style of operation definition you use in Slice: Slice return types map to programming
language return types, and Slice parameters map to programming language parameters.

For operations that return only a single value, it is common to return the value from the operation instead of using an out-parameter. This
style maps naturally into all programming languages. Note that, if you use an out-parameter instead, you impose a different API style on the
client: most programming languages permit the return value of a function to be ignored whereas it is typically not possible to ignore an output
parameter.

For operations that return multiple values, it is common to return all values as out-parameters and to use a return type of voi d. However, the
rule is not all that clear-cut because operations with multiple output values can have one particular value that is considered more "important"
than the remainder. A common example of this is an iterator operation that returns items from a collection one-by-one:

Slice

bool next(out RecordType r);

The next operation returns two values: the record that was retrieved and a Boolean to indicate the end-of-collection condition. (If the return
value is f al se, the end of the collection has been reached and the parameter r has an undefined value.) This style of definition can be
useful because it naturally fits into the way programmers write control structures. For example:

whil e (next(record))
Il Process record...

if (next(record))
// Got a valid record...

Overloading Operations

Slice does not support any form of overloading of operations. For example:

Slice

interface G rcadi anRhyt hm {
void nodi fy(TimeOf Day startTime, TinmeOf Day endTine);
voi d nodi fy(Ti meOf Day startTi ne, /'l Error
Ti meOf Day endTi ne,
out timeCfDay prevStartTine,
out Ti meCf Day prevEndTi ne);
b

Operations in the same interface must have different names, regardless of what type and number of parameters they have. This restriction
exists because overloaded functions cannot sensibly be mapped to languages without built-in support for overloading.

Copyright © 2011, ZeroC, Inc.

99

Ice 3.4.2 Documentation

lﬂl Name mangling is not an option in this case: while it works fine for compilers, it is unacceptable to humans.

ldem

potent Operations

Some operations, such as get Ti ne in the Cl ock interface, do not modify the state of the object they operate on. They are the conceptual

equival

ent of C++ const member functions. Similary, set Ti ne does modify the state of the object, but is idempotent. You can indicate this

in Slice as follows:

Slice

interface dock {

i denpotent Ti meOf Day get Tine();

i denpotent void setTinme(Ti reOfDay tine);
b

This marks the get Ti me and set Ti e operations as idempotent. An operation is idempotent if two successive invocations of the operation
have the same effect as a single invocation. For example, x = 1; is an idempotent operation because it does not matter whether it is
executed once or twice — either way, x ends up with the value 1. On the other hand, x += 1; is not an idempotent operation because

executi

Theid

ng it twice results in a different value for x than executing it once. Obviously, any read-only operation is idempotent.

enpot ent keyword is useful because it allows the Ice run time to be more aggressive when performing automatic retries to recover

from errors. Specifically, Ice guarantees at-most-once semantics for operation invocations:

See Al

For normal (not idempotent) operations, the Ice run time has to be conservative about how it deals with errors. For example, if a
client sends an operation invocation to a server and then loses connectivity, there is no way for the client-side run time to find out
whether the request it sent actually made it to the server. This means that the run time cannot attempt to recover from the error by
re-establishing a connection and sending the request a second time because that could cause the operation to be invoked a second
time and violate at-most-once semantics; the run time has no option but to report the error to the application.

For i denpot ent operations, on the other hand, the client-side run time can attempt to re-establish a connection to the server and
safely send the failed request a second time. If the server can be reached on the second attempt, everything is fine and the
application never notices the (temporary) failure. Only if the second attempt fails need the run time report the error back to the
application. (The number of retries can be increased with an Ice configuration parameter.)

SO

Interfaces, Operations, and Exceptions
User Exceptions

Run-Time Exceptions

Proxies

Interface Inheritance

Automatic Retries

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

User Exceptions

On this page:

® User Exception Syntax and Semantics
® Default Values for User Exception Members
® Declaring User Exceptions in Operations
® Restrictions for User Exceptions

® User Exception Inheritance

User Exception Syntax and Semantics

Looking at the set Ti me operation in the Cl ock interface, we find a potential problem: given that the Ti meOf Day structure uses short as
the type of each field, what will happen if a client invokes the set Ti ne operation and passes a Ti meOf Day value with meaningless field
values, such as - 199 for the minute field, or 42 for the hour? Obviously, it would be nice to provide some indication to the caller that this is
meaningless. Slice allows you to define user exceptions to indicate error conditions to the client. For example:

Slice

exception Error {}; // Enpty exceptions are |egal

excepti on RangeError {
Ti reOr Day errorTine;
Ti reOf Day m nTi ne;
Ti meOf Day maxTi ne;
b

A user exception is much like a structure in that it contains a number of data members. However, unlike structures, exceptions can have zero
data members, that is, be empty.

Default Values for User Exception Members
You can specify a default value for an exception data member that has one of the following types:

An integral type (byt e, short,int, | ong)
A floating point type (f | oat or doubl e)
string

bool

enum

For example:

Slice

exception RangeError {
Ti meOf Day errorTine;
Ti meOf Day m nTi ne;
Ti meOf Day maxTi ne;
string reason = "out of range";

}s

The legal syntax for literal values is the same as for Slice constants, and you may also use a constant as a default value. The language
mapping guarantees that data members are initialized to their declared default values using a language-specific mechanism.

Declaring User Exceptions in Operations

Exceptions allow you to return an arbitrary amount of error information to the client if an error condition arises in the implementation of an
operation. Operations use an exception specification to indicate the exceptions that may be returned to the client:

100 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Slice

interface dock {
i denpotent Ti meOf Day get Ti ne();
i denpotent void setTi me(Ti neOfDay tine)
throws RangeError, Error;

}

This definition indicates that the set Ti me operation may throw either a RangeEr r or or an Er r or user exception (and no other type of
exception). If the client receives a RangeEr r or exception, the exception contains the Ti meCf Day value that was passed to set Ti ne and
caused the error (in the er r or Ti me member), as well as the minimum and maximum time values that can be used (in the m nTi me and
maxTi me members). If set Ti me failed because of an error not caused by an illegal parameter value, it throws Er r or . Obviously, because
Er r or does not have data members, the client will have no idea what exactly it was that went wrong — it simply knows that the operation
did not work.

An operation can throw only those user exceptions that are listed in its exception specification. If, at run time, the implementation of an
operation throws an exception that is not listed in its exception specification, the client receives a run-time exception) to indicate that the
operation did something illegal. To indicate that an operation does not throw any user exception, simply omit the exception specification.
(There is no empty exception specification in Slice.)

Restrictions for User Exceptions

Exceptions are not first-class data types and first-class data types are not exceptions:

You cannot pass an exception as a parameter value.

You cannot use an exception as the type of a data member.

You cannot use an exception as the element type of a sequence.

You cannot use an exception as the key or value type of a dictionary.

You cannot throw a value of non-exception type (such as a value of type i nt or stri ng).

The reason for these restrictions is that some implementation languages use a specific and separate type for exceptions (in the same way as
Slice does). For such languages, it would be difficult to map exceptions if they could be used as an ordinary data type. (C++ is somewhat
unusual among programming languages by allowing arbitrary types to be used as exceptions.)

User Exception Inheritance

Exceptions support inheritance. For example:

Slice

exception ErrorBase {

string reason;
b
enum RTError {

Di vi deByZero, NegativeRoot, Illegal Null /* ... */
H
exception RuntinmeError extends ErrorBase {

RTError err;
b
enum LError { Val ueQut Of Range, Val ueslnconsistent, /* ... */ };

exception Logi cError extends ErrorBase {
LError err;

s

exception RangeError extends LogicError {
Ti meOf Day errorTine;
Ti meOf Day m nTi ne;
Ti meOf Day maxTi ne;

H

101 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

These definitions set up a simple exception hierarchy:

® ErrorBase is at the root of the tree and contains a string explaining the cause of the error.

® Derived from Er r or Base are Runt i neEr r or and Logi cErr or . Each of these exceptions contains an enumerated value that
further categorizes the error.

® Finally, RangeErr or is derived from Logi cError and reports the details of the specific error.

Setting up exception hierarchies such as this not only helps to create a more readable specification because errors are categorized, but also
can be used at the language level to good advantage. For example, the Slice C++ mapping preserves the exception hierarchy so you can
catch exceptions generically as a base exception, or set up exception handlers to deal with specific exceptions.

Looking at the exception hierarchy, it is not clear whether, at run time, the application will only throw most derived exceptions, such as
RangeEr r or, or if it will also throw base exceptions, such as Logi cError, Runti neError, and Er r or Base. If you want to indicate that a
base exception, interface, or class is abstract (will not be instantiated), you can add a comment to that effect.

Note that, if the exception specification of an operation indicates a specific exception type, at run time, the implementation of the operation
may also throw more derived exceptions. For example:

Slice

exception Base {
/1

}

exception Derived extends Base {
11

}s

interface Exanple {
void op() throws Base; /1 May throw Base or Derived

}

In this example, op may throw a Base or a Der i ved exception, that is, any exception that is compatible with the exception types listed in the
exception specification can be thrown at run time.

As a system evolves, it is quite common for new, derived exceptions to be added to an existing hierarchy. Assume that we initially construct
clients and server with the following definitions:

Slice

exception Error {
/1

}

interface Application {
voi d doSoret hing() throws Error;

b

Also assume that a large number of clients are deployed in field, that is, when you upgrade the system, you cannot easily upgrade all the
clients. As the application evolves, a new exception is added to the system and the server is redeployed with the new definition:

Slice

exception Error {
11

}s

exception Fatal ApplicationError extends Error {
/1

}

interface Application {
voi d doSomret hing() throws Error;

b

102 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

This raises the question of what should happen if the server throws a Fat al Appl i cati onError from doSornet hi ng. The answer
depends whether the client was built using the old or the updated definition:

® |f the client was built using the same definition as the server, it simply receives a Fat al Appl i cati onError.

® |f the client was built with the original definition, that client has no knowledge that Fat al Appl i cati onError even exists. In this
case, the Ice run time automatically slices the exception to the most-derived type that is understood by the receiver (Er r or, in this
case) and discards the information that is specific to the derived part of the exception. (This is exactly analogous to catching C++
exceptions by value — the exception is sliced to the type used in the cat ch-clause.)

Exceptions support single inheritance only. (Multiple inheritance would be difficult to map into many programming languages.)
See Also

Constants and Literals
Operations

Run-Time Exceptions
Proxies

Interface Inheritance

103 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Run-Time Exceptions

In addition to any user exceptions that are listed in an operation's exception specification, an operation can also throw Ice run-time
exceptions. Run-time exceptions are predefined exceptions that indicate platform-related run-time errors. For example, if a networking error
interrupts communication between client and server, the client is informed of this by a run-time exception, such as

Connect Ti meout Except i on or Socket Excepti on.

The exception specification of an operation must not list any run-time exceptions. (It is understood that all operations can raise run-time
exceptions and you are not allowed to restate that.)

On this page:

® Inheritance Hierarchy for Exceptions
® Local Versus Remote Exceptions
® Common Exceptions
® (bj ect Not Exi st Excepti on
® Facet Not Exi st Excepti on
® QOperati onNot Exi st Excepti on
® Unknown Exceptions
® UnknownUser Excepti on
® UnknownLocal Excepti on
® UnknownExcepti on

Inheritance Hierarchy for Exceptions

All the Ice run-time and user exceptions are arranged in an inheritance hierarchy, as shown below:

Exception

LocalException UserException

~ AN

Specific Run-Time
Exceplions...

Inheritance structure for exceptions.

Specific User Exceplions...

| ce: : Excepti on is at the root of the inheritance hierarchy. Derived from that are the (abstract) types | ce: : Local Excepti on and
I ce: : User Except i on. In turn, all run-time exceptions are derived from | ce: : Local Except i on, and all user exceptions are derived
from | ce: : User Excepti on.

This figures shows the complete hierarchy of the Ice run-time exceptions:

104 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Exception

LocalException UserException

I .

RequestFailedExceplion
.

SyscallException

F

ObjectNolExistException
OperationNolExistException
SocketExceplion FileException FaceNotExistException
UnknownException \ *

ConnectionFailedException
ConnectionLostException

UnknownLocalException
UnknownUserException

TimeoutException

ConnectionRefusedExcaption

ProtocolException ConnectTimeoulException
ConnectionTimeoulException
CloseTimaoulE xcaption

[

InitializationException

IlegalldentityE xception BadMagicException

IdentityParseException UnsupportedProtocolExceplion

PlugininitializationException UnsupportedEncodingException

DNSException UnknownMessageException -
ProxyParseException ConnactionMolValidatedException MarshalException
MoEndpointException UnknownRequestidException

ObjectadapterDeactivatedException UnknownReplyStatusException

ObjectAdapterNamelnUseException CloseConnectionException

ObjectAdapterldinUseException ForcedCloseConnectionExceplion

VersionMismatchException AbortBatchRequestException

CommunicatorDestroyedException llegalMessageSizeException

EndpointParseException CompressionNotSupportedExceplion
EndpaointSelectionTypeParseException CompressionExceplion .
LocationForwardidentityException DatagramLimitException Egﬁ::::%ﬁggmlﬁ;?xcemm

PlugininitializationException
CollocationOptimizationException
AlreadyRegisteredException
NotRegisteradException
TwowayOnlyException
CloneNotimplementedE xception
SecurityException
FixedProxyExceplion
FeatureMotSupportedException

lilegalIndirectionException
MemoryLimitException
EncapsulationException
NoObjectFactoryExceplion
EncapsulationException
NegativeSizeException
StringConversionExceplion

Ice run-time exception hierarchy. (Shaded exceptions can be sent by the server.)
o We use the Unified Modeling Language (UML) for the object model diagrams (see [1] and [2] for details).

Note that Ice run-time exception hierarchy groups several exceptions into a single box to save space (which, strictly, is incorrect UML
syntax). Also note that some run-time exceptions have data members, which, for brevity, we have omitted in the Ice run-time exception
hierarchy. These data members provide additional information about the precise cause of an error.

Many of the run-time exceptions have self-explanatory names, such as Menor yLi mi t Except i on. Others indicate problems in the Ice run

105 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

time, such as Encapsul ati onExcept i on. Still others can arise only through application programming errors, such as
Twoway Onl yExcept i on. In practice, you will likely never see most of these exceptions. However, there are a few run-time exceptions you
will encounter and whose meaning you should know.

Local Versus Remote Exceptions

Common Exceptions

Most error conditions are detected on the client side. For example, if an attempt to contact a server fails, the client-side run time raises a
Connect Ti meout Except i on. However, there are three specific error conditions (shown as shaded in the Ice run-time exception hierarchy
diagram) that are detected by the server and made known explicitly to the client-side run time via the Ice protocol:

Obj ect Not Exi st Except i on, Facet Not Exi st Except i on, and Oper at i onNot Exi st Excepti on.

Ohj ect Not Exi st Excepti on

This exception indicates that a request was delivered to the server but the server could not locate a servant with the identity that is
embedded in the proxy. In other words, the server could not find an object to dispatch the request to.

An Obj ect Not Exi st Except i on is a death certificate: it indicates that the target object in the server does not exist.

The Ice run time raises Obj ect Not Exi st Except i on only if there are no facets in existence with a matching identity;
otherwise, it raises Facet Not Exi st Except i on.

Most likely, this is the case because the object existed some time in the past and has since been destroyed, but the same exception is also
raised if a client uses a proxy with the identity of an object that has never been created. If you receive this exception, you are expected to
clean up whatever resources you might have allocated that relate to the specific object for which you receive this exception.

Facet Not Exi st Excepti on

The client attempted to contact a non-existent facets of an object, that is, the server has at least one servant with the given identity, but no
servant with a matching facet name.

Oper at i onNot Exi st Excepti on

This exception is raised if the server could locate an object with the correct identity but, on attempting to dispatch the client's operation
invocation, the server found that the target object does not have such an operation. You will see this exception in only two cases:

® You have used an unchecked down-cast on a proxy of the incorrect type.

® Client and server have been built with Slice definitions for an interface that disagree with each other, that is, the client was built with
an interface definition for the object that indicates that an operation exists, but the server was built with a different version of the
interface definition in which the operation is absent.

Unknown Exceptions

Any error condition on the server side that is not described by one of the three preceding exceptions is made known to the client as one of
three generic exceptions (shown as shaded in the Ice run-time exception hierarchy figure diagram): UnknownUser Except i on,
UnknownLocal Excepti on, or UnknownExcept i on.

UnknownUser Except i on

This exception indicates that an operation implementation has thrown a Slice exception that is not declared in the operation's exception
specification (and is not derived from one of the exceptions in the operation's exception specification).

UnknownLocal Excepti on

If an operation implementation raises a run-time exception other than Cbj ect Not Exi st Except i on, Facet Not Exi st Excepti on, or
Oper at i onNot Exi st Except i on (such as a Not Regi st er edExcept i on), the client receives an UnknownLocal Except i on. In other
words, the Ice protocol does not transmit the exact exception that was encountered in the server, but simply returns a bit to the client in the
reply to indicate that the server encountered a run-time exception.

A common cause for a client receiving an UnknownLocal Except i on is failure to catch and handle all exceptions in the server. For

example, if the implementation of an operation encounters an exception it does not handle, the exception propagates all the way up the call
stack until the stack is unwound to the point where the Ice run time invoked the operation. The Ice run time catches all Ice exceptions that

106 Copyright © 2011, ZeroC, Inc.

107

Ice 3.4.2 Documentation

"escape" from an operation invocation and returns them to the client as an UnknownLocal Excepti on.

UnknownExcepti on

An operation has thrown a non-Ice exception. For example, if the operation in the server throws a C++ exception, such as a char *, or a
Java exception, such as a Cl assCast Except i on, the client receives an UnknownExcept i on.

All other run-time exceptions (not shaded in the Ice run-time exception hierarchy) are detected by the client-side run time and are raised
locally.

It is possible for the implementation of an operation to throw Ice run-time exceptions (as well as user exceptions). For example, if a client
holds a proxy to an object that no longer exists in the server, your server application code is required to throw an

Obj ect Not Exi st Except i on. If you do throw run-time exceptions from your application code, you should take care to throw a run-time
exception only if appropriate, that is, do not use run-time exceptions to indicate something that really should be a user exception. Doing so
can be very confusing to the client: if the application "hijacks" some run-time exceptions for its own purposes, the client can no longer decide
whether the exception was thrown by the Ice run time or by the server application code. This can make debugging very difficult.

See Also

User Exceptions

Interfaces, Operations, and Exceptions
Operations

Proxies

Interface Inheritance

Facets and Versioning

References

1. Booch, G., et al. 1998. Unified Modeling Language User Guide. Reading, MA: Addison-Wesley.
2. Object Management Group. 2001. Unified Modeling Language Specification. Framingham, MA: Object Management Group.

Copyright © 2011, ZeroC, Inc.

http://amzn.com/0321267974
http://www.omg.org/spec/UML/

Ice 3.4.2 Documentation

Proxies

Building on the Cl ock example, we can create definitions for a world-time server:

Slice

exception CenericError {
string reason;

I

struct TimeOf Day {
short hour; /Il 0 - 23
short m nute; // 0 - 59
short second; // 0 - 59

H
exception BadTi neVal extends GenericError {};

interface Cock {

i denpotent Ti meOf Day get Tine();

i denpotent void setTime(TineOfDay tine) throws BadTi neVal ;
b

di ctionary<string, C ock*> TineMap; // Tine zone nane to cl ock map
exception BadZoneNane extends GenericError {};

interface Worl dTine {
i denpot ent voi d addZone(string zoneNane, C ock* zoned ock);
voi d renpveZone(string zoneNanme) throws BadZoneNane;
i denpot ent O ock* findZone(string zoneNane) throws BadZoneNane;
i denpotent Ti meMap |i st Zones();
i denpot ent voi d set Zones(Ti mreMap zones);

}

The Wor | dTi me interface acts as a collection manager for clocks, one for each time zone. In other words, the Wor | dTi ne interface
manages a collection of pairs. The first member of each pair is a time zone name; the second member of the pair is the clock that provides
the time for that zone. The interface contains operations that permit you to add or remove a clock from the map (addZone and r enoveZone
), to search for a particular time zone by name (f i ndZone), and to read or write the entire map (I i st Zones and set Zones).

The Wor | dTi me example illustrates an important Slice concept: note that addZone accepts a parameter of type C ock* and f i ndZone
returns a parameter of type C ock*. In other words, interfaces are types in their own right and can be passed as parameters. The * operator
is known as the proxy operator. Its left-hand argument must be an interface (or class) and its return type is a proxy. A proxy is like a pointer
that can denote an object. The semantics of proxies are very much like those of C++ class instance pointers:

® A proxy can be null.

® A proxy can dangle (point at an object that is no longer there).

® QOperations dispatched via a proxy use late binding: if the actual run-time type of the object denoted by the proxy is more derived
than the proxy's type, the implementation of the most-derived interface will be invoked.

When a client passes a Cl ock proxy to the addZone operation, the proxy denotes an actual O ock object in a server. The Cl ock Ice object
denoted by that proxy may be implemented in the same server process as the Wor | dTi e interface, or in a different server process. Where
the O ock object is physically implemented matters neither to the client nor to the server implementing the Wor | dTi e interface; if either
invokes an operation on a particular clock, such as get Ti e, an RPC call is sent to whatever server implements that particular clock. In
other words, a proxy acts as a local "ambassador" for the remote object; invoking an operation on the proxy forwards the invocation to the
actual object implementation. If the object implementation is in a different address space, this results in a remote procedure call; if the object
implementation is collocated in the same address space, the Ice run time uses an ordinary local function call from the proxy to the object
implementation.

Note that proxies also act very much like pointers in their sharing semantics: if two clients have a proxy to the same object, a state change
made by one client (such as setting the time) will be visible to the other client.

Proxies are strongly typed (at least for statically typed languages, such as C++ and Java). This means that you cannot pass something other
than a Cl ock proxy to the addZone operation; attempts to do so are rejected at compile time.

108 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

See Also

Classes

Interfaces, Operations, and Exceptions
User Exceptions

Run-Time Exceptions

Interface Inheritance

109 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Interface Inheritance

On this page:

® |nterface Inheritance

® |Interface Inheritance Limitations

¢ Implicit Inheritance from Object

® Null Proxies

® Self-Referential Interfaces

® Empty Interfaces

® Interface Versus Implementation Inheritance

Interface Inheritance

Interfaces support inheritance. For example, we could extend our world-time server to support the concept of an alarm clock:

Slice

interface Al arnC ock extends d ock {
i denpotent Ti meCf Day get Al ar mirli me() ;
i denpotent voi d set Al arnli me(Ti neOf Day al ar nili ne)
t hrows BadTi neVal ;

b

The semantics of this are the same as for C++ or Java: Al ar nCl ock is a subtype of C ock and an Al ar nCl ock proxy can be substituted
wherever a C ock proxy is expected. Obviously, an Al ar nTCl ock supports the same get Ti me and set Ti e operations as a G ock but
also supports the get Al ar nli ne and set Al ar ni me operations.

Multiple interface inheritance is also possible. For example, we can construct a radio alarm clock as follows:

Slice

interface Radio {
voi d set Frequency(long hertz) throws GenericError;
voi d set Vol une(l ong dB) throws GenericError;

s
enum Al ar mvbde { Radi oAl arm BeepAl arm};

interface Radi o0 ock extends Radio, Al arnC ock {
voi d set Mbde(Al ar mvbde node);
Al ar mvbde get Mbde() ;

b

Radi od ock extends both Radi o and Al ar nCl ock and can therefore be passed where a Radi o, an Al ar nCl ock, or a d ock is
expected. The inheritance diagram for this definition looks as follows:

110 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Clock
<<interface>>

F]

Radio AlarmClock
=<interface== =<interface==

RadioClock
<<jnterface>>

Inheritance diagram for Radi oCl ock.

Interfaces that inherit from more than one base interface may share a common base interface. For example, the following definition is legal:

Slice
interface B{ /* ... */ };
interface 11 extends B { /* ... */ };
interface 12 extends B { /* ... */ };
interface Dextends 11, 12 { /* ... */ };
This definition results in the familiar diamond shape:
B
Zeinterfacaes>
Il Iz
ccinterface»x <ccinterface>>

wointerfacas>

Diamond-shaped inheritance.

Interface Inheritance Limitations

If an interface uses multiple inheritance, it must not inherit the same operation name from more than one base interface. For example, the
following definition is illegal:

111 Copyright © 2011, ZeroC, Inc.

112

Ice 3.4.2 Documentation

Slice

interface dock {

voi d set (TimeCf Day tine); Il set tinme
b
interface Radio {

void set(long hertz); /1 set frequency
|
interface Radi o0 ock extends Radio, O ock { /1 1llegal!

11
b

This definition is illegal because Radi oCl ock inherits two set operations, Radi o: : set and O ock: : set . The Slice compiler makes this
illegal because (unlike C++) many programming languages do not have a built-in facility for disambiguating the different operations. In Slice,
the simple rule is that all inherited operations must have unique names. (In practice, this is rarely a problem because inheritance is rarely
added to an interface hierarchy "after the fact". To avoid accidental clashes, we suggest that you use descriptive operation names, such as

set Ti me and set Fr equency. This makes accidental name clashes less likely.)

Implicit Inheritance from Object

All Slice interfaces are ultimately derived from Obj ect . For example, the inheritance hierarchy would be shown more correctly as:

Object
=<<interface>=

—

Implicit inheritance

—

Implicit inheritance Clock
=<<interface==
&
Radio AlarmClock
=<interface==> =<interface==>
RadioClock

<<jnterface>=

Implicit inheritance from Cbj ect .

Because all interfaces have a common base interface, we can pass any type of interface as that type. For example:

Slice

interface ProxyStore {
i denpotent voi d put Proxy(string name, Cbject* 0);
i denpot ent Obj ect* getProxy(string nane);

b

oj ect is a Slice keyword (note the capitalization) that denotes the root type of the inheritance hierarchy. The Pr oxy St or e interface is a

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

generic proxy storage facility: the client can call put Pr oxy to add a proxy of any type under a given name and later retrieve that proxy again
by calling get Pr oxy and supplying that name. The ability to generically store proxies in this fashion allows us to build general-purpose
facilities, such as a naming service that can store proxies and deliver them to clients. Such a service, in turn, allows us to avoid hard-coding
proxy details into clients and servers.

Inheritance from type Qbj ect is always implicit. For example, the following Slice definition is illegal:

Slice

interface MyInterface extends Cbject { /* ... */ }; // Error!

It is understood that all interfaces inherit from type Cbj ect ; you are not allowed to restate that.

Type Obj ect is mapped to an abstract type by the various language mappings, so you cannot instantiate an Ice object of that type.

Null Proxies

Looking at the Pr oxy St or e interface once more, we notice that get Pr oxy does not have an exception specification. The question then is
what should happen if a client calls get Pr oxy with a name under which no proxy is stored? Obviously, we could add an exception to
indicate this condition to get Pr oxy. However, another option is to return a null proxy. Ice has the built-in notion of a null proxy, which is a
proxy that "points nowhere". When such a proxy is returned to the client, the client can test the value of the returned proxy to check whether
it is null or denotes a valid object.

A more interesting question is: "which approach is more appropriate, throwing an exception or returning a null proxy?" The answer depends
on the expected usage pattern of an interface. For example, if, in normal operation, you do not expect clients to call get Pr oxy with a
non-existent name, it is better to throw an exception. (This is probably the case for our Pr oxy St or e interface: the fact that thereisno | i st
operation makes it clear that clients are expected to know which names are in use.)

On the other hand, if you expect that clients will occasionally try to look up something that is not there, it is better to return a null proxy. The
reason is that throwing an exception breaks the normal flow of control in the client and requires special handling code. This means that you
should throw exceptions only in exceptional circumstances. For example, throwing an exception if a database lookup returns an empty result
set is wrong; it is expected and normal that a result set is occasionally empty.

It is worth paying attention to such design issues: well-designed interfaces that get these details right are easier to use and easier to

understand. Not only do such interfaces make life easier for client developers, they also make it less likely that latent bugs cause problems
later.

Self-Referential Interfaces

Proxies have pointer semantics, so we can define self-referential interfaces. For example:

Slice

interface Link {
i denpot ent SoneType get Val ue();
i denpot ent Li nk* next();

b

The Li nk interface contains a next operation that returns a proxy to a Li nk interface. Obviously, this can be used to create a chain of
interfaces; the final link in the chain returns a null proxy from its next operation.

Empty Interfaces

The following Slice definition is legal:

Slice

interface Enpty {};

The Slice compiler will compile this definition without complaint. An interesting question is: "why would | need an empty interface?" In most
cases, empty interfaces are an indication of design errors. Here is one example:

113 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Slice

interface ThingBase {};

interface Thingl extends Thi ngBase {
/| Operations here...

}

interface Thing2 extends ThingBase {
/| Operations here...

}s

Looking at this definition, we can make two observations:

® Thi ngl and Thi ng2 have a common base and are therefore related.
® Whatever is common to Thi ngl and Thi ng2 can be found in interface Thi ngBase.

Of course, looking at Thi ngBase, we find that Thi ngl and Thi ng2 do not share any operations at all because Thi ngBase is empty. Given
that we are using an object-oriented paradigm, this is definitely strange: in the object-oriented model, the only way to communicate with an
object is to send a message to the object. But, to send a message, we need an operation. Given that Thi ngBase has no operations, we
cannot send a message to it, and it follows that Thi ngl and Thi ng2 are not related because they have no common operations. But of
course, seeing that Thi ngl and Thi ng2 have a common base, we conclude that they are related, otherwise the common base would not
exist. At this point, most programmers begin to scratch their head and wonder what is going on here.

One common use of the above design is a desire to treat Thi ngl and Thi ng2 polymorphically. For example, we might continue the
previous definition as follows:

Slice

interface ThingUser {
voi d put Thi ng(Thi ngBase* t hing);
b

Now the purpose of having the common base becomes clear: we want to be able to pass both Thi ngl and Thi ng2 proxies to put Thi ng.
Does this justify the empty base interface? To answer this question, we need to think about what happens in the implementation of

put Thi ng. Obviously, put Thi ng cannot possibly invoke an operation on a Thi ngBase because there are no operations. This means that
put Thi ng can do one of two things:

1. putThing can simply remember the value of t hi ng.

2. putThing can try to down-cast to either Thi ngl or Thi ng2 and then invoke an operation. The pseudo-code for the implementation
of put Thi ng would look something like this:

voi d put Thi ng(Thi ngBase t hi ng)
{
if (is_a(Thingl, thing)) {
/1 Do something with Thingl...
} else if (is_a(Thing2, thing)) {
// Do sonething with Thing2...
} else {
/1 M ght be a ThingBase?
/1

The implementation tries to down-cast its argument to each possible type in turn until it has found the actual run-time type of the

argument. Of course, any object-oriented text book worth its price will tell you that this is an abuse of inheritance and leads to
maintenance problems.

If you find yourself writing operations such as put Thi ng that rely on artificial base interfaces, ask yourself whether you really need to do
things this way. For example, a more appropriate design might be:

114 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Slice

interface Thingl {
/1 Operations here...

s

interface Thing2 {
/| Operations here...

}

interface ThingUser {
voi d put Thi ngl(Thi ngl* thing);
voi d put Thi ng2(Thi ng2* thing);
b

With this design, Thi ngl and Thi ng2 are not related, and Thi ngUser offers a separate operation for each type of proxy. The
implementation of these operations does not need to use any down-casts, and all is well in our object-oriented world.

Another common use of empty base interfaces is the following:

Slice

interface Persistentbject {};

interface Thingl extends Persistentject {
/| Operations here...

b

interface Thing2 extends Persistent Ooject {
/1 Operations here...

}

Clearly, the intent of this design is to place persistence functionality into the Per si st ent Obj ect base implementation and require objects
that want to have persistent state to inherit from Per si st ent Obj ect . On the face of things, this is reasonable: after all, using inheritance in
this way is a well-established design pattern, so what can possibly be wrong with it? As it turns out, there are a number of things that are
wrong with this design:

115

® The above inheritance hierarchy is used to add behavior to Thi ngl and Thi ng2. However, in a strict OO model, behavior can be

invoked only by sending messages. But, because Per si st ent Obj ect has no operations, no messages can be sent.

This raises the question of how the implementation of Per si st ent Obj ect actually goes about doing its job; presumably, it knows
something about the implementation (that is, the internal state) of Thi ngl and Thi ng2, so it can write that state into a database.
But, if so, Per si st ent Obj ect, Thi ngl1, and Thi ng2 can no longer be implemented in different address spaces because, in that
case, Per si st ent Gbj ect can no longer get at the state of Thi ngl and Thi ng2.

Alternatively, Thi ngl and Thi ng2 use some functionality provided by Per si st ent Obj ect in order to make their internal state
persistent. But Per si st ent Obj ect does not have any operations, so how would Thi ngl and Thi ng2 actually go about achieving
this? Again, the only way that can work is if Per si st ent Cbj ect, Thi ngl, and Thi ng2 are implemented in a single address space
and share implementation state behind the scenes, meaning that they cannot be implemented in different address spaces.

® The above inheritance hierarchy splits the world into two halves, one containing persistent objects and one containing non-persistent

ones. This has far-reaching ramifications:

® Suppose you have an existing application with already implemented, non-persistent objects. Requirements change over
time and you find that you now would like to make some of your objects persistent. With the above design, you cannot do
this unless you change the type of your objects because they now must inherit from Per si st ent Cbj ect . Of course, this is
extremely bad news: not only do you have to change the implementation of your objects in the server, you also need to
locate and update all the clients that are currently using your objects because they suddenly have a completely new type.
What is worse, there is no way to keep things backward compatible: either all clients change with the server, or none of
them do. It is impossible for some clients to remain "unupgraded".

® The design does not scale to multiple features. Imagine that we have a number of additional behaviors that objects can
inherit, such as serialization, fault-tolerance, persistence, and the ability to be searched by a search engine. We quickly end
up in a mess of multiple inheritance. What is worse, each possible combination of features creates a completely separate
type hierarchy. This means that you can no longer write operations that generically operate on a number of object types.
For example, you cannot pass a persistent object to something that expects a non-persistent object, even if the receiver of
the object does not care about the persistence aspects of the object. This quickly leads to fragmented and hard-to-maintain
type systems. Before long, you will either find yourself rewriting your application or end up with something that is both
difficult to use and difficult to maintain.

Copyright © 2011, ZeroC, Inc.

116

Ice 3.4.2 Documentation

The foregoing discussion will hopefully serve as a warning: Slice is an interface definition language that has nothing to do with
implementation (but empty interfaces almost always indicate that implementation state is shared via mechanisms other than defined
interfaces). If you find yourself writing an empty interface definition, at least step back and think about the problem at hand; there may be a
more appropriate design that expresses your intent more cleanly. If you do decide to go ahead with an empty interface regardless, be aware
that, almost certainly, you will lose the ability to later change the distribution of the object model over physical server processes because you
cannot place an address space boundary between interfaces that share hidden state.

Interface Versus Implementation Inheritance

Keep in mind that Slice interface inheritance applies only to interfaces. In particular, if two interfaces are in an inheritance relationship, this in
no way implies that the implementations of those interfaces must also inherit from each other. You can choose to use implementation
inheritance when you implement your interfaces, but you can also make the implementations independent of each other. (To C++
programmers, this often comes as a surprise because C++ uses implementation inheritance by default, and interface inheritance requires
extra effort to implement.)

In summary, Slice inheritance simply establishes type compatibility. It says nothing about how interfaces are implemented and, therefore,
keeps implementation choices open to whatever is most appropriate for your application.

See Also

Interfaces, Operations, and Exceptions
Operations

User Exceptions

Run-Time Exceptions

Proxies

IceGrid

Copyright © 2011, ZeroC, Inc.

Classes

Ice 3.4.2 Documentation

In addition to interfaces, Slice permits the definition of classes. Classes are like interfaces in that they can have operations and are like
structures in that they can have data members. This leads to hybrid objects that can be treated as interfaces and passed by reference, or
can be treated as values and passed by value. Classes provide much architectural flexibility. For example, classes allow behavior to be
implemented on the client side, whereas interfaces allow behavior to be implemented only on the server side.

Classes support inheritance and are therefore polymorphic: at run time, you can pass a class instance to an operation as long as the actual
class type is derived from the formal parameter type in the operation's signature. This also permits classes to be used as type-safe unions,
similarly to Pascal's discriminated variant records.

Topics

117

Simple Classes

Class Inheritance

Class Inheritance Semantics
Classes as Unions

Self-Referential Classes

Classes Versus Structures

Classes with Operations
Architectural Implications of Classes
Classes Implementing Interfaces
Class Inheritance Limitations
Pass-by-Value Versus Pass-by-Reference
Passing Interfaces by Value

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Simple Classes

A Slice class definition is similar to a structure definition, but uses the cl ass keyword. For example:

Slice

class TimeO Day {

short hour; /1 0 - 23
short m nute; // 0 - 59
short second; // 0 - 59

b

Apart from the keyword cl ass, this definition is identical to the structure example. You can use a Slice class wherever you can use a Slice
structure (but, as we will see shortly, for performance reasons, you should not use a class where a structure is sufficient). Unlike structures,
classes can be empty:

Slice

class EnptyC ass {}; /Il K
struct EmptyStruct {}; // Error

Much the same design considerations as for empty interfaces apply to empty classes: you should at least stop and rethink your approach
before committing yourself to an empty class.

You can specify a default value for a class data member that has one of the following types:

An integral type (byt e, short,int, | ong)
A floating point type (f | oat or doubl e)
string

bool

enum

For example:

Slice

class Location {
string nane;

Poi nt pt;
bool display = true;
string source = "GPS";

b

The legal syntax for literal values is the same as for Slice constants, and you may also use a constant as a default value. The language
mapping guarantees that data members are initialized to their declared default values using a language-specific mechanism.

See Also

® Structures
® Constants and Literals

118 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Class Inheritance

Unlike structures, classes support inheritance. For example:

Slice

class Ti neCf Day {

short hour; // 0 - 23
short m nute; // 0 - 59
short second; /1 0 - 59
}
class DateTinme extends Ti neCf Day {
short day; /11 - 31
short nont h; /1 - 12
short vyear; /1 1753 onwar ds

b

This example illustrates one major reason for using a class: a class can be extended by inheritance, whereas a structure is not extensible.

The previous example defines Dat eTi e to extend the Ti neCf Day class with a date.

If you are puzzled by the comment about the year 1753, search the Web for "1752 date change". The intricacies of

calendars for various countries prior to that year can keep you occupied for months...

Classes only support single inheritance. The following is illegal:

Slice

class TimeO Day {

short hour; // 0 - 23
short m nute; // 0 - 59
short second; /1 0 - 59

}

class Date {
short day;
short nont h;
short vyear;

}s

11
}

class DateTinme extends Ti neCf Day, Date { Il Error!

A derived class also cannot redefine a data member of its base class:

Slice

cl ass Base {

int integer;
H
class Derived extends Base {

int integer; /1 Error, integer redefined
b

See Also

® Structures

119

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

120 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Class Inheritance Semantics

Classes use the same pass-by-value semantics as structures. If you pass a class instance to an operation, the class and all its members are
passed. The usual type compatibility rules apply: you can pass a derived instance where a base instance is expected. If the receiver has
static type knowledge of the actual derived run-time type, it receives the derived instance; otherwise, if the receiver does not have static type
knowledge of the derived type, the instance is sliced to the base type. For an example, suppose we have the following definitions:

Slice

/1 In file dock.ice:

class TimeO Day {

short hour; /1 0 - 23
short mnute; /1 0 - 59
short second; // 0 - 59

b
interface O ock {
Ti meOf Day get Ti me();
void setTime(TimeOfDay tine);
H
/1 In file DateTine.ice:

#i ncl ude <d ock.ice>

class DateTime extends Ti meCf Day {

short day; /1 - 31
short nonth; /11 - 12
short year; /1 1753 onwar ds

}

Because Dat eTi e is a sub-class of Ti meCf Day, the server can return a Dat eTi ne instance from get Ti me, and the client can pass a
Dat eTi ne instance to set Ti me. In this case, if both client and server are linked to include the code generated for both Cl ock. i ce and
Dat eTi ne. i ce, they each receive the actual derived Dat eTi ne instance, that is, the actual run-time type of the instance is preserved.

Contrast this with the case where the server is linked to include the code generated for both Cl ock. i ce and Dat eTi ne. i ce, but the client
is linked only with the code generated for Cl ock. i ce. In other words, the server understands the type Dat eTi e and can return a

Dat eTi ne instance from get Ti e, but the client only understands Ti meCf Day. In this case, the derived Dat eTi e instance returned by
the server is sliced to its Ti meCf Day base type in the client. (The information in the derived part of the instance is simply lost to the client.)

Class hierarchies are useful if you need polymorphic values (instead of polymorphic interfaces). For example:

Slice

cl ass Shape {
/1 Definitions for shapes, such as size, center, etc.

}s

class Crcle extends Shape {
// Definitions for circles, such as radius...

}

cl ass Rectangl e extends Shape {
/1 Definitions for rectangles, such as width and | ength...

b
sequence<Shape> ShapeSeq;

interface ShapeProcessor {
voi d processShapes(ShapeSeq ss);

}

121 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Note the definition of ShapeSeq and its use as a parameter to the pr ocessShapes operation: the class hierarchy allows us to pass a
polymorphic sequence of shapes (instead of having to define a separate operation for each type of shape).

The receiver of a ShapeSeq can iterate over the elements of the sequence and down-cast each element to its actual run-time type. (The
receiver can also ask each element for its type ID to determine its type.)

See Also

® Structures
® Type IDs

122 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Classes as Unions

Slice does not offer a dedicated union construct because it is redundant. By deriving classes from a common base class, you can create the
same effect as with a union:

Slice

interface ShapeShifter {
Shape transl ate(Shape s, |ong xDi stance, |ong yD stance);

b

The parameter s of the t r ansl at e operation can be viewed as a union of two members: a Ci r cl e and a Rect angl e. The receiver of a
Shape instance can use the type ID of the instance to decide whether it received a Ci r cl e or a Rect angl e. Alternatively, if you want
something more along the lines of a conventional discriminated union, you can use the following approach:

Slice

class UnionDiscrimnator {

int d;
b
class Menber1 extends UnionDi scrimnator {
I/l d ==
string s;
float f;
b
cl ass Menber2 extends UnionDiscrimnator {
/1 d ==
byte b;
int i;

b

With this approach, the Uni onDi scri ni nat or class provides a discriminator value. The "members" of the union are the classes that are
derived from Uni onDi scri m nat or . For each derived class, the discriminator takes on a distinct value. The receiver of such a union uses
the discriminator value in a swi t ch statement to select the active union member.

See Also

®* Type IDs

123 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Self-Referential Classes

Classes can be self-referential.

For example:

Slice

class Link {
SonmeType val ue;
Li nk next;

}

This looks very similar to the self-referential interface example, but the semantics are very different. Note that val ue and next are data
members, not operations, and that the type of next is Li nk (not Li nk*). As you would expect, this forms the same linked list arrangement
as the Li nk interface in Self-Referential Interfaces: each instance of a Li nk class contains a next member that points at the next link in the
chain; the final link's next member contains a null value. So, what looks like a class including itself really expresses pointer semantics: the
next data member contains a pointer to the next link in the chain.

You may be wondering at this point what the difference is then between the Li nk interface in Self-Referential Interfaces and the Li nk class
shown above. The difference is that classes have value semantics, whereas proxies have reference semantics. To illustrate this, consider
the Li nk interface from Self-Referential Interfaces once more:

Slice

interface Link {
i denpot ent SoneType get Val ue();
i denpot ent Li nk* next () ;

}

Here, get Val ue and next are both operations and the return value of next is Li nk*, that is, next returns a proxy. A proxy has reference
semantics, that is, it denotes an object somewhere. If you invoke the get Val ue operation on a Li nk proxy, a message is sent to the
(possibly remote) servant for that proxy. In other words, for proxies, the object stays put in its server process and we access the state of the
object via remote procedure calls. Compare this with the definition of our Li nk class:

Slice

class Link {
SoneType val ue;
Li nk next;

}

Here, val ue and next are data members and the type of next is Li nk, which has value semantics. In particular, while next looks and feels
like a pointer, it cannot denote an instance in a different address space. This means that if we have a chain of Li nk instances, all of the
instances are in our local address space and, when we read or write a value data member, we are performing local address space
operations. This means that an operation that returns a Li nk instance, such as get Head, does not just return the head of the chain, but the
entire chain, as shown:

124 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Client Server Client Server

getlead

H{—_‘

O

Class version of Li nk before and after calling get Head.

On the other hand, for the interface version of Li nk, we do not know where all the links are physically implemented. For example, a chain of
four links could have each object instance in its own physical server process; those server processes could be each in a different continent. If
you have a proxy to the head of this four-link chain and traverse the chain by invoking the next operation on each link, you will be sending
four remote procedure calls, one to each object.

Self-referential classes are particularly useful to model graphs. For example, we can create a simple expression tree along the following
lines:

Slice

enum UnaryQp { UnaryPlus, UnaryM nus, Not };
enum BinaryQp { Plus, Mnus, Miltiply, Divide, And, O };

cl ass Node {};

class UnaryQperator extends Node {
UnaryQOp operator;
Node oper and;

b

cl ass BinaryQOperator extends Node {
Bi naryOp op;
Node oper andl;
Node oper and2;

b

class Operand extends Node {
I ong val;

}s

The expression tree consists of leaf nodes of type Oper and, and interior nodes of type Unar yOper at or and Bi nar yOper at or , with one
or two descendants, respectively. All three of these classes are derived from a common base class Node. Note that Node is an empty class.
This is one of the few cases where an empty base class is justified. (See the discussion on empty interfaces; once we add operations to this
class hierarchy, the base class is no longer empty.)

If we write an operation that, for example, accepts a Node parameter, passing that parameter results in transmission of the entire tree to the
server:

Slice

interface Eval uator {
I ong eval (Node expression); // Send entire tree for eval uation

s

125 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Self-referential classes are not limited to acyclic graphs; the Ice run time permits loops: it ensures that no resources are leaked and that
infinite loops are avoided during marshaling.

See Also

® Classes with Operations
® Self-Referential Interfaces

126 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Classes Versus Structures

One obvious question to ask is: why does Ice provide structures as well as classes, when classes obviously can be used to model
structures? The answer has to do with the cost of implementation: classes provide a number of features that are absent for structures:

® Classes support inheritance.

® Classes can be self-referential.

® Classes can have operations.

® Classes can implement interfaces.

Obviously, an implementation cost is associated with the additional features of classes, both in terms of the size of the generated code and
the amount of memory and CPU cycles consumed at run time. On the other hand, structures are simple collections of values ("plain old
structs") and are implemented using very efficient mechanisms. This means that, if you use structures, you can expect better performance
and smaller memory footprint than if you would use classes (especially for languages with direct support for “plain old structures”, such as
C++ and C#). Use a class only if you need at least one of its more powerful features.

See Also
® Structures

® Classes with Operations
® Classes Implementing Interfaces

127 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Classes with Operations

Classes, in addition to data members, can have operations. The syntax for operation definitions in classes is identical to the syntax for
operations in interfaces. For example, we can modify the expression tree from Self-Referential Classes as follows:

Slice

enum UnaryQp { UnaryPlus, UnaryM nus, Not };
enum BinaryQp { Plus, Mnus, Miltiply, Divide, And, O };

class Node {
i dempotent |ong eval ();

}s

cl ass UnaryOperator extends Node {
UnaryOp operator;
Node oper and;

}

cl ass BinaryQperator extends Node {
Bi naryOp op;
Node operandl;
Node oper and2;

b

class Operand {
long val;

}

The only change compared to the version in Self-Referential Classes is that the Node class now has an eval operation. The semantics of
this are as for a virtual member function in C++: each derived class inherits the operation from its base class and can choose to override the
operation's definition. For our expression tree, the Oper and class provides an implementation that simply returns the value of its val
member, and the Unar yQper at or and Bi nar yOper at or classes provide implementations that compute the value of their respective
subtrees. If we call eval on the root node of an expression tree, it returns the value of that tree, regardless of whether we have a complex
expression or a tree that consists of only a single Oper and node.

Operations on classes are normally executed in the caller's address space, that is, operations on classes are local operations that do not
result in a remote procedure call.

ﬂ It is also possible to invoke an operation on a remote class instance.

Of course, this immediately raises an interesting question: what happens if a client receives a class instance with operations from a server,
but client and server are implemented in different languages? Classes with operations require the receiver to supply a factory for instances of
the class. The Ice run time only marshals the data members of the class. If a class has operations, the receiver of the class must provide a
class factory that can instantiate the class in the receiver's address space, and the receiver is responsible for providing an implementation of
the class's operations.

Therefore, if you use classes with operations, it is understood that client and server each have access to an implementation of the class's

operations. No code is shipped over the wire (which, in an environment of heterogeneous nodes using different operating systems and
languages is infeasible).

See Also

® Self-Referential Classes
® Pass-by-Value Versus Pass-by-Reference

128 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Architectural Implications of Classes

Classes have a number of architectural implications that are worth exploring in some detail.
On this page:

® Classes without Operations
® Classes with Operations
® Classes for Persistence

Classes without Operations

Classes that do not use inheritance and only have data members (whether self-referential or not) pose no architectural problems: they simply
are values that are marshaled like any other value, such as a sequence, structure, or dictionary. Classes using derivation also pose no
problems: if the receiver of a derived instance has knowledge of the derived type, it simply receives the derived type; otherwise, the instance
is sliced to the most-derived type that is understood by the receiver. This makes class inheritance useful as a system is extended over time:
you can create derived class without having to upgrade all parts of the system at once.

Classes with Operations

Classes with operations require additional thought. Here is an example: suppose that you are creating an Ice application. Also assume that
the Slice definitions use quite a few classes with operations. You sell your clients and servers (both written in Java) and end up with
thousands of deployed systems.

As time passes and requirements change, you notice a demand for clients written in C++.

For commercial reasons, you would like to leave the development of C++ clients to customers or a third party but, at this point, you discover
a glitch: your application has lots of classes with operations along the following lines:

Slice

cl ass Conpl exThi ngFor ExpertsOnly {
/'l Lots of arcane data nenbers here...
Myst eri ousThi ng nysteriousQOperation(/* paranmeters */);
ArcaneThi ng arcaneQperation(/* paraneters */);
Conpl exThi ng conpl exOperation(/* paraneters */);
Il etc...
b

It does not matter what exactly these operations do. (Presumably, you decided to off-load some of the processing for your application onto
the client side for performance reasons.) Now that you would like other developers to write C++ clients, it turns out that your application will
work only if these developers provide implementations of all the client-side operations and, moreover, if the semantics of these operations
exactly match the semantics of your Java implementations. Depending on what these operations do, providing exact semantic equivalents in
a different language may not be trivial, so you decide to supply the C++ implementations yourself.

But now, you discover another problem: the C++ clients need to be supported for a variety of operating systems that use a variety of different
C++ compilers. Suddenly, your task has become quite daunting: you really need to supply implementations for all the combinations of
operating systems and compiler versions that are used by clients. Given the different state of compliance with the ISO C++ standard of the
various compilers, and the idiosyncrasies of different operating systems, you may find yourself facing a development task that is much larger
than anticipated. And, of course, the same scenario will arise again should you need client implementations in yet another language.

The moral of this story is not that classes with operations should be avoided; they can provide significant performance gains and are not
necessarily bad. But, keep in mind that, once you use classes with operations, you are, in effect, using client-side native code and, therefore,
you can no longer enjoy the implementation transparencies that are provided by interfaces. This means that classes with operations should
be used only if you can tightly control the deployment environment of clients. If not, you are better off using interfaces and classes without
operations. That way, all the processing stays on the server and the contract between client and server is provided solely by the Slice
definitions, not by the semantics of the additional client-side code that is required for classes with operations.

Classes for Persistence

Ice also provides a built-in persistence mechanism that allows you to store the state of a class in a database with very little implementation
effort. To get access to these persistence features, you must define a Slice class whose members store the state of the class.

See Also

129 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

® Freeze

130 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Classes Implementing Interfaces

A Slice class can also be used as a servant in a server, that is, an instance of a class can be used to provide the behavior for an interface,
for example:

Slice

interface Tine {

i denpotent Ti meCf Day get Ti me();

i denpotent void setTinme(Ti meOf Day tine);
b

class Cock inplenents Tinme {
Ti neCf Day time;
H

The i mpl enent s keyword indicates that the class C ock provides an implementation of the Ti e interface. The class can provide data
members and operations of its own; in the preceding example, the T ock class stores the current time that is accessed via the Ti ne
interface. A class can implement several interfaces, for example:

Slice

interface Tinme {

i denpotent Ti meOf Day get Tine();

i denpotent void setTime(Ti reOfDay tine);
b

interface Radio {
i dempot ent voi d set Frequency(long hertz);
i dempot ent voi d set Vol ume(l ong dB);

b

class Radi oCl ock inplenents Tine, Radio {
Ti neCf Day tinme;
I ong hertz;

b

The class Radi od ock implements both Ti ne and Radi o interfaces.

A class, in addition to implementing an interface, can also extend another class:

131 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Slice

interface Tine {

i denpotent Ti meOf Day get Ti ne();

i denpotent void setTime(Ti reOf Day tine);
H

class Cock inplements Tine {
TimeO Day tine;
b

interface Al arnC ock extends Tine {
i denpotent Ti meCf Day get Al ar nili ne() ;
i denpotent voi d set Al arnili me(Ti meOf Day al ar nli ne) ;

b

interface Radio {
i denpotent void setFrequency(long hertz);
i dempot ent voi d set Vol unme(l ong dB);

H

cl ass Radi oAl arnC ock extends C ock
impl enents Al arnC ock, Radio {
Ti meOf Day al ar nili ne;
I ong hertz;

}s

These definitions result in the following inheritance graph:

Time
zzinterfaces>

F

Radio AlarmClock Clock
<<interface>= <<interface=>
Y
RadioClock

=<interface==

A Class using implementation and interface inheritance.

For this definition, Radi o and Al ar nCl ock are abstract interfaces, and C ock and Radi oAl ar nCl ock are concrete classes. As for Java,
a class can implement multiple interfaces, but can extend at most one class.

See Also

® Architectural Implications of Classes
® Class Inheritance Limitations

132 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Class Inheritance Limitations

As for interface inheritance, a class cannot redefine an operation or data member that it inherits from a base interface or class. For example:

Slice

interface Baselnterface {

void op();

H

cl ass Based ass {
int menber;

b

class Derivedd ass extends BaseC ass inpl enents Basel nterface {
voi d soneQOperation(); /Il K
int op(); /1 Error!
int sonmeMenber; Il K
I ong nenber; /1l Error!

H

See Also

® |Interface Inheritance

133 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Pass-by-Value Versus Pass-by-Reference

As we saw in Self-Referential Classes, classes naturally support pass-by-value semantics: passing a class transmits the data members of
the class to the receiver. Any changes made to these data members by the receiver affect only the receiver's copy of the class; the data
members of the sender's class are not affected by the changes made by the receiver.

In addition to passing a class by value, you can pass a class by reference. For example:

Slice

class Ti neCf Day {
short hour;
short m nute;
short second;
string format();

}

interface Exanple {
Ti meOf Day* get(); // Note: returns a proxy!
b

Note that the get operation returns a proxy to a Ti neOf Day class and not a Ti neOf Day instance itself. The semantics of this are as
follows:

® When the client receives a Ti nef Day proxy from the get call, it holds a proxy that differs in no way from an ordinary proxy for an
interface.

® The client can invoke operations via the proxy, but cannot access the data members. This is because proxies do not have the
concept of data members, but represent interfaces: even though the Ti meOf Day class has data members, only its operations can
be accessed via a the proxy.

The net effect is that, in the preceding example, the server holds an instance of the Ti meCOf Day class. A proxy for that instance was passed
to the client. The only thing the client can do with this proxy is to invoke the f or mat operation. The implementation of that operation is
provided by the server and, when the client invokes f or mat , it sends an RPC message to the server just as it does when it invokes an
operation on an interface. The implementation of the f or mat operation is entirely up to the server. (Presumably, the server will use the data
members of the Ti meOf Day instance it holds to return a string containing the time to the client.)

The preceding example looks somewhat contrived for classes only. However, it makes perfect sense if classes implement interfaces: parts of
your application can exchange class instances (and, therefore, state) by value, whereas other parts of the system can treat these instances
as remote interfaces.

For example:

Slice

interface Tinme {
string format();
11

}s

class TimeOfDay inplenents Tine {
short hour;
short m nute;
short second;

}

interface 11 {
Ti neOf Day get(); /1 Pass by val ue
void put(TimeOfDay tine); // Pass by val ue
b

interface 12 {
Ti me* get(); /| Pass by reference

}

134 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

In this example, clients dealing with interface | 1 are aware of the Ti neOf Day class and pass it by value whereas clients dealing with
interface | 2 deal only with the Ti ne interface. However, the actual implementation of the Ti e interface in the server uses Ti neCf Day
instances.

Be careful when designing systems that use such mixed pass-by-value and pass-by-reference semantics. Unless you are clear about what
parts of the system deal with the interface (pass by reference) aspects and the class (pass by value) aspects, you can end up with
something that is more confusing than helpful.

A good example of putting this feature to use can be found in Freeze, which allows you to add classes to an existing interface to implement
persistence.

See Also

® Self-Referential Classes
® Freeze

135 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Passing Interfaces by Value

Consider the following definitions:

Slice

interface Tine {
i denpotent Ti neCf Day get Time();
/1

}

interface Record {
void addTimeStanp(Tinme t); // Note: Tinme t, not Tinme* t
/1

b

Note that addTi meSt anp accepts a parameter of type Ti e, not of type Ti me*. The question is, what does it mean to pass an interface by
value? Obviously, at run time, we cannot pass an an actual interface to this operation because interfaces are abstract and cannot be
instantiated. Neither can we pass a proxy to a Ti me object to addTi neSt anp because a proxy cannot be passed where an interface is
expected.

However, what we can pass to addTi meSt anp is something that is not abstract and derives from the Ti ne interface. For example, at run
time, we could pass an instance of the Ti neOr Day class we saw earlier. Because the Ti meCf Day class derives from the Ti ne interface,

the class type is compatible with the formal parameter type Ti e and, at run time, what is sent over the wire to the server is the Ti meCf Day
class instance.

See Also

® Pass-by-Value Versus Pass-by-Reference

136 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Forward Declarations

Both interfaces and classes can be forward declared. Forward declarations permit the creation of mutually dependent objects, for example:

Slice

nmodule Famly {
interface Child; /1 Forward decl aration

sequence<Chil d*> Children; // K

interface Parent {
Children getChildren(); // OK

}s

interface Child { /1 Definition
Parent * get Mot her () ;
Par ent * get Fat her();

b

}

Without the forward declaration of Chi | d, the definition obviously could not compile because Chi | d and Par ent are mutually dependent
interfaces. You can use forward-declared interfaces and classes to define types (such as the Chi | dr en sequence in the previous example).
Forward-declared interfaces and classes are also legal as the type of a structure, exception, or class member, as the value type of a
dictionary, and as the parameter and return type of an operation. However, you cannot inherit from a forward-declared interface or class until
after its definition has been seen by the compiler:

Slice
interface Base; /1 Forward decl aration
interface Derivedl extends Base {}; Il Error!
interface Base {}; /1 Definition
interface Derived2 extends Base {}; /] OK, definition was seen

Not inheriting from a forward-declared base interface or class until its definition is seen is necessary because, otherwise, the compiler could
not enforce that derived interfaces must not redefine operations that appear in base interfaces.

Q A multi-pass compiler could be used, but the added complexity is not worth it.

See Also

® Interfaces, Operations, and Exceptions
® Classes

137 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Type IDs

Each user-defined Slice type has an internal type identifier, known as its type ID. The type ID is simply the fully-qualified name of each type.
For example, the type ID of the Chi | d interface in the preceding example is : : Fami | y: : Chi | dren: : Chi | d. All type IDs for user-defined
types start with a leading : : , so the type ID of the Fami | y module is : : Fami | y (not Fami | y). In general, a type ID is formed by starting
with the global scope (: :) and forming the fully-qualified name of a type by appending each module name in which the type is nested, and
ending with the name of the type itself; the components of the type ID are separated by : : .

The type ID of a proxy is formed by appending a * to the type ID of an interface or class. For example, the type ID of a Chi | d proxy is
c:Family:: Children:: Child*.

The type ID of the Slice Obj ect typeis:: | ce:: Obj ect and the type ID of an Obj ect proxyis::|ce:: Object*.

The type IDs for the remaining built-in types, such as i nt , bool , and so on, are the same as the corresponding keyword. For example, the
type ID of i nt isi nt, and the type ID of stringisstring.

Type IDs are used internally by the Ice run time as a unique identifier for each type. For example, when an exception is raised, the
marshaled form of the exception that is returned to the client is preceded by its type ID on the wire. The client-side run time first reads the
type ID and, based on that, unmarshals the remainder of the data as appropriate for the type of the exception.

Type IDs are also used by the i ce_i sA operation.

See Also

® jce_isA

138 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Operations on Object

The Obj ect interface has a number of operations. We cannot define type Obj ect in Slice because Obj ect is a keyword; regardless, here
is what (part of) the definition of Obj ect would look like if it were legal:

Slice
sequence<string> StrSeq;
interface Object { /1 "Pseudo" Slice!
i denmpot ent voi d ice_ping();
i denpot ent bool ice_isA(string typelD);

i denpotent string ice_id();
i denpotent StrSeq ice_ids();
11

H

Note that, apart from the illegal use of the keyword Obj ect as the interface name, the operation names all contain the i ce_ prefix. This
prefix is reserved for use by Ice and cannot clash with a user-defined operation. This means that all Slice interfaces can inherit from Obj ect
without name clashes. We discuss these built-in operations below.

On this page:
® ice_ping
® jce_isA
® jce_id
® jce_ids
I ce_ping

All interfaces support the i ce_pi ng operation. That operation is useful for debugging because it provides a basic reachability test for an
object: if the object exists and a message can successfully be dispatched to the object, i ce_pi ng simply returns without error. If the object
cannot be reached or does not exist, i ce_pi ng throws a run-time exception that provides the reason for the failure.

i ce_isSA

The i ce_i sA operation accepts a type identifier (such as the identifier returned by i ce_i d) and tests whether the target object supports the
specified type, returning t r ue if it does. You can use this operation to check whether a target object supports a particular type. For example,
referring to the diagram Implicit Inheritance from Object once more, assume that you are holding a proxy to a target object of type

Al ar mrCl ock. The table below illustrates the result of calling i ce_i sA on that proxy with various arguments. (We assume that all types in
the Implicit inheritance from Object diagram are defined in a module Ti nes):

Argument Result
::lce:: Object true
;i Tines:: dock true

c:Times:: AlarnC ock true
»:Tines:: Radio fal se
;. Tines:: Radi oC ock false
Calling i ce_i sAon a proxy denoting an object of type AlarmClock.
As expected, i ce_i sAreturns true for : : Ti mes: : Cl ock and : : Ti mes: : Al ar nCl ock and also returns true for : : | ce: : Obj ect

(because all interfaces support that type). Obviously, an Al ar mCl ock supports neither the Radi o nor the Radi oCl ock interfaces, so
i ce_i sAreturns false for these types.

139 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

ice id

The i ce_i d operation returns the type ID of the most-derived type of an interface.

ice_ids

The i ce_i ds operation returns a sequence of type IDs that contains all of the type IDs supported by an interface. For example, for the
RadioClock interface in Implicit inheritance from Object, i ce_i ds returns a sequence containing the type IDs : : | ce: : Obj ect,
c:Times::Clock,::Times:: A arnC ock, :: Ti nes: : Radi o, and : : Ti mes: : Radi oCl ock.

See Also
® Type IDs

® |nterface Inheritance
® |mplicit inheritance from Object

140 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Local Types

In order to access certain features of the Ice run time, you must use APIs that are provided by libraries. However, instead of defining an API
that is specific to each implementation language, Ice defines its APIs in Slice using the | ocal keyword. The advantage of defining APIs in
Slice is that a single definition suffices to define the API for all possible implementation languages. The actual language-specific APl is then
generated by the Slice compiler for each implementation language. Types that are provided by Ice libraries are defined using the Slice

| ocal keyword.

For example:

Slice

nmodul e Ice {
local interface CbjectAdapter {
/1
b
b

Any Slice definition (not just interfaces) can have a | ocal modifier. If the | ocal modifier is present, the Slice compiler does not generate
marshaling code for the corresponding type. This means that a local type can never be accessed remotely because it cannot be transmitted
between client and server. (The Slice compiler prevents use of | ocal types in non-l ocal contexts.)

In addition, local interfaces and local classes do not inherit from | ce: : Qbj ect . Instead, local interfaces and classes have their own,
completely separate inheritance hierarchy. At the root of this hierarchy is the type | ce: : Local Obj ect, as shown:

LocalObject
winterfaces

ObjectAdapter Other local
winterfaces interfaces...

Inheritance from Local Qbj ect .

Because local interfaces form a completely separate inheritance hierarchy, you cannot pass a local interface where a non-local interface is
expected, and vice-versa.

You rarely need to define local types for your own applications — the | ocal keyword exists mainly to allow definition of APIs for the Ice run
time. (Because local objects cannot be invoked remotely, there is little point for an application to define local objects; it might as well define

ordinary programming-language objects instead.) However, there is one exception to this rule: servant locators must be implemented as
local objects.

See Also

® Servant Locators

141 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Names and Scoping

Slice has a number of rules regarding identifiers. You will typically not have to concern yourself with these. However, occasionally, it is good
to know how Slice uses naming scopes and resolves identifiers.

On this page:

Naming Scope

Case Sensitivity
Qualified Names

Names in Nested Scopes
Introduced Identifiers
Name Lookup Rules

Naming Scope
The following Slice constructs establish a naming scope:

the global (file) scope
modules

interfaces

classes

structures

exceptions
parameter lists

Within a naming scope, identifiers must be unique, that is, you cannot use the same identifier for different purposes. For example:

Slice

interface Bad {
void op(int p, string p); /'l Error!
b

Because a parameter list forms a naming scope, it is illegal to use the same identifier p for different parameters. Similarly, data members,
operation names, interface and class hames, etc. must be unique within their enclosing scope.

Case Sensitivity

Identifiers that differ only in case are considered identical, so you must use identifiers that differ not only in capitalization within a naming
scope. For example:

Slice

struct Bad {

int m

string M /1 Error!
I

The Slice compiler also enforces consistent capitalization for identifiers. Once you have defined an identifier, you must use the same
capitalization for that identifier thereafter. For example, the following is in error:

Slice

sequence<string> StringSeq;

interface Bad {
stringSeq op(); Il Error!
h

142 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Note that identifiers must not differ from a Slice keyword in case only. For example, the following is in error:

Slice

interface Mdule { /l Error, "nodule" is a keyword
/1
b

Qualified Names

The scope-qualification operator : : allows you to refer to a type in a non-local scope. For example:

Slice

nmodul e Types {
sequence<| ong> LongSeq;

}

modul e MyApp {
sequence<Types: : LongSeq> Nunber Tr ee;

b

Here, the qualified name Types: : LongSeq refers to LongSeq defined in module Types. The global scope is denoted by a leading : : , so
we could also refer to LongSeq as : : Types: : LongSeq.

The scope-qualification operator also allows you to create mutually dependent interfaces that are defined in different modules. The obvious
attempt to do this fails:

Slice

nmodul e Parents {
interface Children::Child; // Syntax error!
interface Mther {
Children:: Child* getChild();
}s
interface Father {
Children:: Child* getChild();
I
b

nmodul e Children {
interface Child {
Parents:: Mot her* get Mother();
Parents: : Fat her* getFather();
H
h

This fails because it is syntactically illegal to forward-declare an interface in a different module. To make it work, we must use a reopened
module:

143 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Slice
nmodul e Children {
interface Child; /] Forward decl aration
b
nmodul e Parents {
interface Mther {
Children:: Child* getChild(); Il K
}s
interface Father {
Children:: Child* getChild(); /Il K
I
b
nmodul e Children { /] Reopen nodul e
interface Child { /1 Define Child
Parents:: Mot her* get Mother();
Parents: : Father* getFather();
}s
b

While this technique works, it is probably of dubious value: mutually dependent interfaces are, by definition, tightly coupled. On the other
hand, modules are meant to be used to place related definitions into the same module, and unrelated definitions into different modules. Of
course, this begs the guestion: if the interfaces are so closely related that they depend on each other, why are they defined in different
modules? In the interest of clarity, you probably should avoid this construct, even though it is legal.

Names in Nested Scopes

Names defined in an enclosing scope can be redefined in an inner scope. For example, the following is legal:

Slice

nmodul e Quter {
sequence<string> Seq;

nmodul e I nner {
sequence<short> Segq;
s
H

Within module | nner , the name Seq refers to a sequence of shor t values and hides the definition of Cut er : : Seq. You can still refer to
the other definition by using explicit scope qualification, for example:

Slice
nmodul e Quter {
sequence<string> Seq;
nodul e I nner {
sequence<short> Seq;
struct Confusing {
Seq a; /1 Sequence of short
::CQuter::Seq b; /1 Sequence of string
I
I
b

Needless to say, you should try to avoid such redefinitions — they make it harder for the reader to follow the meaning of a specification.

Same-named constructs cannot be nested inside each other. For example, a module named Mcannot (recursively) contain any construct

144 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

also named M The same is true for interfaces, classes, structures, exceptions, and operations. For example, the following examples are all in
error:

Slice
nmodul e M {

interface M{ /* ... */ }; /| Error!
interface | {

void I(); /1 Error!

void op(string op); /1 Error!
b
struct S {

long s; /!l Error, even if case differs!
}

}

nmodul e Quter {
nmodul e I nner {
interface Quter { /1 Error!
/1

The reason for this restriction is that nested types that have the same name are difficult to map into some languages. For example, C++ and
Java reserve the name of a class as the name of the constructor, so an interface | could not contain an operation named | without artificial
rules to avoid the name clash.

Similarly, some languages (such as C# prior to version 2.0) do not permit a qualified name to be anchored at the global scope. If a nested
module or type is permitted to have the same name as the name of an enclosing module, it can become impossible to generate legal code in
some cases.

In the interest of simplicity, Slice prohibits the name of a nested module or type to be the same as the name of one of its enclosing modules.

Introduced Identifiers

Within a naming scope, an identifier is introduced at the point of first use; thereafter, within that naming scope, the identifier cannot change
meaning.

For example:
Slice
modul e M {
sequence<string> Seq;
interface Bad {
Seq opl(); /1 Seq and opl introduced here
int Seq(); /'l Error, Seq has changed neaning
I
b

The declaration of op1 uses Seq as its return type, thereby introducing Seq into the scope of interface Bad. Thereafter, Seq can only be
used as a type name that denotes a sequence of strings, so the compiler flags the declaration of the second operation as an error.

Note that fully-qualified identifiers are not introduced into the current scope:

145 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Slice

nmodul e M {
sequence<string> Seq;

interface Bad {
::M:Seq opl(); // Only opl introduced here
int Seq(); Il K
h
H

In general, a fully-qualified name (one that is anchored at the global scope and, therefore, begins with a : : scope resolution operator) does
not introduce any name into the current scope. On the other hand, a qualified name that is not anchored at the global scope introduces only
the first component of the name:

Slice

nodul e M {
sequence<string> Seq;

interface Bad {
M : Seq opl(); /1 Mand opl introduced here, but not Seq
int Seq(); Il K
i
H

Name Lookup Rules

When searching for the definition of a name that is not anchored at the global scope, the compiler first searches backward in the current
scope of a definition of the name. If it can find the name in the current scope, it uses that definition. Otherwise, the compiler successively
searches enclosing scopes for the name until it reaches the global scope. Here is an example to illustrate this:

Slice

modul e ML {
sequence<doubl e> Seq;

nodul e M2 {
sequence<string> Seq; /1 OK, hides ::M.:: Seq

interface Base {

Seq opl(); /1 Returns sequence of string
b
}
nmodul e MB {
interface Derived extends M::Base {
Seq op2(); /1 Returns sequence of double
}
sequence<bool > Seq; /1 OK, hides ::M.:: Seq
interface | {
Seq op(); /1 Returns sequence of bool
b
}

interface | {
Seq op(); /1 Returns sequence of double

146 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Note that M2: : Deri ved: : op2 returns a sequence of doubl e, even though ML: : Base: : opl returns a sequence of stri ng. That is, the
meaning of a type in a base interface is irrelevant to determining its meaning in a derived interface — the compiler always searches for a
definition only in the current scope and enclosing scopes, and never takes the meaning of a name from a base interface or class.

See Also

® |exical Rules

147 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Metadata

Slice has the concept of a metadata directive. For example:

Slice

["java:type:java. util.LinkedList"] sequence<int> I|ntSeq;

A metadata directive can appear as a prefix to any Slice definition. Metadata directives appear in a pair of square brackets and contain one
or more string literals separated by commas. For example, the following is a syntactically valid metadata directive containing two strings:

Slice

["a", "b"] interface Exanple {};

Metadata directives are not part of the Slice language per se: the presence of a metadata directive has no effect on the client-server
contract, that is, metadata directives do not change the Slice type system in any way. Instead, metadata directives are targeted at specific
back-ends, such as the code generator for a particular language mapping. In the preceding example, the j ava: prefix indicates that the
directive is targeted at the Java code generator.

Metadata directives permit you to provide supplementary information that does not change the Slice types being defined, but somehow
influences how the compiler will generate code for these definitions. For example, a metadata directive
java:type:java.util.LinkedLi st instructs the Java code generator to map a sequence to a linked list instead of an array (which is
the default).

Metadata directives are also used to create skeletons that support Asynchronous Method Dispatch (AMD).

Apart from metadata directives that are attached to a specific definition, there are also global metadata directives. For example:

Slice

[["]java: package: com acne"]]

Note that a global metadata directive is enclosed by double square brackets, whereas a local metadata directive (one that is attached to a
specific definition) is enclosed by single square brackets. Global metadata directives are used to pass instructions that affect the entire
compilation unit. For example, the preceding metadata directive instructs the Java code generator to generate the contents of the source file
into the Java package com acne. Global metadata directives must precede any definitions in a file (but can appear following any #i ncl ude
directives).

We discuss specific metadata directives in the relevant chapters to which they apply.

You can find a summary of all metadata directives in Slice Metadata Directives.

See Also

® Slice Metadata Directives

148 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Serializable Objects

Ice for Java and Ice for .NET allow you to send native Java and CLR objects as operation parameters. The Ice run time automatically
serializes and deserializes the objects as part of an invocation. This mechanism allows you to transmit Java and CLR objects that do not
have a corresponding Slice definition.

On this page:

® Theseri al i zabl e Metadata Directive
® Architectural Implications

The seri al i zabl e Metadata Directive

To enable serialization, the parameter type must be a byte sequence with appropriate metadata. For example:

Slice

["java: serializabl e: SomePackage. JavaCd ass"]
sequence<byt e> JavaOvj ;

interface JavaExanple {
voi d sendJava(hj (Javalhj 0);

}

["clr:serializabl e: SoneNanespace. CLRC ass"]
sequence<byt e> CLRObj ;

interface CLRExanple {
voi d sendCLRObj (CLRObj 0);
b

The j ava: seri al i zabl e metadata indicates that the corresponding byte sequence holds a Java serializable type named
SomePackage. Javad ass. Your program must provide an implementation of this class; the class must be derived from
java.io. Serializable.

Similarly, the cl r: seri al i zabl e metadata indicates that the corresponding byte sequences holds a CLR serializable type named
SormeNanespace. CLRO ass. Your program must provide an implementation of this class; the class must be marked with the
Seri al i zabl e attribute.

Architectural Implications

The seri al i zabl e metadata directive permits you to transmit arbitrary Java and CLR objects across the network without the need to
define corresponding Slice classes or structures. This is mainly a convenience feature: you could achieve the same thing by using ordinary
Slice byte sequences and explicitly serializing your Java or CLR objects into byte sequences at the sending end, and deserializing them at
the receiving end. The seri al i zabl e metadata conveniently takes care of these chores for you and so is simpler to use.

Despite its convenience, you should use this feature with caution because it destroys language transparency. For example, a serialized Java
object is useless to a C++ server. All the C++ server can do with such an object is to pass it on to some other process as a byte sequence.
(Of course, if that receiving process is a Java process, it can deserialize the byte sequence.)

Further, similar to Slice classes with methods, a serialized object can be deserialized only if client and server agree on the definition of the
serialized class. In Java, this is enforced by the seri al Ver si onUl Dfield of each instance; in the CLR, client and server must reference
identical assembly versions. This creates much tighter coupling of client and server than exchanging Slice-defined types.

And, of course, if you build a system that relies on, for example, the exchange of serialized Java objects and you later find that you need to
add C++ or C# components to the system, these components cannot do anything with the serialized Java objects other than pass them
around as a blob of bytes.

So, if you do use these features, be clear that this implies tighter coupling between client and server, and that it creates additional library
versioning and distribution issues because all parts of the system must agree on the implementation of the serialized objects.

See Also

149 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

® Serializable Objects in Java
® Serializable Objects in C#
® Architectural Implications of Classes

150 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Deprecating Slice Definitions

All Slice compilers support a metadata directive that allows you to deprecate a Slice definition. For example:

Slice

interface Exanple {
["deprecat ed: someQOperati on() has been deprecated, use alternativeOperation() instead."]
voi d someQperation();

void alternativeQperation();

}

The [" depr ecat ed"] metadata directive causes the compiler to emit code that generates a warning if you compile application code that
uses a deprecated feature. This is useful if you want to remove a feature from a Slice definition but do not want to cause a hard error.

The message that follows the colon is optional; if you omit the message and use [" depr ecat ed"], the Slice compilers insert a default
message into the generated code.

You can apply the [" depr ecat ed"] metadata directive to Slice constructs other than operations (for example, a structure or sequence
definition).

See Also

® Generating Slice Documentation

151 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Using the Slice Compilers

Ice provides a separate Slice compiler for each language mapping, as shown below:

Language Compiler

C++ sl ice2cpp
Java slice2java
C# slice2cs

Objective-C ' sl i ce2obj c

Python slice2py
Ruby slice2rb
PHP sl i ce2php

The Slice compilers.

The compilers share a similar command-line syntax:

<conpi l er-nane> [options] file...

Regardless of which compiler you use, a number of command-line options are common to the compilers for any language mapping. (See the
appropriate language mapping chapter for options that are specific to a particular language mapping.) The common command-line options
are:

® -h, --help
Displays a help message.

® -v, --version
Displays the compiler version.

* - DNAME
Defines the preprocessor symbol NAVE.

* - DNAME=DEF
Defines the preprocessor symbol NAME with the value DEF.

* - UNAMVE
Undefines the preprocessor symbol {NAME.

®* -IDR
Add the directory DI Rto the search path for #i ncl ude directives.

* -E
Print the preprocessor output on st dout .

® --output-dir DIR
Place the generated files into directory DI R.

® -d, --debug
Print debug information showing the operation of the Slice parser.

® --ice
Permit use of the normally reserved prefix | ce for identifiers. Use this option only when compiling the source code for the Ice run
time.

® --underscore
Permit use of underscores in Slice identifiers.

The Slice compilers permit you to compile more than a single source file, so you can compile several Slice definitions at once, for example:

152 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

slice2cpp -1. filel.ice file2.ice file3.ice

See Also

® Slice Compilation

153 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Slice Checksums

As distributed applications evolve, developers and system administrators must be careful to ensure that deployed components are using the
same client-server contract. Unfortunately, mistakes do happen, and it is not always readily apparent when they do.

To minimize the chances of this situation, the Slice compilers support an option that generates checksums for Slice definitions, thereby
enabling two peers to verify that they share an identical client-server contract. The checksum for a Slice definition includes details such as
parameter and member names and the order in which operations are defined, but ignores information that is not relevant to the client-server
contract, such as metadata, comments, and formatting.

This option causes the Slice compiler to construct a dictionary that maps Slice type identifiers to checksums. A server typically supplies an
operation that returns its checksum dictionary for the client to compare with its local version, at which point the client can take action if it
discovers a mismatch.

The dictionary type is defined in the file | ce/ Sl i ceChecksunDi ct . i ce as follows:

Slice

nmodul e lce {
dictionary<string, string> SliceChecksunDi ct;

}s

This type can be incorporated into an application's Slice definitions like this:

Slice

#i ncl ude <l ce/ Sli ceChecksunDict.ice>

interface MyServer {
i denpotent Ice:: SliceChecksunDi ct getSliceChecksuns();
/1

b

The key of each element in the dictionary is a Slice type ID, and the value is the checksum of that type.
lﬂ For more information on generating and using Slice checksums, see the appropriate language mapping chapter.

See Also

® Type IDs

154 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Generating Slice Documentation

On this page:

® Generating Slice Documentation
® Documentation Comments
® Hyperlinks
® Explicit Cross-References
® Markup for Operations
® General HTML Markup
® Usingslice2htm

Generating Slice Documentation

If you look at the online Slice API reference, you will find reference documentation for all the Slice definitions used by Ice and its services. In
the binary distributions of Ice, you will also find HTML documentation that contains the same information. The HTML documentation is
generated from special comments in the Slice definitions using sl i ce2ht mi , a tool that scans Slice definitions for special comments and

generates HTML pages for those comments.

As an example of documentation comments, here is the definition of | ce: : Current:

155 Copyright © 2011, ZeroC, Inc.

http://www.zeroc.com/doc/Ice-3.4.1/reference

Ice 3.4.2 Documentation

Slice

/**

*

* Information about the current nethod invocation for servers.
* Each operation on the server has a [Current] as its inplicit
* final parameter. [Current] is nostly used for Ice services.
* Mbst applications ignore this paraneter.

*

*% [

ocal struct Current {

| *x*

* The object adapter.

*%

bj ect Adapt er adapter;

/**
* Information about the connection over which the current

* method invocation was received. If the invocation is direct
* due to collocation optimzation, this value is set to null.

* % [

Connection con;

| *x*

* The Ice object identity.

**/
Identity id;
/**

* The facet.

***/

string facet;

| *x*

* The operation nane.
**/

string operation;

| *x*

* The node of the operation.

* % [

Qper ati onMode node;

| *x*

* The request context, as received fromthe client.
**/

Cont ext ctx;

| *x*

* The request id unless oneway (0) or collocated (-1).
*-k/

int requestld;

¥

If you look at the comments, you will see these reflected in the documentation for | ce: : Curr ent in the online Slice API Reference.

Documentation Comments

A documentation comment:

® starts with / **
® ends with **/

Such a comment can precede any Slice construct, such as a module, interface, structure, operation, and so on. Within a documentation

156 Copyright © 2011, ZeroC, Inc.

http://www.zeroc.com/doc/Ice-3.4.2/reference

Ice 3.4.2 Documentation

comment, you can either start each line with a *, or you can leave the beginning of the line blank — sl i ce2ht m can handle either
convention:

Slice

| **

*

* This is a docunmentati on conment for which every line
* starts with a '*' character.

*% [

[*x*

This is a docunentation conment without a |eading '*'
for each line. Either style of coment is fine.

* % [

The first sentence of the documentation comment for a Slice construct should be a summary sentence. sl i ce2ht ml generates an index of
all Slice constructs; the first sentence of the comments for each Slice construct is ued as a summary in that index.

Hyperlinks

Any Slice identifier enclosed in square brackets is presented as a hyperlink in code font. For example:

Slice

[**

* An enpty [nanme] denotes a null object.
**/

This generates a hyperlink for the name markup that points at the definition of the corresponding Slice symbol. (The symbol can denote any
Slice construct, such as a type, interface, parameter, or structure member.)

Explicit Cross-References

The directive @ee is recognized by sl i ce2ht ml . Where it appears, the generated HTML contains a separate section titled "See Also",
followed by a list of Slice identifiers. For example:

Slice

* The obj ect adapter, which is responsible for receiving requests
* from endpoints, and for napping between servants, identities,
* and proxies.

* @ee Communi cat or
* @ee ServantLocat or

*% [

The Slice identifiers are listed in the corresponding "See Also" section as hyperlinks in code font.

Markup for Operations

There are three directives specifically to document Slice operations: @ar am @ et ur n, and @ hr ows. For example:

157 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Slice

[**

* Look for an itemw th the specified
* primary and secondary key.

*
* @aramp The primary search key.
* @arams The secondary search key.

* @eturn The itemthat matches the specified keys.

* @hrows NotFound Raised if no item matches the specified keys.
**/

Item findltem(Key p, Key s) throws NotFound;

sl i ce2ht m generates separate "Parameters", "Return Value", and "Exceptions" sections for these directives. Parameters are listed in the
same order as they appear in the comments. (For clarity, that order should match the order of declaration of parameters for the
corresponding operation.)

General HTML Markup

A documentation comment can contain any markup that is permitted by HTML in that place. For example, you can create separate
paragraphs with <P> and </ P> elements:

Slice

| **

* This is a comment for sone Slice construct.</p>
*

* <p>This comment appears in a separate paragraph.

*% [

Note that you must neither begin a documentation comment with a <p> element nor end it with a </ p> element because, in the generated
HTML, documentation comments are already surrounded by <p> and </ p> elements.

There are various other ways to create markup — for example, you can use <t abl e> or elements. Please see the HTML specification
for details.

Using sl i ce2ht m

sl i ce2ht m uses the following syntax:

slice2htm [options] slice_file...

If you have cross-references that span Slice files, you must compile all of the Slice files with a single invocation of sl i ce2ht i .
The command supports the following options:

® -h, --help
Displays a help message.

® -v, --version
Displays the compiler version.

* - DNAMVE
Defines the preprocessor symbol NAME.

* - DNAVE=DEF
Defines the preprocessor symbol NAME with the value DEF.

158 Copyright © 2011, ZeroC, Inc.

http://www.w3.org/TR/html401

Ice 3.4.2 Documentation

* - UNAMVE
Undefines the preprocessor symbol {NAME.

®* -IDR
Add the directory DI R to the search path for #i ncl ude directives.

* -E
Print the preprocessor output on st dout .

® --output-dir DIR
Place the generated files into directory DI R.

® -d, --debug
Print debug information showing the operation of the Slice parser.

® --ice
Permit use of the normally reserved prefix | ce for identifiers. Use this option only when compiling the source code for the Ice run
time.

® --underscore
Permit use of underscores in Slice identifiers.

® --hdr FILE
Prepend FI LE to each generated HTML file (except for _si ndex. ht nl). This allows you to replace the HTML header and other
preamble information with a custom version, so you can connect style sheets to the generated pages. The specified file must include
the <body> tag (but need not end with a <body> tag). FI LE is expected to contain the string Tl TLE on a line by itself, starting in
column one. slice2html replaces the Tl TLE string with the fully-scoped name of the Slice symbol that is documented on the
corresponding page.

e --ftr FILE
Append FI LE to each generated HTML file (except for _si ndex. ht m). This allows you to add, for example, a custom footer to
each generated page. FI LE must end with a </ body> tag.

® --indexhdr FILE
slice2ht m generates a file _si ndex. ht m that contains a table of contents of all Slice symbols that hyperlink to the
corresponding page. This option allows you to replace the standard header with a custom header, for example, to attach a
JavaScript. The specified file must include the <body> tag (but need not end with a <body> tag). The default value is the setting of
- - hdr (if any).

® --indexftr FILE
Append FI LE to the generated si ndex. ht ml page. This allows you to add, for example, a custom footer to the table of contents,
or to invoke a JavaScript. _FI LE is must end with a </ body> tag. The default value is the setting of - - f t r (if any).

® --image-dir DR
With this option, sl i ce2ht ml looks in the specified directory for images to use for the generated navigation hyperlinks. (Without
this option, text links are used instead.) Please see the generated HTML for the names of the various image files. (They can easily
be found by looking for i ng elements.)

® --logo-url URL
Use the specified URL as a hyperlink for the company logo that is added to each page (if - - i mage- di r is specified). The company
logo is expected to be in <i mage_di r>/1 ogo. gi f.

® --search ACTI ON
If this option is specified, the generated pages contain a search box that allows you to connect the generated pages to a search
engine. On pressing the "Search" button, the specified ACTI ONis carried out.

® --index NUM
sl i ce2ht ml generates sub-indexes for various Slice symbols. This option controls how many entries must be present before a
sub-index is generated. For example, if NUMis set to 3, a sub-index will be generated only if there are three or more symbols that
appear in that index. The default settings is 1, meaning that a sub-index is always generated. To disable sub-indexes entirely, set
NUMto 0.

® --summary NUM
If this option is set, summary sentences that exceed NUMcharacters generate a warning.

See Also

® Slice API reference
® HTML specification

159 Copyright © 2011, ZeroC, Inc.

http://www.zeroc.com/doc/Ice-3.4.2/reference
http://www.w3.org/TR/html401

Ice 3.4.2 Documentation

160 Copyright © 2011, ZeroC, Inc.

Slice Keywords

The following identifiers are Slice keywords:

bool exception interface
byte ext ends | ocal

cl ass fal se Local Obj ect
const fl oat | ong

dictionary idenpotent nodule
doubl e impl enents bj ect

enum int out
Keywords must be capitalized as shown.

See Also

® |exical Rules

161

Ice 3.4.2 Documentation

sequence
short
string
struct

t hr ons
true

voi d

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Slice Metadata Directives

On this page:

General Metadata Directives

Metadata Directives for C++

Metadata Directives for Java

Metadata Directives for C#

Metadata Directives for .NET and Mono
Metadata Directives for Objective-C
Metadata Directives for Python
Metadata Directives for Freeze

General Metadata Directives

am

This directive applies to interfaces, classes, and individual operations. It enable code generation for asynchronous method invocation.

ﬂ This directive applies to the deprecated AMI mapping. For the new AMI mapping there is no need for this directive.

anmd

This directive applies to interfaces, classes, and individual operations. It enables code generation for asynchronous method dispatch. (See
the relevant language mapping chapter for details.)

depr ecat ed
This directive allows you to emit a deprecation warning for Slice constructs .

pr ot ect ed

This directive applies to data members of classes and changes code generation to make these members protected. See class mapping of
the relevant language mapping chapter for more information.

User Excepti on

This directive applies only to operations on local interfaces. The metadata directive indicates that the operation can throw any user
exception, regardless of its specific definition. (This directive is used for the | ocat e and f i ni shed operations on servant locators, which
can throw any user exception.)

Metadata Directives for C++
cpp: array and cpp: range: array
These directives apply to sequences. They direct the code generator to create zerocopy APIs for passing sequences as parameters.

cpp: cl ass

This directive applies to structures. It directs the code generator to create a C++ class (instead of a C++ structure) to represent a Slice
structure.

cpp: const

This directive applies to operations. It directs the code generator to create a const pure virtual member function for the skeleton class.

cpp:type:wstring

162 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

This directive applies to data members of type string as well as to containers, such as structures, classes, and exceptions. It changes the
default mapping for strings from st d: : stringtostd::wstring.

cpp: header - ext

This global directive allows you to use a file extension for C++ header files other than the default . h extension.

cpp: i ncl ude

This global directive allows you inject additional #include directives into the generated code. This is useful for custom types.

cpp: virtual

This directive applies to classes. If the directive is present and a class has base classes, the generated C++ class derives virtually from its
bases; without this directive, slice2cpp generates the class so it derives non-virtually from its bases.

This directive is useful if you use Slice classes as servants and want to inherit the implementation of operations in the base class in the
derived class. For example:

Slice

cl ass Base {
int baseOp();
H

["cpp:virtual "]

class Derived extends Base {
string derivedOp();

b

The metadata directive causes slice2cpp to generate the class definition for Der i ved using virtual inheritance:

C++

class Base : virtual public Ice:: ject {
11
b

class Derived : virtual public Base {
/1

}

This allows you to reuse the implementation of baseQp in the servant for Der i ved using ladder inheritance:

C++
class Basel : public virtual Base {
Ice::Int baseOp(const lce::Current&);
11
b
class Derivedl : public virtual Derived, public virtual Basel {
/'l Re-use inherited baseOp()
H

Note that, if you have data member in classes and use virtual inheritance, you need to take care to correctly call base class constructors if
you implement your own one-shot constructor. For example:

163 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Slice

cl ass Base {
int baselnt;

}

class Derived extends Base {
int derivedlnt;

}

The generated one-shot constructor for Der i ved initializes both basel nt and deri vedl nt :

C++

Derived::Derived(lce::Int __ice_baselnt, lce::Int __ice_derivedint)
M : Base(__ice_baselnt),
derivedlnt(__ice_derivedlnt)

If you derive your own class from Der i ved and add a one-shot constructor to your class, you must explicitly call the constructor of all the
base classes, including Base. Failure to call the Base constructor will result in Base being default-constructed instead of getting a defined
value. For example:

C++

class Derivedl : public virtual Derived {
public:
Derivedl (i nt baselnt, int derivedint, const string& s)
Base(baselnt), Derived(baselnt, derivedint), _s(s)
{
}

private:
string _s;

}

This code correctly initializes the basel nt member of the Base part of the class. Note that the following does not work as intended and
leaves the Base part default-constructed (meaning that basel nt is not initialized):

C++

class Derivedl : public virtual Derived {
public:
Derivedl (int baselnt, int derivedlnt, const string& s)
Derived(basel nt, derivedint), _s(s)

{
/1 WRONG Base::baselnt is not initialized.
}
private:
string _s;

}

Metadata Directives for Java

j ava: package

164 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

This global directive instructs the code generator to place the generated classes into a specific package.

j ava: get set

This directive applies to data members and structures, classes, and exceptions. It adds accessor and modifier methods (JavaBean methods)
for data members.

java: serializable

This directive allows you to use Ice to transmit serializable Java classes as native objects, without having to define corresponding Slice
definitions for these classes.

java: type

This directive allows to use custom types for sequences and dictionaries.

Metadata Directives for C#

Note that C# (and other Common Language Runtime languages) are also affected by metadata with a cl r : prefix. (See Metadata Directives
for .NET and Mono.)

cs:attribute

This directive can be used both as a global directive and as directive for specific Slice constructs. It injects C# attribute definitions into the
generated code. (See C-Sharp Specific Metadata Directives.)

Metadata Directives for .NET and Mono

clr:class
This directive applies to Slice structures. It directs the code generator to emit a C# class instead of a structure.
clr:collection

This directive applies to sequences and dictionaries and maps them to types that are derived from Col | ect i onBase and
Di cti onar yBase, respectively.

clr:generic:List,clr:generic:LinkedLi st,clr:generic: Queue and cl r: generi c: Stack

These directives apply to sequences and map them to the specified sequence type.

clr:generic: SortedDi ctionary

This directive applies to dictionaries and maps them to Sor t edDi cti onary.

clr:generic

This directive applies to sequences and allows you map them to custom types.

clr:property

This directive applies to Slice structures and classes. It directs the code generator to create C# property definitions for data members.

clr:serializable

This directive allows you to use Ice to transmit serializable CLR classes as native objects, without having to define corresponding Slice
definitions for these classes.

Metadata Directives for Objective-C

165 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

obj c: prefix
This directive applies to modules and changes the default mapping for modules to use a specified prefix.

Metadata Directives for Python

pyt hon: package

This global directive instructs the code generator to place the generated code into a specified Python package
pyt hon: seq: def aul t, pyt hon: seq: | i st and pyt hon: seq: tupl e

These directives allow you to change the mapping for Slice sequences.

Metadata Directives for Freeze

freeze:readand freeze:wite

These directives inform a Freeze evictor whether an operation updates the state of an object, so the evictor knows whether it must save an

object before evicting it.

See Also

®* Metadata

166

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Slice for a Simple File System

For this manual, we use a file system application to illustrate various aspects of Ice. Throughout, we progressively improve and modify the
application such that it evolves into an application that is realistic and illustrates the architectural and coding aspects of Ice. This allows us to
explore the capabilities of the platform to a realistic degree of complexity without overwhelming you with an inordinate amount of detail early
on.

In this section:

® File System Application outlines the file system functionality
® Slice Definitions for the File System develops the data types and interfaces that are required for the file system
® Complete Definition presents the complete Slice definition for the application.

File System Application

Our file system application implements a simple hierarchical file system, similar to the file systems we find in Windows or Unix. To keep code
examples to manageable size, we ignore many aspects of a real file system, such as ownership, permissions, symbolic links, and a number
of other features. However, we build enough functionality to illustrate how you could implement a fully-featured file system, and we pay
attention to things such as performance and scalability. In this way, we can create an application that presents us with real-world complexity
without getting buried in large amounts of code.

Our file system consists of directories and files. Directories are containers that can contain either directories or files, meaning that the file
system is hierarchical. A dedicated directory is at the root of the file system. Each directory and file has a name. Files and directories with a
common parent directory must have different names (but files and directories with different parent directories can have the same name). In
other words, directories form a haming scope, and entries with a single directory must have unique hames. Directories allow you to list their
contents.

For now, we do not have a concept of pathnames, or the creation and destruction of files and directories. Instead, the server provides a fixed
number of directories and files. (We will address the creation and destruction of files and directories in Object Life Cycle.)

Files can be read and written but, for now, reading and writing always replace the entire contents of a file; it is impossible to read or write

only parts of a file.

Slice Definitions for the File System

Given the very simple requirements we just outlined, we can start designing interfaces for the system. Files and directories have something
in common: they have a name and both files and directories can be contained in directories. This suggests a design that uses a base type
that provides the common functionality, and derived types that provide the functionality specific to directories and files, as shown:

Node
<<interface>>

£

File Dicticnary
ointerfaces=> <Cinterface>>

Inheritance Diagram of the File System.

The Slice definitions for this look as follows:

167 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Slice

interface Node {
11

s

interface File extends Node {
/1
h

interface Directory extends Node {
/1

b

Next, we need to think about what operations should be provided by each interface. Seeing that directories and files have names, we can
add an operation to obtain the name of a directory or file to the Node base interface:

Slice

interface Node {
i denpotent string nanme();

b

The Fi | e interface provides operations to read and write a file. For simplicity, we limit ourselves to text files and we assume that r ead
operations never fail and that only wr i t e operations can encounter error conditions. This leads to the following definitions:

Slice

exception GenericError {
string reason;

H
sequence<string> Lines;

interface File extends Node {
i denpotent Lines read();
i denmpotent void wite (Lines text) throws GenericError;

b

Note that r ead and wr i t e are marked idempotent because either operation can safely be invoked with the same parameter value twice in a
row: the net result of doing so is the same has having (successfully) called the operation only once.

The wr i t e operation can raise an exception of type Gener i cEr r or . The exception contains a single r eason data member, of type
string. Ifawite operation fails for some reason (such as running out of file system space), the operation throws a Generi cError
exception, with an explanation of the cause of the failure provided in the r eason data member.

Directories provide an operation to list their contents. Because directories can contain both directories and files, we take advantage of the
polymorphism provided by the Node base interface:

Slice

sequence<Node* > NodeSeq;

interface Directory extends Node {
i denpot ent NodeSeq list();

}s

The NodeSeq sequence contains elements of type Node* . Because Node is a base interface of both Di rect ory and Fi | e, the NodeSeq
sequence can contain proxies of either type. (Obviously, the receiver of a NodeSeq must down-cast each element to either Fi | e or
Di rect ory in order to get at the operations provided by the derived interfaces; only the nane operation in the Node base interface can be
invoked directly, without doing a down-cast first. Note that, because the elements of NodeSeq are of type Node* (not Node), we are using
pass-by-reference semantics: the values returned by the | i st operation are proxies that each point to a remote node on the server.

168 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

These definitions are sufficient to build a simple (but functional) file system. Obviously, there are still some unanswered questions, such as
how a client obtains the proxy for the root directory. We will address these questions in the relevant implementation chapter.

Complete Definition

We wrap our definitions in a module, resulting in the final definition as follows:

Slice

nodul e Fil esystem {
interface Node {
i denpotent string name();

b

exception GenericError {
string reason;

}
sequence<string> Lines;

interface File extends Node {
i denpot ent Lines read();
i denpotent void wite(Lines text) throws GenericError;

I
sequence<Node*> NodeSeq;

interface Directory extends Node {
i denpot ent NodeSeq list();
b

See Also

® Object Life Cycle

169 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C++ Mapping

Topics
® Client-Side Slice-to-C++ Mapping

® Server-Side Slice-to-C++ Mapping
® The C++ Utility Library

170 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Client-Side Slice-to-C++ Mapping

The client-side Slice-to-C++ mapping defines how Slice data types are translated to C++ types, and how clients invoke operations, pass
parameters, and handle errors. Much of the C++ mapping is intuitive. For example, Slice sequences map to STL vectors, so there is
essentially nothing new you have to learn in order to use Slice sequences in C++.

The rules that make up the C++ mapping are simple and regular. In particular, the mapping is free from the potential pitfalls of memory
management: all types are self-managed and automatically clean up when instances go out of scope. This means that you cannot
accidentally introduce a memory leak by, for example, ignoring the return value of an operation invocation or forgetting to deallocate memory
that was allocated by a called operation.

The C++ mapping is fully thread-safe. For example, the reference counting mechanism for classes is interlocked against parallel access, so
reference counts cannot be corrupted if a class instance is shared among a number of threads. Obviously, you must still synchronize access
to data from different threads. For example, if you have two threads sharing a sequence, you cannot safely have one thread insert into the
sequence while another thread is iterating over the sequence. However, you only need to concern yourself with concurrent access to your
own data — the Ice run time itself is fully thread safe, and none of the Ice API calls require you to acquire or release a lock before you safely
can make the call.

Much of what appears in this chapter is reference material. We suggest that you skim the material on the initial reading and refer back to
specific sections as needed. However, we recommend that you read at least the mappings for exceptions, interfaces, and operations in
detail because these sections cover how to call operations from a client, pass parameters, and handle exceptions.

1 In order to use the C++ mapping, you should need no more than the Slice definition of your application and knowledge of
the C++ mapping rules. In particular, looking through the generated header files in order to discern how to use the C++
mapping is likely to be confusing because the header files are not necessarily meant for human consumption and,
occasionally, contain various cryptic constructs to deal with operating system and compiler idiosyncrasies. Of course,
occasionally, you may want to refer to a header file to confirm a detail of the mapping, but we recommend that you
otherwise use the material presented here to see how to write your client-side code.

-ﬂ The | ce Namespace
All of the APIs for the Ice run time are nested in the | ce namespace, to avoid clashes with definitions for other libraries or
applications. Some of the contents of the | ce namespace are generated from Slice definitions; other parts of the | ce
namespace provide special-purpose definitions that do not have a corresponding Slice definition. We will incrementally
cover the contents of the | ce namespace throughout the remainder of the manual.

Topics

C++ Mapping for Identifiers

C++ Mapping for Modules

C++ Mapping for Built-In Types

C++ Mapping for Enumerations

C++ Mapping for Structures

C++ Mapping for Sequences

C++ Mapping for Dictionaries

C++ Mapping for Constants

C++ Mapping for Exceptions

C++ Mapping for Interfaces

C++ Mapping for Operations

C++ Mapping for Classes

Smart Pointers for Classes
Asynchronous Method Invocation (AMI) in C++
slice2cpp Command-Line Options
Using Slice Checksums in C++
Example of a File System Client in C++

171 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C++ Mapping for Identifiers

A Slice identifier maps to an identical C++ identifier. For example, the Slice identifier O ock becomes the C++ identifier O ock. There is one
exception to this rule: if a Slice identifier is the same as a C++ keyword, the corresponding C++ identifier is prefixed with _cpp_. For
example, the Slice identifier whi | e is mapped as _cpp_whi | e.

A single Slice identifier often results in several C++ identifiers. For example, for a Slice interface named Foo, the generated C++ code uses
the identifiers Foo and FooPr x (among others). If the interface has the name whi | e, the generated identifiers are _cpp_whi | e and
whi | ePr x (not _cpp_whi | ePrx), that is, the prefix is applied only to those generated identifiers that actually require it.

lﬂl You should try to avoid such identifiers as much as possible.

See Also

Lexical Rules

C++ Mapping for Modules

C++ Mapping for Built-In Types
C++ Mapping for Enumerations
C++ Mapping for Structures
C++ Mapping for Sequences
C++ Mapping for Dictionaries
C++ Mapping for Constants
C++ Mapping for Exceptions

172 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C++ Mapping for Modules

A Slice module maps to a C++ namespace. The mapping preserves the nesting of the Slice definitions. For example:

Slice

modul e ML {
nmodul e M2 {
/1

/1
b
/1

modul e ML { /'l Reopen ML
11

}

This definition maps to the corresponding C++ definition:

C++

namespace ML {
namespace M2 {
/1

}
11

}

/1

nanespace ML { // Reopen ML
/1

}

If a Slice module is reopened, the corresponding C++ namespace is reopened as well.

See Also

Modules

C++ Mapping for Identifiers
C++ Mapping for Built-In Types
C++ Mapping for Enumerations
C++ Mapping for Structures
C++ Mapping for Sequences
C++ Mapping for Dictionaries
C++ Mapping for Constants
C++ Mapping for Exceptions

173 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C++ Mapping for Built-In Types

On this page:

® Mapping of Slice Built-In Types to C++ Types
® Alternative String Mapping for C++

Mapping of Slice Built-In Types to C++ Types
The Slice built-in types are mapped to C++ types as shown in this table:

Slice C++

bool bool

byte I ce::Byte
short Ice:: Short
int lce::lnt
long I ce::Long
float I ce:: Fl oat

double | ce: : Double

string std::string

Slice bool and stri ng map to C++ bool and st d: : st ri ng. The remaining built-in Slice types map to C++ type definitions instead of C++
native types. This allows the Ice run time to provide a definition as appropriate for each target architecture. (For example, | ce: : | nt might
be defined as | ong on one architecture and as i nt on another.)

-ﬂl Note that | ce: : Byt e is a typedef for unsi gned char . This guarantees that byte values are always in the range 0..255.

All the basic types are guaranteed to be distinct C++ types, that is, you can safely overload functions that differ in only the types listed in the
table above.

Alternative String Mapping for C++

You can use a metadata directive, [" cpp: t ype: wstri ng"], to map strings to C++ st d: : wst ri ng. This is useful for applications that use
languages with alphabets that cannot be represented in 8?bit characters. The metadata directive can be applied to any Slice construct. For
containers (such as modules, interfaces, or structures), the metadata directive applies to all strings within the container. A corresponding
metadata directive, [" cpp: t ype: string"], can be used to selectively override the mapping defined by the enclosing container. For
example:

174 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Slice
["cpp:type:wstring"]
struct S1 {
string x; /1 Maps to std::wstring
["cpp:type:wstring"]
string vy; /1 Maps to std::wstring
["cpp:type:string"]
string z; /1 Maps to std::string
b
struct S2 {
string x; /1 Maps to std::string
["cpp:type:string"]
string vy; /1 Maps to std::string
["cpp:type:wstring"]
string z; /1 Maps to std::wstring
H

With these metadata directives, the strings are mapped as indicated by the comments. By default, narrow strings are encoded as UTF?8,
and wide strings use Unicode in an encoding that is appropriate for the platform on which the application executes. You can override the

encoding for narrow and wide strings by registering a string converter with the Ice run time.

See Also

Basic Types

C++ Mapping for Identifiers

C++ Mapping for Modules

C++ Mapping for Enumerations

C++ Mapping for Structures

C++ Mapping for Sequences

C++ Mapping for Dictionaries

C++ Mapping for Constants

C++ Mapping for Exceptions

C++ Strings and Character Encoding

175

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C++ Mapping for Enumerations

A Slice enumeration maps to the corresponding enumeration in C++. For example:

Slice

enum Fruit { Apple, Pear, O ange };

Not surprisingly, the generated C++ definition is identical:

C++

enum Fruit { Apple, Pear, O ange };

See Also

Enumerations
C++ Mapping for Structures
C++ Mapping for Sequences

]
L]
L]
® C++ Mapping for Dictionaries

176 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C++ Mapping for Structures

A Slice structure maps to a C++ structure by default. In addition, you can use a metadata directive to map structures to C++ classes.
On this page:
® Default Mapping for Structures in C++

® Class Mapping for Structures in C++
® Default Constructors for Structures in C++

Default Mapping for Structures in C++

Slice structures map to C++ structures with the same name. For each Slice data member, the C++ structure contains a public data member.
For example, here is our Employee structure once more:

Slice

struct Enpl oyee {
I ong nunber;
string firstNane;
string | astNane;

b

The Slice-to-C++ compiler generates the following definition for this structure:

C++

struct Enpl oyee {

Ice::Long nunber;

std::string firstNane;

std::string | astNane;

bool operator==(const Enpl oyee&) const;
bool operator!=(const Enployee&) const;
bool operator<(const Enployee&) const;
bool operator<=(const Enpl oyee&) const;
bool operator>(const Enpl oyee&) const;
bool operator>=(const Enpl oyee&) const;

}

For each data member in the Slice definition, the C++ structure contains a corresponding public data member of the same name.
Constructors are intentionally omitted so that the C++ structure qualifies as a plain old datatype (POD).

Note that the structure also contains comparison operators. These operators have the following behavior:

* operator==
Two structures are equal if (recursively), all its members are equal.

® operator!=
Two structures are not equal if (recursively), one or more of its members are not equal.

® operator<
oper at or <=
oper at or >
oper at or >=
The comparison operators treat the members of a structure as sort order criteria: the first member is considered the first criterion,
the second member the second criterion, and so on. Assuming that we have two Enpl oyee structures, s1 and s2, this means that
the generated code uses the following algorithm to compare s1 and s2:

177 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C++

bool Enpl oyee: : operat or<(const Enpl oyee& rhs) const
{
if (this == &rhs) /1 Short?cut self?conparison
return fal se;

/1 Conpare first menbers

/1

if (nunber < rhs. nunber)
return true;

el se if (rhs.nunber < nunber)
return fal se;

/1 First menbers are equal, conpare second nenbers
11
if (firstNane < rhs.firstName)
return true;
else if (rhs.firstNane < firstNane)
return fal se;

/1 Second nmenbers are equal, conpare third nenbers
11
if (lastNane < rhs.| ast Nane)
return true;
else if (rhs.lastNanme < | ast Nane)
return fal se;

/1 Al menbers are equal, so return false
return fal se;

The comparison operators are provided to allow the use of structures as the key type of Slice dictionaries, which are mapped to

std:: map in C++.

Note that copy construction and assignment always have deep-copy semantics. You can freely assign structures or structure members to
each other without having to worry about memory management. The following code fragment illustrates both comparison and deep-copy

semantics:

C++

Enpl oyee el, e2;

el.firstNane = "Bjarne";

el.lastNane = "Stroustrup”;

e2 = el; /| Deep copy
assert(el == e2);

e2.firstName = "Andrew'; /| Deep copy
e2. | ast Nanme = "Koeni g"; /| Deep copy

assert(e2 < el);

Because strings are mapped to st d: : st ri ng, there are no memory management issues in this code and structure assignment and copying
work as expected. (The default member-wise copy constructor and assignment operator generated by the C++ compiler do the right thing.)

Class Mapping for Structures in C++

Occasionally, the mapping of Slice structures to C++ structures can be inefficient. For example, you may need to pass structures around in
your application, but want to avoid having to make expensive copies of the structures. (This overhead becomes noticeable for structures with
many complex data members, such as sequences or strings.) Of course, you could pass the structures by const reference, but that can
create its own share of problems, such as tracking the life time of the structures to avoid ending up with dangling references.

For this reason, you can enable an alternate mapping that maps Slice structures to C++ classes. Classes (as opposed to structures) are
reference-counted. Because the Ice C++ mapping provides smart pointers for classes, you can keep references to a class instance in many

places in the code without having to worry about either expensive copying or life time issues.

178

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

The alternate mapping is enabled by a metadata directive, [" cpp: cl ass"] . Here is our Employee structure once again, but this time with
the additional metadata directive:

Slice
["cpp: class"] struct Enployee {
I ong nunber;
string firstNane;
string | astNane;
b
Here is the generated class:
C++

class Enployee : public lceUtil::Shared {
public:
Enpl oyee() {}
Enpl oyee(::lce::Long,
const ::std::string&,
const ::std::string&):;
::lce::Long nunber;
cistd::string firstNane;
;:std::string | ast Nang;

bool operator==(const Enpl oyee&) const;
bool operator!=(const Enployee&) const;
bool operator<(const Enpl oyee&) const;
bool operator<=(const Enpl oyee&) const;
bool operator>(const Enpl oyee&) const;
bool operator>=(const Enpl oyee&) const;

b

Note that the generated class, apart from a default constructor, has a constructor that accepts one argument for each member of the
structure. This allows you to instantiate and initialize the class in a single statement (instead of having to first instantiate the class and then
assign to its members).

As for the default structure mapping, the class contains one public data member for each data member of the corresponding Slice structure.
The comparison operators behave as for the default structure mapping.

You can learn how to instantiate classes, and how to access them via smart pointers, in the sections describing the mapping for Slice
classes — the API described there applies equally to Slice structures that are mapped to classes.

Default Constructors for Structures in C++

Structures have an implicit default constructor that default-constructs each data member. Members having a complex type, such as strings,
sequences, and dictionaries, are initialized by their own default constructor. However, the default constructor performs no initialization for
members having one of the simple built?in types boolean, integer, floating point, or enumeration. For such a member, it is not safe to
assume that the member has a reasonable default value. This is especially true for enumerated types as the member's default value may be
outside the legal range for the enumeration, in which case an exception will occur during marshaling unless the member is explicitly set to a
legal value.

To ensure that data members of primitive types are initialized to reasonable values, you can declare default values in your Slice definition.
The default constructor initializes each of these data members to its declared value.

If you declare a default value for at least one member of a structure, or use the class mapping for the structure, the Slice compiler also

generates a second constructor. This one-shot constructor has one parameter for each data member, allowing you to construct and initialize
an instance in a single statement (instead of first having to construct the instance and then assign to its members).

See Also
® Structures

® C++ Mapping for Enumerations
® C++ Mapping for Sequences

179 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

® C++ Mapping for Dictionaries

180 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C++ Mapping for Sequences

On this page:

® Default Sequence Mapping in C++

® Custom Sequence Mapping in C++
® STL Container Mapping for Sequences
® Array Mapping for Sequences in C++
® Range Mapping for Sequences in C++

Default Sequence Mapping in C++

Here is the definition of our Frui t Pl at t er sequence once more:

Slice

sequence<Fruit> FruitPlatter;

The Slice compiler generates the following definition for the Frui t Pl at t er sequence:

C++

typedef std::vector<Fruit> FruitPlatter;

As you can see, the sequence simply maps to an STL vector, so you can use the sequence like any other STL vector. For example:

C++

/1 Make a small platter with one Apple and one O ange
11

FruitPlatter p;

p. push_back(Appl e) ;

p. push_back(Orange) ;

As you would expect, you can use all the usual STL iterators and algorithms with this vector.
Custom Sequence Mapping in C++
In addition to the default mapping of sequences to vectors, Ice supports three additional custom mappings for sequences.

STL Container Mapping for Sequences

You can override the default mapping of Slice sequences to C++ vectors with a metadata directive, for example:

Slice

[["cpp:include:list"]]

nmodul e Food {
enum Fruit { Apple, Pear, Oange };
["cpp:type:std::list< ::Food::Fruit>"]
sequence<Fruit> FruitPlatter;

H

With this metadata directive, the sequence now mapsto a C++std: : list:

181 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C++

#i nclude <list>
nanespace Food {
typedef std::list< Food::Fruit> FruitPlatter;

Il

The cpp: t ype metadata directive must be applied to a sequence definition; anything following the cpp: t ype: prefix is taken to be the
name of the type. For example, we could use ["cpp: type:::std::list< ::Food:: Fruit>"].Inthat case, the compiler would use a
fully-qualified name to define the type:

C++

typedef ::std::list< ::Food::Fruit> FruitPlatter;

Note that the code generator inserts whatever string you specify following the cpp: t ype: prefix literally into the generated code. This
means that, to avoid C++ compilation failures due to unknown symbols, you should use a qualified name for the type.

Also note that, to avoid compilation errors in the generated code, you must instruct the compiler to generate an appropriate include directive
with the cpp: i ncl ude global metadata directive. This causes the compiler to add the line

C++
#include <list>
to the generated header file.
Instead of st d: : | i st, you can specify a type of your own as the sequence type, for example:
Slice

[["cpp:include: FruitBow . h"]]
nodul e Food {
enum Fruit { Apple, Pear, Orange };

["cpp:type: FruitBow "]
sequence<Fruit> FruitPlatter;

}

With these metadata directives, the compiler will use a C++ type Fr ui t Bowl as the sequence type, and add an include directive for the
header file Fr ui t Bow . h to the generated code.

You can use any class of your choice as a sequence type, but the class must meet certain requirements. (vect or, | i st , and deque
happen to meet these requirements.)

® The class must have a default constructor and a single-argument constructor that takes the size of the sequence as an argument of
unsigned integral type.

The class must have a copy constructor.

The class must provide a member function si ze that returns the number elements in the sequence as an unsigned integral type.
The class must provide a member function swap that swaps the contents of the sequence with another sequence of the same type.
The class must define i t er at or and const _i t er at or types and must provide begi n and end member functions with the usual
semantics; the iterators must be comparable for equality and inequality.

Less formally, this means that if the class looks like a vect or, | i st, or deque with respect to these points, you can use it as a custom
sequence implementation.

182 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

In addition to modifying the type of a sequence itself, you can also modify the mapping for particular return values or parameters. For
example:

Slice

[["cpp:include:list"]]
[["cpp:include: deque"]]

nmodul e Food {
enum Fruit { Apple, Pear, Oange };
sequence<Fruit> FruitPlatter;
interface Market {
["cpp:type:list< ::Food::Fruit>"]
FruitPlatter barter(["cpp:type:deque< ::Food::Fruit>"] FruitPlatter offer);

b
b

With this definition, the default mapping of Frui t Pl att er to a C++ vect or still applies but the return value of bart er is mapped as a
| i st, and the of f er parameter is mapped as a deque.

Array Mapping for Sequences in C++

The array mapping for sequences applies to input parameters and to out parameters of AMI and AMD operations. For example:

Slice

interface File {
void wite(["cpp:array"] lce::ByteSeq contents);

}

The cpp: ar r ay metadata directive instructs the compiler to map the cont ent s parameter to a pair of pointers. With this directive, the
wr i t e method on the proxy has the following signature:

C++

void wite(const std::pair<const |ce::Byte*, const |ce::Byte*>& contents);

To pass a byte sequence to the server, you pass a pair of pointers; the first pointer points at the beginning of the sequence, and the second
pointer points one element past the end of the sequence.

Similarly, for the server side, the wr i t e method on the skeleton has the following signature:

C++
virtual void wite(const ::std::pair<const ::lce::Byte*, const ::lce::Byte*>&,
const ::lce::Current& = ::lce::Current()) = O;

The passed pointers denote the beginning and end of the sequence as arange [first, | ast) (thatis, they use the usual STL semantics
for iterators).

The array mapping is useful to achieve zero-copy passing of sequences. The pointers point directly into the server-side transport buffer; this

allows the server-side run time to avoid creating a vect or to pass to the operation implementation, thereby avoiding both allocating memory
for the sequence and copying its contents into that memory.

183 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

ﬁ You can use the array mapping for any sequence type. However, it provides a performance advantage only for byte
sequences (on all platforms) and for sequences of integral or floating point types (x86 platforms only).

The called operation in the server must not store a pointer into the passed sequence because the transport buffer into
which the pointer points is deallocated as soon as the operation completes.

Range Mapping for Sequences in C++

The range mapping for sequences is similar to the array mapping and exists for the same purpose, namely, to enable zero-copy of sequence
parameters:

Slice

interface File {
void wite(["cpp:range"] Ice::ByteSeq contents);

b

The cpp: r ange metadata directive instructs the compiler to map the cont ent s parameter to a pair of const _i t er at or . With this
directive, the wr i t e method on the proxy has the following signature:

C++

void wite(const std::pair<lice::ByteSeq::const_iterator, |ce::ByteSeq::const_iterator>& contents);

Similarly, for the server side, the wr i t e method on the skeleton has the following signature:

C++
virtual void wite(
const ::std::pair<::lce::ByteSeq::const_iterator, ::lce::ByteSeq::const_iterator>&,
const ::lce::Current& = ::lce::Current()) = O;

The passed iterators denote the beginning and end of the sequence as arange [fi rst, | ast) (thatis, they use the usual STL semantics
for iterators).

The motivation for the range mapping is the same as for the array mapping: the passed iterators point directly into the server-side transport
buffer and so avoid the need to create a temporary vect or to pass to the operation.
ﬁ As for the array mapping, the range mapping can be used with any sequence type, but offers a performance advantage

only for byte sequences (on all platforms) and for sequences of integral type (x86 platforms only).

The operation must not store an iterator into the passed sequence because the transport buffer into which the iterator
points is deallocated as soon as the operation completes.

You can optionally add a type name to the cpp: r ange metadata directive, for example:

Slice

interface File {
void wite(["cpp:range:std::deque<lce::Byte>"] Ice::ByteSeq contents);

b

This instructs the compiler to generate a pair of const _i t er at or for the specified type:

184 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C++

virtual void wite(
const ::std::pair<std::deque<lce::Byte> :const_iterator,
std:: deque<l ce:: Byte>::const_iterator>&,
const ::lce::Current& = ::lce::Current()) = O;

This is useful if you want to combine the range mapping with a custom sequence type that behaves like an STL container.
See Also

Sequences

Asynchronous Method Dispatch (AMD) in C++
C++ Mapping for Enumerations

C++ Mapping for Structures

C++ Mapping for Dictionaries

C++ Mapping for Operations

185 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C++ Mapping for Dictionaries

Here is the definition of our Enpl oyeeMap once more:

Slice

di ctionary<l ong, Enpl oyee> Enpl oyeeMap;

The following code is generated for this definition:

C++

typedef std::map<I|ce::Long, Enployee> Enpl oyeeMap;

Again, there are no surprises here: a Slice dictionary simply maps to an STL nap. As a result, you can use the dictionary like any other STL
map, for example:

C++

Enpl oyeeMap em
Enpl oyee e;

e. nunber = 42;
e.firstNane = "Stan";
e.last Nane = "Li ppman”;
enf e. nunber] = e;

e. nunber = 77;
e.firstName = "Herb";
e.lastName = "Sutter";
enf e. nunber] = e;

All the usual STL iterators and algorithms work with this map just as well as with any other STL container.

See Also

Dictionaries

C++ Mapping for Enumerations
C++ Mapping for Structures
C++ Mapping for Sequences

186 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C++ Mapping for Constants

Slice constant definitions map to corresponding C++ constant definitions. For example:

Slice
const bool AppendByDef ault = true;
const byte Lower Ni bbl e = 0xOf ;
const string Advice = "Don't Panic!";
const short TheAnswer = 42;
const doubl e Pl = 3.1416;
enum Fruit { Apple, Pear, Oange };
const Fruit FavoriteFruit = Pear;
Here are the generated definitions for these constants:
C++
const bool AppendByDef ault = true;
const lce::Byte Lower Ni bbl e = 15;
const std::string Advice = "Don't Panic!";
const |ce:: Short TheAnswer = 42;
const |ce::Double Pl = 3. 1416;
enum Fruit { Apple, Pear, Oange };
const Fruit FavoriteFruit = Pear ;

All constants are initialized directly in the header file, so they are compile-time constants and can be used in contexts where a compile-time
constant expression is required, such as to dimension an array or as the case label of a swi t ch statement.

See Also

Constants and Literals

C++ Mapping for Identifiers
C++ Mapping for Modules

C++ Mapping for Built-In Types
C++ Mapping for Enumerations
C++ Mapping for Structures
C++ Mapping for Sequences
C++ Mapping for Dictionaries
C++ Mapping for Exceptions

187 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C++ Mapping for Exceptions

On this page:
® C++ Mapping for User Exceptions

® C++ Default Constructors for Exceptions
® C++ Mapping for Run-Time Exceptions

C++ Mapping for User Exceptions

Here is a fragment of the Slice definition for our world time server once more:

Slice
exception GenericError {
string reason;
H
exception BadTi neVal extends GenericError {};
exception BadZoneNane extends GenericError {};
These exception definitions map as follows:
C++

class GenericError: public lce::UserException {
public:
std::string reason;

GenericError() {}
explicit GenericError(const string&);

virtual const std::string& ice_nane() const;
virtual Ice::Exception* ice_clone() const;
virtual void ice_throwm) const;
/1 Other menber functions here...

}

class BadTimeVal: public GenericError {
public:

BadTi neval () {}

explicit BadTi meVal (const string&);

virtual const std::string& ice_nane() const;
virtual Ice::Exception* ice_clone() const;
virtual void ice_throwm) const;
/1 Other menber functions here...

}

cl ass BadZoneNane: public GenericError {
public:

BadZoneNane() {}

explicit BadZoneNane(const string&);

virtual const std::string& ice_nane() const;
virtual Ice::Exception* ice_clone() const;
virtual void ice_throwm) const;

}

Each Slice exception is mapped to a C++ class with the same name. For each exception member, the corresponding class contains a public
data member. (Since BadTi meVal and BadZoneNane do not have members, the generated classes for these exceptions also do not have
members.)

188 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

The inheritance structure of the Slice exceptions is preserved for the generated classes, so BadTi neVal and BadZoneNane inherit from
CenericError.

Each exception has three additional member functions:

® ice_nane
As the name suggests, this member function returns the name of the exception. For example, if you call the i ce_name member
function of a BadZoneNane exception, it (not surprisingly) returns the string " BadZoneNane" . The i ce_nanme member function is
useful if you catch exceptions generically and want to produce a more meaningful diagnostic, for example:

C++
try {
/1
} catch (const GenericError& e) {
cerr << "Caught an exception: " << e.ice_nanme() << endl;
}

If an exception is raised, this code prints the name of the actual exception (BadTi neVal or BadZoneNane) because the exception
is being caught by reference (to avoid slicing).

® ice_clone
This member function allows you to polymorphically clone an exception. For example:

C++

try {
11

} catch (const Ice::UserException& e) {
I ce:: User Exception* copy = e.clone();

}

i ce_cl one is useful if you need to make a copy of an exception without knowing its precise run-time type. This allows you to
remember the exception and throw it later by calling i ce_t hr ow.

® ice_throw
i ce_t hr owallows you to throw an exception without knowing its precise run-time type. It is implemented as:

C++

voi d
GenericError::ice_throw) const
{

throw *this;

}

You can call i ce_t hr owto throw an exception that you previously cloned with i ce_cl one.

Each exception has a default constructor. This constructor performs memberwise initialization; for simple built?in types, such as integers, the
constructor performs no initialization, whereas complex types such as strings, sequences, and dictionaries are initialized by their respective
default constructors.

An exception also has a second constructor that accepts one argument for each exception member. This constructor allows you to
instantiate and initialize an exception in a single statement, instead of having to first instantiate the exception and then assign to its
members. For derived exceptions, the constructor accepts one argument for each base exception member, plus one argument for each
derived exception member, in base-to-derived order.

Note that the generated exception classes contain other member functions that are not shown here. However, those member functions are
internal to the C++ mapping and are not meant to be called by application code.

All user exceptions ultimately inherit from | ce: : User Excepti on. Inturn, | ce: : User Except i on inherits from | ce: : Excepti on (which
isan alias for I ceUti | : : Excepti on):

189 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C++

nanmespace lceUtil {
cl ass Exception {
virtual const std::string& ice_nane() const;

Excepti on* ice_clone() const;
voi d ice_throw() const;
virtual void ice_print(std::ostream&) const;
/1
}
std:: ostream& operator<<(std::ostream® const Exception&);
/1

}

nanmespace |ce {
typedef Iceltil::Exception Exception;

cl ass User Exception: public Exception {

public:
virtual const std::string& ice_nane() const = O;
11

b

| ce: : Excepti on forms the root of the exception inheritance tree. Apart from the usual i ce_nane, i ce_cl one, and i ce_t hr owmember
functions, it contains the i ce_pri nt member functions. i ce_pri nt prints the name of the exception. For example, calling i ce_pri nt on
a BadTi neVal exception prints:

BadTi nmeVal

To make printing more convenient, oper at or << is overloaded for | ce: : Excepti on, so you can also write:

C++

try {
11

} catch (const |ce::Exception& e) {
cerr << e << endl;

}

This produces the same output because oper at or << callsi ce_pri nt internally.

For Ice run time exceptions, i ce_pri nt also shows the file name and line number at which the exception was thrown.

C++ Default Constructors for Exceptions

Exceptions have a default constructor that default-constructs each data member. Members having a complex type, such as strings,
sequences, and dictionaries, are initialized by their own default constructor. However, the default constructor performs no initialization for
members having one of the simple built-in types boolean, integer, floating point, or enumeration. For such a member, it is not safe to assume
that the member has a reasonable default value. This is especially true for enumerated types as the member's default value may be outside
the legal range for the enumeration, in which case an exception will occur during marshaling unless the member is explicitly set to a legal
value.

To ensure that data members of primitive types are initialized to reasonable values, you can declare default values in your Slice definition.
The default constructor initializes each of these data members to its declared value.

Exceptions also have a second constructor that has one parameter for each data member. This allows you to construct and initialize a class
instance in a single statement (instead of first having to construct the instance and then assign to its members). For derived exceptions, this

constructor has one parameter for each of the base class's data members, plus one parameter for each of the derived class's data members,
in base-to-derived order.

C++ Mapping for Run-Time Exceptions

190 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

The Ice run time throws run-time exceptions for a number of pre-defined error conditions. All run-time exceptions directly or indirectly derive
from | ce: : Local Excepti on (which, in turn, derives from | ce: : Excepti on). | ce: : Local Excepti on has the usual member functions:
i ce_nane,ice_cl one,ice_throw, and (inherited from | ce: : Exception),ice_print,ice_file,andice_line.

Recall the inheritance diagram for user and run-time exceptions. By catching exceptions at the appropriate point in the hierarchy, you can
handle exceptions according to the category of error they indicate:

® |ce:: Exception
This is the root of the complete inheritance tree. Catching | ce: : Except i on catches both user and run-time exceptions.

® |ce:: UserException
This is the root exception for all user exceptions. Catching | ce: : User Except i on catches all user exceptions (but not run-time
exceptions).

® |ce::Local Exception
This is the root exception for all run-time exceptions. Catching | ce: : Local Except i on catches all run-time exceptions (but not
user exceptions).

® |ce:: Ti meout Exception
This is the base exception for both operation-invocation and connection-establishment timeouts.

® | ce:: Connect Ti neout Excepti on
This exception is raised when the initial attempt to establish a connection to a server times out.

For example, a Connect Ti meout Except i on can be handled as Connect Ti neout Excepti on, Ti meout Excepti on,
Local Excepti on, or Excepti on.

You will probably have little need to catch run-time exceptions as their most-derived type and instead catch them as Local Except i on; the
fine-grained error handling offered by the remainder of the hierarchy is of interest mainly in the implementation of the Ice run time.
Exceptions to this rule are the exceptions related to facet and object life cycles, which you may want to catch explicitly. These exceptions are
Facet Not Exi st Excepti on and Obj ect Not Exi st Except i on, respectively.

See Also

User Exceptions

Run-Time Exceptions

C++ Mapping for Identifiers
C++ Mapping for Modules

C++ Mapping for Built-In Types
C++ Mapping for Enumerations
C++ Mapping for Structures
C++ Mapping for Sequences
C++ Mapping for Dictionaries
C++ Mapping for Constants
Facets and Versioning

Object Life Cycle

191 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C++ Mapping for Interfaces

The mapping of Slice interfaces revolves around the idea that, to invoke a remote operation, you call a member function on a local class
instance that is a proxy for the remote object. This makes the mapping easy and intuitive to use because making a remote procedure call is
no different from making a local procedure call (apart from error semantics).

On this page:

® Proxy Classes and Proxy Handles
® |nheritance from | ce: : Obj ect
® Proxy Handles
® ProxyType and Poi nt er Type
® Methods on Proxy Handles
Default constructor
Copy constructor
Assignment operator
Checked cast
Unchecked cast
Stream insertion and stringification
® Using Proxy Methods in C++
® Object Identity and Proxy Comparison in C++

Proxy Classes and Proxy Handles

On the client side, a Slice interface maps to a class with member functions that correspond to the operations on that interface. Consider the
following simple interface:

Slice
nmodul e M {
interface Sinple {
void op();
I
b

The Slice compiler generates the following definitions for use by the client:

192 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C++

nanespace | ceProxy {
nanmespace M {
class Sinple;
}
}

nanespace M {
class Sinple;
typedef |celnternal::ProxyHandl e< ::lceProxy::M:Sinple> SinplePrx;
typedef lcelnternal::Handle< ::M:Sinple> SinplePtr;

}

nanespace | ceProxy {
nanespace M {
class Sinple : public virtual IceProxy::lce::bject {
public:
typedef ::M:SinplePrx ProxyType;
typedef ::M:SinplePtr PointerType;

void op();
voi d op(const Ice:: Context&);
/1

As you can see, the compiler generates a proxy class Si npl e in the | cePr oxy: : Mnamespace, as well as a proxy handle M : Si npl ePr x.
In general, for a module M the generated names are : : | ceProxy: : M : <i nterface?nane>and:: M: <i nterface?nanme>Pr x.

In the client's address space, an instance of | cePr oxy: : M : Si npl e is the local ambassador for a remote instance of the Si npl e interface
in a server and is known as a proxy class instance. All the details about the server-side object, such as its address, what protocol to use, and
its object identity are encapsulated in that instance.

Inheritance from | ce: : Obj ect

Si mpl e inherits from | cePr oxy: : | ce: : Obj ect, reflecting the fact that all Ice interfaces implicitly inherit from | ce: : Obj ect . For each
operation in the interface, the proxy class has two overloaded member functions of the same name. For the preceding example, we find that
the operation op has been mapped to two member functions op.

One of the overloaded member functions has a trailing parameter of type | ce: : Cont ext . This parameter is for use by the Ice run time to

store information about how to deliver a request; normally, you do not need to supply a value here and can pretend that the trailing
parameter does not exist. (The parameter is also used by IceStorm.)

Proxy Handles

Client-side application code never manipulates proxy class instances directly. In fact, you are not allowed to instantiate a proxy class directly.
The following code will not compile because | ce: : Cbj ect is an abstract base class with a protected constructor and destructor:

C++

lceProxy::M:Sinple s; [/ Conpile?time error!

Proxy instances are always instantiated on behalf of the client by the Ice run time, so client code never has any need to instantiate a proxy
directly. When the client receives a proxy from the run time, it is given a proxy handle to the proxy, of type <i nt er f ace- name>Pr x (

Si mpl ePr x for the preceding example). The client accesses the proxy via its proxy handle; the handle takes care of forwarding operation
invocations to its underlying proxy, as well as reference-counting the proxy. This means that no memory-management issues can arise:
deallocation of a proxy is automatic and happens once the last handle to the proxy disappears (goes out of scope).

Because the application code always uses proxy handles and never touches the proxy class directly, we usually use the term proxy to

denote both proxy handle and proxy class. This reflects the fact that, in actual use, the proxy handle looks and feels like the underlying proxy
class instance. If the distinction is important, we use the terms proxy class, proxy class instance, and proxy handle.

193 Copyright © 2011, ZeroC, Inc.

Pr oxyType and Poi nt er Type

Ice 3.4.2 Documentation

The generated proxy class contains type definitions for Pr oxy Type and Poi nt er Type. These are provided so you can refer to the proxy
type and smart pointer type in template definitions without having to resort to preprocessor trickery, for example:

C++

t enpl at e<t ypenanme T>

cl ass ProxyW apper {

public:
T:: ProxyType proxy() const;
/1

b

Methods on Proxy Handles

As we saw for the preceding example, the handle is actually a template of type | cel nt er nal : : Pr oxyHandl e that takes the proxy class
as the template parameter. This template has the usual default constructor, copy constructor, and assignment operator.

Default constructor

You can default-construct a proxy handle. The default constructor creates a proxy that points nowhere (that is, points at no object at all). If

you invoke an operation on such a null proxy, you getan | ceUti | :: Nul | Handl eExcepti on:
C++

try {
Sinpl ePrx s; /| Defaul t?constructed proxy
s?>op(); // Call via nil proxy
assert (0); /] Can't get here

} catch (const IceUtil::NullHandl eExcepti on&) {
cout << "As expected, got a Null Handl eException" << endl;

}

Copy constructor

The copy constructor ensures that you can construct a proxy handle from another proxy handle. Internally, this increments a reference count
on the proxy; the destructor decrements the reference count again and, once the count drops to zero, deallocates the underlying proxy class

instance. That way, memory leaks are avoided:

C++

{ 11

SinplePrx s1 = ...; /1
Si npl ePrx s2(sl); I
assert (sl == s2); /1

} Il
11
11

Enter new scope

Get a proxy from sonewhere
Copy?construct s2

Assertion passes

Leave scope; sl1, s2, and the
under|yi ng proxy instance
are deal | ocat ed

Note the assertion in this example: proxy handles support comparison.

Assignment operator

You can freely assign proxy handles to each other. The handle implementation ensures that the appropriate memory-management activities
take place. Self-assignment is safe and you do not have to guard against it:

194

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C++
SinplePrx sl = ...; /Il Get a proxy from sonewhere
Si npl ePrx s2; /1 s2 is nil
s2 = sl; /1 both point at the same object
sl = 0; /Il sl is nil
s2 = 0; /1l s2 is nil

Widening assignments work implicitly. For example, if we have two interfaces, Base and Der i ved, we can widen a Deri vedPr x to a
BasePr x implicitly:

C++

BasePrx base;

DerivedPrx derived;

base = derived; /'l Fine, no problem
derived = base; /1 Conpile?tine error

Implicit narrowing conversions result in a compile error, so the usual C++ semantics are preserved: you can always assign a derived type to
a base type, but not vice versa.

Checked cast

Proxy handles provide a checkedCast method:

C++
nanespace |celnternal {
t enpl at e<t ypenane T>
class ProxyHandl e : public lceUtil::Handl eBase<T> {

public:
tenpl at e<cl ass Y>
static ProxyHandl e checkedCast (const ProxyHandl e<Y>& r);

tenpl at e<cl ass Y>
static ProxyHandl e checkedCast (const ProxyHandl e<Y>& r, const ::lce::Context& c);

/1

A checked cast has the same function for proxies as a C++ dynani ¢_cast has for pointers: it allows you to assign a base proxy to a
derived proxy. If the base proxy's actual run-time type is compatible with the derived proxy's static type, the assignment succeeds and, after
the assignment, the derived proxy denotes the same object as the base proxy. Otherwise, if the base proxy's run-time type is incompatible
with the derived proxy's static type, the derived proxy is set to null. Here is an example to illustrate this:

C++

BasePrx base = ...; /1 Initialize base proxy
Deri vedPr x derived,;
derived = DerivedPrx::checkedCast (base);
if (derived) {
/1 Base has run?tinme type Derived,
/] use derived...
} else {
/| Base has some other, unrelated type

}

The expression Der i vedPr x: : checkedCast (base) tests whether base points at an object of type Der i ved (or an object with a type
that is derived from Der i ved). If so, the cast succeeds and der i ved is set to point at the same object as base. Otherwise, the cast fails
and der i ved is set to the null proxy.

195 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Note that checkedCast is a static member function so, to do a down-cast, you always use the syntax <i nt er f ace- nane>
Prx:: checkedCast .

Also note that you can use proxies in boolean contexts. For example, i f (proxy) returns true if the proxy is not null.

A checkedCast typically results in a remote message to the server.The message effectively asks the server "is the object denoted by this
reference of typeDerived?"

In some cases, the Ice run time can optimize the cast and avoid sending a message. However, the optimization applies
only in narrowly-defined circumstances, so you cannot rely on a checkedCast not sending a message.

The reply from the server is communicated to the application code in form of a successful (non-null) or unsuccessful (null) result. Sending a
remote message is necessary because, as a rule, there is no way for the client to find out what the actual run-time type of a proxy is without
confirmation from the server. (For example, the server may replace the implementation of the object for an existing proxy with a more
derived one.) This means that you have to be prepared for a checkedCast to fail. For example, if the server is not running, you will receive
a Connect Fai | edExcepti on; if the server is running, but the object denoted by the proxy no longer exists, you will receive an

Obj ect Not Exi st Excepti on.

Unchecked cast

In some cases, it is known that an object supports a more derived interface than the static type of its proxy. For such cases, you can use an
unchecked down-cast:

C++
nanespace |celnternal {
t enpl at e<t ypenane T>
class ProxyHandl e : public lceUtil::Handl eBase<T> {

public:
tenpl at e<cl ass Y>
static ProxyHandl e uncheckedCast (const ProxyHandl e<Y>& r);
/1

An uncheckedCast provides a down-cast without consulting the server as to the actual run-time type of the object, for example:

C++

BasePrx base = ...; // Initialize to point at a Derived
DerivedPrx derived;

derived = DerivedPrx: :uncheckedCast (base);

/'l Use derived...

You should use an uncheckedCast only if you are certain that the proxy indeed supports the more derived type: an uncheckedCast , as
the name implies, is not checked in any way; it does not contact the object in the server and, if it fails, it does not return null. (An unchecked
cast is implemented internally like a C++ st ati ¢c_cast, no checks of any kind are made). If you use the proxy resulting from an incorrect
uncheckedCast to invoke an operation, the behavior is undefined. Most likely, you will receive an Oper at i onNot Exi st Excepti on, but,
depending on the circumstances, the Ice run time may also report an exception indicating that unmarshaling has failed, or even silently
return garbage results.

Despite its dangers, uncheckedCast is still useful because it avoids the cost of sending a message to the server. And, particularly during
initialization, it is common to receive a proxy of static type | ce: : Obj ect, but with a known run-time type. In such cases, an
uncheckedCast saves the overhead of sending a remote message.

Stream insertion and stringification

For convenience, proxy handles also support insertion of a proxy into a stream, for example:

196 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C++
lce::CbjectPrx p = ...;
cout << p << endl;
This code is equivalent to writing:
C++

lce::ChjectPrx p = ...;
cout << p?>ice_toString() << endl;

Either code prints the stringified proxy. You could also achieve the same thing by writing:

C++

lce::CbjectPrx p = ...;
cout << communi cat or ?>proxyToString(p) << endl;

The advantage of using the i ce_t oSt ri ng member function instead of pr oxyToSt ri ng is that you do not need to have the communicator
available at the point of call.

Using Proxy Methods in C++

The base proxy class Obj ect Pr x supports a variety of methods for customizing a proxy. Since proxies are immutable, each of these
"factory methods" returns a copy of the original proxy that contains the desired modification. For example, you can obtain a proxy configured
with a ten second timeout as shown below:

C++

Ice:: CbjectPrx proxy = comuni cator->stringToProxy(...);
proxy = proxy->i ce_tinmeout (10000);

A factory method returns a new proxy object if the requested modification differs from the current proxy, otherwise it returns the current
proxy. With few exceptions, factory methods return a proxy of the same type as the current proxy, therefore it is generally not necessary to
repeat a down-cast after using a factory method. The example below demonstrates these semantics:

C++

I ce:: Cbj ect Prx base = communi cat or->stringToProxy(...);
Hel I oPrx hello = Hell oPrx::checkedCast (base);

hello = hello->ice_tineout(10000); // Type is preserved
hel | o- >sayHel | o();

The only exceptions are the factory methods i ce_f acet andi ce_i denti ty. Calls to either of these methods may produce a proxy for an
object of an unrelated type, therefore they return a base proxy that you must subsequently down-cast to an appropriate type.

Object Identity and Proxy Comparison in C++

Proxy handles support comparison using the following operators:

® operator==
operator! =
These operators permit you to compare proxies for equality and inequality. To test whether a proxy is null, use a comparison with
the literal 0, for example:

197 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C++

if (proxy == 0)
/1 1t's a nil proxy
el se
/1 1t's a non?nil proxy

® operator<
oper at or <=
oper at or >
oper at or >=

Proxies support comparison. This allows you to place proxies into STL containers such as maps or sorted lists.

® Boolean comparison

Proxies have a conversion operator to bool . The operator returns true if a proxy is not null, and false otherwise. This allows you to

write:

C++

BasePrx base = ...;
if (base)

/1 1t's a non?nil proxy
el se

/1 1t's a nil proxy

Note that proxy comparison uses all of the information in a proxy for the comparison. This means that not only the object identity must match
for a comparison to succeed, but other details inside the proxy, such as the protocol and endpoint information, must be the same. In other
words, comparison with == and ! = tests for proxy identity, not object identity. A common mistake is to write code along the following lines:

C++
lce::CbjectPrx pl = ...; /1 Get a proxy...
lce::CbjectPrx p2 = ...; /1 Get another proxy...
if (pl!=p2) {

/1 pl and p2 denote different objects /1 WWRONG
} else {

/1 pl and p2 denote the sane object /'l Correct
}

Even though p1 and p2 differ, they may denote the same Ice object. This can happen because, for example, both p1 and p2 embed the
same object identity, but each use a different protocol to contact the target object. Similarly, the protocols may be the same, but denote
different endpoints (because a single Ice object can be contacted via several different transport endpoints). In other words, if two proxies
compare equal with ==, we know that the two proxies denote the same object (because they are identical in all respects); however, if two
proxies compare unequal with ==, we know absolutely nothing: the proxies may or may not denote the same object.

To compare the object identities of two proxies, you can use helper functions in the | ce namespace:

C++

nanmespace |ce {

bool proxyldentitylLess(const bjectPrx& const ObjectPrx&);

bool proxyldentityEqual (const ObjectPrx& const ObjectPrx&);

bool proxyldentityAndFacet Less(const CbjectPrx& const ObjectPrx&);
bool proxyldentityAndFacet Equal (const Qbj ectPrx& const ObjectPrx&);

The proxyl denti t yEqual function returns true if the object identities embedded in two proxies are the same and ignores other
information in the proxies, such as facet and transport information. To include the facet name in the comparison, use

198 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

proxyl dentityAndFacet Equal instead.

The proxyl denti t yLess function establishes a total ordering on proxies. It is provided mainly so you can use object identity comparison
with STL sorted containers. (The function uses nane as the major ordering criterion, and cat egor y as the minor ordering criterion.) The
proxyl dentityAndFacet Less function behaves similarly to pr oxyl denti t yLess, except that it also compares the facet names of the
proxies when their identities are equal.

proxyl dentityEqual and proxyl dentityAndFacet Less allow you to correctly compare proxies for object identity. The example
below demonstrates how to use pr oxyl denti t yEqual :

C++
lce::CbjectPrx pl = ...; /] Get a proxy...
lce::CbjectPrx p2 = ...; /1 Get another proxy...
if (!lce::proxyldentityEqual (pl, p2) {

/1 pl and p2 denote different objects /'l Correct
} else {
/1 pl and p2 denote the sanme object /1 Correct
}
See Also

Interfaces, Operations, and Exceptions
Proxies

C++ Mapping for Operations

Example of a File System Client in C++
Using Proxies

Facets and Versioning

IceStorm

199 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C++ Mapping for Operations
On this page:

® Basic C++ Mapping for Operations
® Normal and i denpot ent Operations in C++
® Passing Parameters in C++
® In-Parameters in C++
® Qut-Parameters in C++
® Chained Invocations in C++
® Exception Handling in C++
® Exceptions and Out-Parameters in C++
® Exceptions and Return Values in C++

Basic C++ Mapping for Operations

As we saw in the C++ mapping for interfaces, for each operation on an interface, the proxy class contains a corresponding member function
with the same name. To invoke an operation, you call it via the proxy handle. For example, here is part of the definitions for our file system:

Slice

nodul e Fil esystem {
interface Node {
i denpotent string name();

The proxy class for the Node interface, tidied up to remove irrelevant detail, is as follows:

C++

nanespace | ceProxy {
nanespace Fil esystem {
class Node : virtual public IceProxy::lce::Qbject {
public:
std::string nane();
11
b
typedef Icelnternal:: ProxyHandl e<Node> NodePr x;
11

The nane operation returns a value of type st ri ng. Given a proxy to an object of type Node, the client can invoke the operation as follows:

C++
NodePrx node = ...; /1 Initialize proxy
string name = node?>nane(); /1 Get name via RPC

The proxy handle overloads oper at or ?> to forward method calls to the underlying proxy class instance which, in turn, sends the operation
invocation to the server, waits until the operation is complete, and then unmarshals the return value and returns it to the caller.

Because the return value is of type st ri ng, it is safe to ignore the return value. For example, the following code contains no memory leak:

200 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C++
NodePrx node = ...; /1 Initialize proxy
node?>nane() ; /1 Usel ess, but no | eak

This is true for all mapped Slice types: you can safely ignore the return value of an operation, no matter what its type — return values are
always returned by value. If you ignore the return value, no memory leak occurs because the destructor of the returned value takes care of

deallocating memory as needed.

Normal and i denpot ent Operations in C++

You can add an i denpot ent qualifier to a Slice operation. As far as the signature for the corresponding proxy methods is concerned,

i denpot ent has no effect. For example, consider the following interface:

Slice
interface Exanple {
string opl();
i dempotent string op2();
i denpotent void op3(string s);
b
The proxy class for this interface looks like this:
C++

nanespace | ceProxy {
class Exanple : virtual public IceProxy::lce::bject {

public:
std::string opl();
std::string op2(); /'l i denpotent
voi d op3(const std::string&); /1 idenpotent
/1

b

Because i denpot ent affects an aspect of call dispatch, not interface, it makes sense for the mapping to be unaffected by the i denpot ent

keyword.

Passing Parameters in C++

In-Parameters in C++

The parameter passing rules for the C++ mapping are very simple: parameters are passed either by value (for small values) or by const
reference (for values that are larger than a machine word). Semantically, the two ways of passing parameters are identical: it is guaranteed
that the value of a parameter will not be changed by the invocation (with some caveats — see Out-Parameters below and Location

Transparency).

Here is an interface with operations that pass parameters of various types from client to server:

201

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Slice

struct Nunber AndString {
int x;
string str;

H
sequence<string> StringSeq;
di ctionary<long, StringSeq> StringTabl e;

interface CientToServer {
void opl(int i, float f, bool b, string s);
voi d op2(Nunber AndString ns, StringSeq ss, StringTable st);
voi d op3(dientToServer* proxy);

H

The Slice compiler generates the following code for this definition:

C++

struct Nunber AndString {

lce::Int x;
std::string str;
11

H
typedef std::vector<std::string> StringSeq;
typedef std::map<lce::Long, StringSeq> StringTabl e;

nanespace | ceProxy {
class CientToServer : virtual public lIceProxy::lce:: Object {
public:
void opl(lce::Int, lce::Float, bool, const std::string&);
voi d op2(const Number AndString& const StringSeq& const StringTable&);
voi d op3(const CientToServerPrx&);
/1

Given a proxy to a G i ent ToSer ver interface, the client code can pass parameters as in the following example:

202 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C++

ClientToServerPrx p = ...; Il Get proxy...

p?>opl(42, 3.14, true, "Hello world!"); // Pass sinple literals

int i = 42;

float f = 3.14;

bool b = true;

string s = "Hello world!";

p?>opl(i, f, b, s); /1 Pass sinple variables

Nunber AndString ns = { 42, "The Answer" };
StringSeq ss;

ss. push_back("Hello world!");

StringTabl e st;

st[0] = ss;
p?>op2(ns, ss, st); /| Pass conpl ex vari abl es
p?>0p3(p); /| Pass proxy

You can pass either literals or variables to the various operations. Because everything is passed by value or const reference, there are no
memory-management issues to consider.
Out-Parameters in C++

The C++ mapping passes out-parameters by reference. Here is the Slice definition once more, modified to pass all parameters in the out
direction:

Slice

struct Nunmber AndString {
int x;
string str;

b
sequence<string> StringSeq;
dictionary<long, StringSeg> StringTabl e;

interface ServerTod ient {
void opl(out int i, out float f, out bool b, out string s);
voi d op2(out Number AndString ns, out StringSeq ss, out StringTable st);
voi d op3(out ServerToC ient* proxy);

}

The Slice compiler generates the following code for this definition:

C++

nanespace | ceProxy {
class ServerToClient : virtual public IceProxy::lce::oject {
public:
void opl(lce::Int& Ilce::Float& bool& std::string&);
voi d op2(Nunmber AndString& StringSeq& StringTableg&);
voi d op3(ServerToCd ientPrx&);
/1
b

Given a proxy to a Ser ver Tod i ent interface, the client code can pass parameters as in the following example:

203 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C++

ServerToCientPrx p = ...; /1 Get proxy...

int i;
float f;
bool b;
string s;

p?>opl(i, f, b, s);
/Il i, f, b, and s contain updated val ues now

Nunber AndStri ng ns;
StringSeq ss;
StringTable st;

p?>op2(ns, ss, st);
/'l ns, ss, and st contain updated val ues now

p?>0p3(p);
/'l p has changed now

Again, there are no surprises in this code: the caller simply passes variables to an operation; once the operation completes, the values of

those variables will be set by the server.

It is worth having another look at the final call:

C++

p?>0p3(p); /1 Weird, but well ?defined

Here, p is the proxy that is used to dispatch the call. That same variable p is also passed as an out-parameter to the call, meaning that the
server will set its value. In general, passing the same parameter as both an input and output parameter is safe: the Ice run time will correctly

handle all locking and memory-management activities.

Another, somewhat pathological example is the following:

Slice

sequence<i nt > Row;
sequence<Row> Matri x;

interface MatrixArithnetic {

}

void multiply(Matrix ml, Matrix n2, out Matrix result);

Given a proxy to a Matri xAri t hneti ¢ interface, the client code could do the following:

ma?>squar eAndCubeRoot (mL, n2, mi); // 1!

C++
MatrixArithneticPrx ma = ...; /1 Get proxy...
Matrix nl = ...; /1 Initialize one matrix
Matrix n2 = ...; /1 Initialize second matrix

This code is technically legal, in the sense that no memory corruption or locking issues will arise, but it has surprising behavior: because the
same variable il is passed as an input parameter as well as an output parameter, the final value of ml is indeterminate — in particular, if
client and server are collocated in the same address space, the implementation of the operation will overwrite parts of the input matrix m in
the process of computing the result because the result is written to the same physical memory location as one of the inputs. In general, you
should take care when passing the same variable as both an input and output parameter and only do so if the called operation guarantees to

be well-behaved in this case.

204

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Chained Invocations in C++

Consider the following simple interface containing two operations, one to set a value and one to get it:

Slice

interface Nane {
string get Name();
voi d set Name(string nane);

}s

Suppose we have two proxies to interfaces of type Nane, pl and p2, and chain invocations as follows:

C++

p2?>set Name(pl?>get Nane());

This works exactly as intended: the value returned by p1 is transferred to p2. There are no memory-management or exception safety issues
with this code.

Exception Handling in C++

Any operation invocation may throw a run-time exception and, if the operation has an exception specification, may also throw user
exceptions. Suppose we have the following simple interface:

Slice

exception Tantrum {
string reason;

}

interface Child {
voi d askTod eanUp() throws Tantrum
b

Slice exceptions are thrown as C++ exceptions, so you can simply enclose one or more operation invocations in a t r y- cat ch block:

C++
ChildPrx child = ...; /1 Get proxy...
try {
chi | d?>askToC eanUp(); /Il Gve it atry...
} catch (const Tantrum& t) {
cout << "The child says: " << t.reason << endl;

}

Typically, you will catch only a few exceptions of specific interest around an operation invocation; other exceptions, such as unexpected
run-time errors, will typically be dealt with by exception handlers higher in the hierarchy. For example:

205 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C++
voi d run()
{
ChildPrx child = ...; /1 Get proxy...
try {
chil d?>askToC eanUp(); // Gve it a try...
} catch (const Tantrum& t) {
cout << "The child says: " << t.reason << endl;
chil d?>scol d(); /1 Recover fromerror...
}
chil d?>praise(); /1 Gve positive feedback...
}
int
mai n(int argc, char* argv[])
{
int status = 1;
try {
11
run();
/1
status = 0;
} catch (const Ice::Exception& e) {
cerr << "Unexpected run?time error: " << e << endl;
}
I
return status;
}

This code handles a specific exception of local interest at the point of call and deals with other exceptions generically. (This is also the
strategy we used for our first simple application.)

For efficiency reasons, you should always catch exceptions by const reference. This permits the compiler to avoid calling the exception's
copy constructor (and, of course, prevents the exception from being sliced to a base type).

Exceptions and Out-Parameters in C++

The Ice run time makes no guarantees about the state of out-parameters when an operation throws an exception: the parameter may have
still have its original value or may have been changed by the operation's implementation in the target object. In other words, for
out-parameters, Ice provides the weak exception guarantee [1] but does not provide the strong exception guarantee.

This is done for reasons of efficiency: providing the strong exception guarantee would require more overhead than can be
justified.
Exceptions and Return Values in C++

For return values, C++ provides the guarantee that a variable receiving the return value of an operation will not be overwritten if an exception
is thrown. (Of course, this guarantee holds only if you do not use the same variable as both an out-parameter and to receive the return value
of an invocation).
See Also

® Operations

® Slice for a Simple File System

® C++ Mapping for Interfaces

References

1. Sutter, H. 1999. Exceptional C++: 47 Engineering Puzzles, Programming Problems, and Solutions. Reading, MA: Addison-Wesley.

206 Copyright © 2011, ZeroC, Inc.

http://amzn.com/0201615622

Ice 3.4.2 Documentation

207 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C++ Mapping for Classes
On this page:

Basic C++ Mapping for Classes
Inheritance from | ce: : Cbj ect in C++
Class Data Members in C++

Class Constructors in C++

Class Operations in C++

Class Factories in C++

Basic C++ Mapping for Classes

A Slice class is mapped to a C++ class with the same name. The generated class contains a public data member for each Slice data
member (just as for structures and exceptions), and a virtual member function for each operation. Consider the following class definition:

Slice
class Ti neOf Day {
short hour; /Il 0 ? 23
short m nute; // 0 ? 59
short second; /1 0 ? 59
string format(); /1 Return time as hh:mmss
b
The Slice compiler generates the following code for this definition:
C++

class Ti meOf Day;

typedef |celnternal::ProxyHandl e<l ceProxy:: Ti neXf Day> Ti neCf DayPr x;
typedef |celnternal:: Handl e<Ti meCf Day> Ti meCf DayPtr;

class TineOfDay : virtual public Ice::Object {
public:

| ce:: Short hour;

I ce::Short m nute;

| ce:: Short second;

virtual std::string format() = O;

Ti meCf Day() {};
Ti meOf Day(|l ce:: Short, lce::Short, Ice::Short);

virtual bool ice_isA(const std::string&);
virtual const std::string& ice_id();

static const std::string& ice_staticld();

typedef Ti meOf DayPrx ProxyType;
typedef TimeCf DayPtr PointerType;

11

ﬂ The ProxyType and PointerType definitions are for template programming.

There are a number of things to note about the generated code:

1. The generated class Ti meCOf Day inherits from | ce: : Cbj ect . This means that all classes implicitly inherit from | ce: : Obj ect,

208

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

which is the ultimate ancestor of all classes. Note that | ce: : Cbj ect is not the same as | ceProxy: : | ce: : Obj ect . In other
words, you cannot pass a class where a proxy is expected and vice versa.

. The generated class contains a public member for each Slice data member.

The generated class has a constructor that takes one argument for each data member, as well as a default constructor.

The generated class contains a pure virtual member function for each Slice operation.

The generated class contains additional member functions: i ce_i sA,ice_id,ice_staticld,andice_factory.

. The compiler generates a type definition Ti neOf Day Pt r . This type implements a smart pointer that wraps dynamically-allocated
instances of the class. In general, the name of this type is <cl ass- name>Pt r . Do not confuse this with <cl ass- nane>Pr x — that
type exists as well, but is the proxy handle for the class, not a smart pointer.

EECENEN

There is quite a bit to discuss here, so we will look at each item in turn.

Inheritance from | ce: : Cbj ect in C++

Like interfaces, classes implicitly inherit from a common base class, | ce: : Obj ect . However, as shown in the figure below, classes
inherited from | ce: : Obj ect instead of | ce: : Obj ect Pr x (which is at the base of the inheritance hierarchy for proxies). As a result, you
cannot pass a class where a proxy is expected (and vice versa) because the base types for classes and proxies are not compatible.

loe:ihjectPrx loe:rObjec

Proxies... Classes...

Inheritance from | ce: : Cbj ect Prx and | ce: : Obj ect .

| ce: : Obj ect contains a number of member functions:
C++

nanespace |ce {

class oject : public virtual Icelnternal::GCShared {

public:
virtual bool ice_isA(const std::string& const Current& = Current()) const;
virtual void ice_ping(const Current& = Current()) const;
virtual std::vector<std::string> ice_ids(const Current& = Current()) const;
virtual const std::string& ice_id(const Current& = Current()) const;
static const std::string& ice_staticld();
virtual lce::Int ice_getHash() const;
virtual QojectPtr ice_clone() const;

virtual void ice_preMarshal ();
virtual void ice_postUnmarshal ();

virtual DispatchStatus ice_dispatch(
| ce: : Request &,
const DispatchlnterceptorAsyncCal |l backPtr& = 0);

virtual bool operator==(const Object& const;
virtual bool operator!=(const Object& const;
virtual bool operator<(const Object& const;
virtual bool operator<=(const Object& const;
virtual bool operator>(const Object& const;
virtual bool operator>=(const Object&) const;

209 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

The member functions of | ce: : Obj ect behave as follows:

® jce_isA

This function returns t r ue if the object supports the given type ID, and f al se otherwise.

i ce_ping
As for interfaces, i ce_pi ng provides a basic reachability test for the class. Note that i ce_pi ng is normally only invoked on the
proxy for a class that might be remote because a class instance that is local (in the caller's address space) can always be reached.

ice_ids
This function returns a string sequence representing all of the type IDs supported by this object, including : : | ce: : Obj ect .

ice_id
This function returns the actual run-time type ID for a class. If you call i ce_i d through a smart pointer to a base instance, the
returned type id is the actual (possibly more derived) type ID of the instance.

ice_staticld
This function returns the static type ID of a class.

i ce_get Hash
This method returns a hash value for the class, allowing you to easily place classes into hash tables.

ice_clone
This function makes a polymorphic shallow copy of a class.

i ce_preMar shal
The Ice run time invokes this function prior to marshaling the object's state, providing the opportunity for a subclass to validate its
declared data members.

i ce_post Unnar shal
The Ice run time invokes this function after unmarshaling an object's state. A subclass typically overrides this function when it needs
to perform additional initialization using the values of its declared data members.

i ce_dispatch
This function dispatches an incoming request to a servant. It is used in the implementation of dispatch interceptors.

oper at or ==

operator! =

oper at or <

oper at or <=

oper at or >

oper at or >=

The comparison operators permit you to use classes as elements of STL sorted containers. Note that sort order, unlike for structures
, is based on the memory address of the class, not on the contents of its data members of the class.

Class Data Members in C++

By default, data members of classes are mapped exactly as for structures and exceptions: for each data member in the Slice definition, the
generated class contains a corresponding public data member.

If you wish to restrict access to a data member, you can modify its visibility using the pr ot ect ed metadata directive. The presence of this
directive causes the Slice compiler to generate the data member with protected visibility. As a result, the member can be accessed only by
the class itself or by one of its subclasses. For example, the Ti meOf Day class shown below has the pr ot ect ed metadata directive applied
to each of its data members:

Slice
class TineCf Day {
["protected"] short hour; /1 0 ? 23
["protected"] short minute; // O ? 59
["protected"] short second; // 0 ? 59
string format(); /1 Return time as hh:mmss
H

The Slice compiler produces the following generated code for this definition:

210

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C++

class TineOfDay : virtual public Ice:: Object {
public:

virtual std::string format() = O;
/1

protected:
I ce:: Short hour;

I ce::Short m nute;
| ce:: Short second;

b

For a class in which all of the data members are protected, the metadata directive can be applied to the class itself rather than to each
member individually. For example, we can rewrite the Ti neCf Day class as follows:

Slice
["protected"] class TinmeO Day {
short hour; // 0 ? 23
short m nute; // 0 ? 59
short second; // 0 ? 59
string format(); /1 Return time as hh:mmss
s

Class Constructors in C++

Classes have a default constructor that default-constructs each data member. Members having a complex type, such as strings, sequences,
and dictionaries, are initialized by their own default constructor. However, the default constructor performs no initialization for members
having one of the simple built-in types boolean, integer, floating point, or enumeration. For such a member, it is not safe to assume that the
member has a reasonable default value. This is especially true for enumerated types as the member's default value may be outside the legal
range for the enumeration, in which case an exception will occur during marshaling unless the member is explicitly set to a legal value.

To ensure that data members of primitive types are initialized to reasonable values, you can declare default values in your Slice definition.
The default constructor initializes each of these data members to its declared value.

Classes also have a second constructor that has one parameter for each data member. This allows you to construct and initialize a class
instance in a single statement (instead of first having to construct the instance and then assign to its members).

For derived classes, the constructor has one parameter for each of the base class's data members, plus one parameter for each of the
derived class's data members, in base-to-derived order. For example:

Slice

cl ass Base {
int i;
b
class Derived extends Base {

string s;

s

This generates:

211 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C++
class Base : virtual public ::lce:: bject
{
public:
lce::Int i;
Base() {};

explicit Base(::lce::lnt);

/1
b
class Derived : public Base
{
public:
cistdiistring s;
Derived() {};
Derived(::lce::Int, const ::std::string&);
/1
b

Note that single-parameter constructors are defined as expl i ci t, to prevent implicit argument conversions.

By default, derived classes derive non-virtually from their base class. If you need virtual inheritance, you can enable it using the
["cpp:virtual "] metadata directive.

Class Operations in C++

Operations of classes are mapped to pure virtual member functions in the generated class. This means that, if a class contains operations

(such as the f or mat operation of our Ti meCF Day class), you must provide an implementation of the operation in a class that is derived from
the generated class. For example:

C++

class TineOfDayl : virtual public TinmeODay {
public:
virtual std::string format() {

std::ostringstreams;
s << setw(2) << setfill('0") << hour << ":";
s << setw(2) << setfill('0") << minute << ":";
s << setw(2) << setfill('0") << second,
return s.c_str();

}

protected:
virtual ~TimeOfDayl () {} // Optional
b

ﬂ We discuss the motivation for the protected destructor in Preventing Stack-Allocation of Class Instances.

Class Factories in C++

Having created a class such as Ti neOf Day| , we have an implementation and we can instantiate the Ti mneOf Day| class, but we cannot
receive it as the return value or as an out-parameter from an operation invocation. To see why, consider the following simple interface:

212 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Slice

interface Tine {
Ti neOr Day get();
b

When a client invokes the get operation, the Ice run time must instantiate and return an instance of the Ti neCf Day class. However,

Ti mer Day is an abstract class that cannot be instantiated. Unless we tell it, the Ice run time cannot magically know that we have created a
Ti meOf Day| class that implements the abstract f or nat operation of the Ti meOf Day abstract class. In other words, we must provide the
Ice run time with a factory that knows that the Ti neOf Day abstract class has a Ti meCf Dayl concrete implementation. The

I ce: : Communi cat or interface provides us with the necessary operations:

Slice

nmodul e lce {
local interface ObjectFactory {
bj ect create(string type);
void destroy();
I

local interface Conmunicator {
voi d addObj ect Fact ory(Obj ect Factory factory, string id);
oj ect Factory findObjectFactory(string id);
/1
i
H

To supply the Ice run time with a factory for our Ti mreCf Day| class, we must implement the Cbj ect Fact or y interface:

Slice

nmodul e Ice {
local interface ObjectFactory {
bj ect create(string type);
voi d destroy();
I
b

The object factory's cr eat e operation is called by the Ice run time when it needs to instantiate a Ti meCf Day class. The factory's dest r oy
operation is called by the Ice run time when its communicator is destroyed. A possible implementation of our object factory is:

C++

class objectFactory : public Ice::CbjectFactory {
public:
virtual lce::ObjectPtr create(const std::string& type) {
assert(type == M:TimeCOfDay: :ice_staticld());
return new Ti meCf Dayl ;
}
virtual void destroy() {}
H

The cr eat e method is passed the type ID of the class to instantiate. For our Ti meCf Day class, the type ID is " : : M : Ti meOf Day" . Our
implementation of cr eat e checks the type ID: if it matches, the method instantiates and returns a Ti meCOf Day| object. For other type IDs,
the method asserts because it does not know how to instantiate other types of objects.

Note that we used the i ce_st at i cl d method to obtain the type ID rather than embedding a literal string. Using a literal type ID string in
your code is discouraged because it can lead to errors that are only detected at run time. For example, if a Slice class or one of its enclosing
modules is renamed and the literal string is not changed accordingly, a receiver will fail to unmarshal the object and the Ice run time will raise
NoObj ect Fact or yExcepti on. By using i ce_st ati cl d instead, we avoid any risk of a misspelled or obsolete type ID, and we can
discover at compile time if a Slice class or module has been renamed.

213 Copyright © 2011, ZeroC, Inc.

214

Ice 3.4.2 Documentation

Given a factory implementation, such as our Obj ect Fact or y, we must inform the Ice run time of the existence of the factory:

C++

| ce:: CommunicatorPtr ic = ...;
i c?>addoj ect Fact ory(new Obj ect Factory, M:TineODay::ice_staticld());

Now, whenever the Ice run time needs to instantiate a class with the type ID ": : M : Ti meOf Day", it calls the cr eat e method of the
registered Cbj ect Fact ory instance.

The dest r oy operation of the object factory is invoked by the Ice run time when the communicator is destroyed. This gives you a chance to
clean up any resources that may be used by your factory. Do not call dest r oy on the factory while it is registered with the communicator —
if you do, the Ice run time has no idea that this has happened and, depending on what your dest r oy implementation is doing, may cause
undefined behavior when the Ice run time tries to next use the factory.

The run time guarantees that dest r oy will be the last call made on the factory, that is, cr eat e will not be called concurrently with dest r oy
, and cr eat e will not be called once dest r oy has been called. However, calls to cr eat e can be made concurrently.

Note that you cannot register a factory for the same type ID twice: if you call addCbj ect Fact or y with a type ID for which a factory is
registered, the Ice run time throws an Al r eadyRegi st er edExcepti on.

Finally, keep in mind that if a class has only data members, but no operations, you need not create and register an object factory to transmit
instances of such a class. Only if a class has operations do you have to define and register an object factory.

See Also

Classes

Smart Pointers for Classes

C++ Mapping for Operations

Asynchronous Method Invocation (AMI) in C++
Dispatch Interceptors

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Smart Pointers for Classes

On this page:

Automatic Memory Management with Smart Pointers
Copying and Assignment of Classes

Polymorphic Copying of Classes

Null Smart Pointers

Preventing Stack-Allocation of Class Instances
Smart Pointers and Constructors

Smart Pointers and Exception Safety

Smart Pointers and Cycles

Garbage Collection of Class Instances

Smart Pointer Comparison

Automatic Memory Management with Smart Pointers

A recurring theme for C++ programmers is the need to deal with memory allocations and deallocations in their programs. The difficulty of
doing so is well known: in the face of exceptions, multiple return paths from functions, and callee-allocated memory that must be deallocated
by the caller, it can be extremely difficult to ensure that a program does not leak resources. This is particularly important in multi-threaded
programs: if you do not rigorously track ownership of dynamic memory, a thread may delete memory that is still used by another thread,
usually with disastrous consequences.

To alleviate this problem, Ice provides smart pointers for classes. These smart pointers use reference counting to keep track of each class
instance and, when the last reference to a class instance disappears, automatically delete the instance.

lﬂl Smart pointer classes are an example of the RAIl (Resource Acquisition Is Initialization) idiom [1].

Smart pointers are generated by the Slice compiler for each class type. For a Slice class <cl ass- nanme>, the compiler generates a C++
smart pointer called <cl ass- name>Pt r . Rather than showing all the details of the generated class, here is the basic usage pattern:
whenever you allocate a class instance on the heap, you simply assign the pointer returned from newto a smart pointer for the class.
Thereafter, memory management is automatic and the class instance is deleted once the last smart pointer for it goes out of scope:

C++

{ /'l Open scope
Timef DayPtr tod = new TineOfDayl; // Alocate instance
/1 Initialize...
tod->hour = 18;
tod->m nute = 11;
t od- >second = 15;
11
} /1 No nenory |eak here!

As you can see, you use oper at or - > to access the members of the class via its smart pointer. When the t od smart pointer goes out of
scope, its destructor runs and, in turn, the destructor takes care of calling del et e on the underlying class instance, so no memory is leaked.

A smart pointer performs reference counting of its underlying class instance:

® The constructor of a class sets its reference count to zero.

® |nitializing a smart pointer with a dynamically-allocated class instance causes the smart pointer to increment the reference count of
the instance by one.

® Copy-constructing a smart pointer increments the reference count of the instance by one.

® Assigning one smart pointer to another increments the target's reference count and decrements the source's reference count.
(Self-assignment is safe.)

® The destructor of a smart pointer decrements the reference count by one and calls del et e on its class instance if the reference
count drops to zero.

Suppose that we default-construct a smart pointer as follows:

215 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C++

Ti meOf DayPtr tod;

This creates a smart pointer with an internal null pointer.

Newly initialized smart pointer.

Constructing a class instance creates that instance with a reference count of zero; the assignment to the smart pointer causes the smart
pointer to increment the instance's reference count:

C++

tod = new Ti meCf Dayl ; /1 Refcount ==

The resulting situation is shown below:

tod =

Initialized smart pointer.

Assigning or copy-constructing a smart pointer assigns and copy-constructs the smart pointer (not the underlying instance) and increments
the reference count of the instance:

C++

Ti meOf DayPtr tod2(tod); // Copy-construct tod2
Ti meOf DayPtr tod3;
tod3 = tod; /1 Assign to tod3

Here is the situation after executing these statements:

tod

tod?

tod3

Three smart pointers pointing at the same class instance.

Continuing the example, we can construct a second class instance and assign it to one of the original smart pointers, t od2:

C++

tod2 = new Ti neOf Dayl ;

This decrements the reference count of the instance originally denoted by t 0od2 and increments the reference count of the instance that is
assigned to t 0od2. The resulting situation becomes the following:

216 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

2
tod
___.-'_
1
tod2
tod3
Three smart pointers and two instances.
You can clear a smart pointer by assigning zero to it:
C++
tod = 0; /] dear handle
As you would expect, this decrements the reference count of the instance, as shown here:
1
tod
___.l-'_
1
todZ2
tod3

Decremented reference count after clearing a smart pointer.

If a smart pointer goes out of scope, is cleared, or has a new instance assigned to it, the smart pointer decrements the reference count of its
instance; if the reference count drops to zero, the smart pointer calls del et e to deallocate the instance. The following code snippet
deallocates the instance on the right by assigning t od2 to t od3:

tod3 = tod2;

This results in the following situation:

tod

tod2

tod3

Deallocation of an instance with a reference count of zero.

Copying and Assignment of Classes

Classes have a default memberwise copy constructor and assignment operator, so you can copy and assign class instances:

217 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C++

Ti meOf DayPtr tod3 = new Ti neCf Dayl ;

Ti meOf DayPtr tod = new Ti meOfDayl (2, 3, 4); // Create instance
Ti meOf DayPtr tod2 = new Ti neCf Dayl (*t od); /1 Copy instance

*tod3 = *tod; /1 Assign instance

Copying and assignment in this manner performs a memberwise shallow copy or assignment, that is, the source members are copied into
the target members; if a class contains class members (which are mapped as smart pointers), what is copied or assigned is the smart

pointer, not the target of the smart pointer.

To illustrate this, consider the following Slice definitions:

Slice
cl ass Node {
int i;
Node next;
b
Assume that we initialize two instances of type Node as follows:
C++

NodePtr pl new Node(99, new Node(48, 0));
NodePtr p2 = new Node(23, 0);

/1

*p2 = *pl; // Assignnent

After executing the first two statements, we have the situation shown below:

pl

Pz

Class instances prior to assignment.

After executing the assignment statement, we end up with this result:

218

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

pl

p2

..-‘_P_\\II/
o)

Class instances after assignment.

Note that copying and assignment also works for the implementation of abstract classes, such as our Ti meOf Day| class, for example:

C++

class Ti meOf Dayl ;
typedef Iceltil:: Handl e<Ti neOf Dayl > Ti meCf Dayl Ptr;
class TineOfDayl : virtual public TinmeODay {

Il As before...
I

The default copy constructor and assignment operator will perform a memberwise copy or assignment of your implementation class:

C++

Ti mreOf Dayl Ptr todl = new Ti meCf Dayl ;
Ti meOf Dayl Ptr tod2 = new Ti meCf Dayl (*t odl); /1 Make copy

Of course, if your implementation class contains raw pointers (for which a memberwise copy would almost certainly be inappropriate), you
must implement your own copy constructor and assignment operator that take the appropriate action (and probably call the base copy
constructor or assignment operator to take care of the base part).

Note that the preceding code uses Ti meCf Day| Ptr as a typedef for | ceUti | : : Handl e<Ti meCf Dayl >. This class is a template that
contains the smart pointer implementation. If you want smart pointers for the implementation of an abstract class, you must define a smart
pointer type as illustrated by this type definition.

Copying and assignment of classes also works correctly for derived classes: you can assign a derived class to a base class, but not
vice-versa; during such an assignment, the derived part of the source class is sliced, as per the usual C++ assignment semantics.

Polymorphic Copying of Classes

As shown in Inheritance from | ce: : Cbj ect, the C++ mapping generates an i ce_cl one member function for every class:

C++

class TineOfDay : virtual public Ice::Object {
public:
11

virtual lce::QojectPtr ice_clone() const;

}

219 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

This member function makes a polymorphic shallow copy of a class: members that are not class members are deep copied; all members that
are class members are shallow copied. To illustrate, consider the following class definition:

Slice
cl ass Node {
Node ni;
Node n2;
s

Assume that we have an instance of this class, with the n1 and n2 members initialized to point at separate instances, as shown below:

f -

pl }ll. 5 i T

™,
e \\

(%

A class instance pointing at two other instances.

If we call i ce_cl one on the instance on the left, we end up with this situation:

nl — »
pl n2) (
A A
<
=N fff'f \ —
Aoy 5 A
pl *'1\ nz ..l'L
N A e g

Resulting graph after calling i ce_cl one on the left-most instance.

As you can see, class members are shallow copied, that is, i ce_cl one makes a copy of the class instance on which it is invoked, but does
not copy any class instances that are pointed at by the copied instance.

Note that i ce_cl one returns a value of type | ce: : Cbj ect Pt r, to avoid problems with compilers that do not support covariant return
types. The generated Pt r classes contain a dynam cCast member that allows you to safely down-cast the return value of i ce_cl one. For
example, the code to achieve the situation shown in the illustration above, looks as follows:

C++

NodePtr pl new Node(new Node, new Node);
NodePtr p2 = NodePtr::dynani cCast(pl->ice_clone());

i ce_cl one is generated by the Slice compiler for concrete classes (that is, classes that do not have operations). However, because classes
with operations are abstract, the generated i ce_cl one for abstract classes cannot know how to instantiate an instance of the derived
concrete class (because the name of the derived class is not known). This means that, for abstract classes, the generated i ce_cl one

220 Copyright © 2011, ZeroC, Inc.

throws a Cl oneNot | npl ement edExcepti on.

Ice 3.4.2 Documentation

If you want to clone the implementation of an abstract class, you must override the virtual i ce_cl one member in your concrete

implementation class. For example:

C++

class Ti neCf Dayl

}

public Timed Day {

public:
virtual lce::ObjectPtr ice_clone() const
{
return new Ti neCf Dayl (*this);
}

Null Smart Pointers

A null smart pointer contains a null C++ pointer to its underlying instance. This means that if you attempt to dereference a null smart pointer,

yougetanlceUtil:: Null Handl eExcepti on:
C++
Ti meOf DayPtr tod; /1 Construct null handle
try {
tod->mnute = 0; /| Dereference null handle
assert(fal se); /| Cannot get here

;11 OK, expected
} catch (...) {
assert(fal se); /1

}

} catch (const IceUtil::NullHandl eException&) {

Miust get Nul | Handl eExcepti on

Preventing Stack-Allocation of Class Instances

The Ice C++ mapping expects class instances to be allocated on the heap. Allocating class instances on the stack or in static variables is
pragmatically useless because all the Ice APIs expect parameters that are smart pointers, not class instances. This means that, to do
anything with a stack-allocated class instance, you must initialize a smart pointer for the instance. However, doing so does not work because

it inevitably leads to a crash:

C++

{ Il

Ti reOX Dayl t; /1
Ti meOf DayPtr t odp; /1
todp = &t; /1l
11

} /1

Ent er scope
St ack-al | ocated cl ass instance
Handl e for a Ti meOf Day instance

Legal , but dangerous

Leave scope, |oom ng crash!

This goes badly wrong because, when t odp goes out of scope, it decrements the reference count of the class to zero, which then calls
del et e on itself. However, the instance is stack-allocated and cannot be deleted, and we end up with undefined behavior (typically, a core

dump).

The following attempt to fix this is also doomed to failure:

221

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C++
{ /1 Enter scope
Ti reOf Dayl t; /1 Stack-allocated class instance
Ti neOf DayPtr t odp; /1 Handle for a Ti meCf Day instance
todp = &t; /'l Legal, but dangerous
/.
todp = 0; /1 Crash inmnent!
}

This code attempts to circumvent the problem by clearing the smart pointer explicitly. However, doing so also causes the smart pointer to
drop the reference count on the class to zero, so this code ends up with the same call to del et e on the stack-allocated instance as the
previous example.

The upshot of all this is: never allocate a class instance on the stack or in a static variable. The C++ mapping assumes that all class
instances are allocated on the heap and no amount of coding trickery will change this.

ﬂl You could abuse the __set NoDel et e member to disable deallocation, but we strongly discourage you from doing this.

You can prevent allocation of class instances on the stack or in static variables by adding a protected destructor to your implementation of
the class: if a class has a protected destructor, allocation must be made with new, and static or stack allocation causes a compile-time error.
In addition, explicit calls to del et e on a heap-allocated instance also are flagged at compile time.

@ T
You may want to habitually add a protected destructor to your implementation of abstract Slice classes to protect yourself
from accidental heap allocation, as shown in Class Operations. (For Slice classes that do not have operations, the Slice

compiler automatically adds a protected destructor.)

Smart Pointers and Constructors

Slice classes inherit their reference-counting behavior from the | ceUt i | : : Shar ed class, which ensures that reference counts are managed
in a thread-safe manner. When a stack-allocated smart pointer goes out of scope, the smart pointer invokes the __decRef function on the
reference-counted object. Ignoring thread-safety issues, __decRef is implemented like this:

C++

voi d
lceUtil::Shared::__decRef ()
{
if (--_ref == 0 && ! _noDel ete)
delete this;

In other words, when the smart pointer calls __decRef on the pointed-at instance and the reference count reaches zero (which happens
when the last smart pointer for a class instance goes out of scope), the instance self-destructs by calling del ete thi s.

However, as you can see, the instance self-destructs only if _noDel et e is false (which it is by default, because the constructor initializes it

to false). You can call __set NoDel et e(t rue) to prevent this self-destruction and, later, call __set NoDel et e(f al se) to enable it again.
This is necessary if, for example, a class in its constructor needs to pass t hi s to another function:

222 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C++

voi d soneFunction(const TineODayPtr& t)

{
11
}
Ti medf Dayl : : Ti meCf Dayl ()
{
sonmeFunction(this); // Trouble |oom ng here!
}

At first glance, this code looks innocuous enough. While Ti meCf Day| is being constructed, it passes t hi s to soneFunct i on, which
expects a smart pointer. The compiler constructs a temporary smart pointer at the point of call (because the smart pointer template has a
single-argument constructor that accepts a pointer to a heap-allocated instance, so the constructor acts as a conversion function). However,
this code fails badly. The Ti meCf Dayl instance is constructed with a statement such as:

C++

Ti mreOf DayPtr tod = new Ti meCf Dayl ;

The constructor of Ti meCf Day| is called by oper at or newand, when the constructor starts executing, the reference count of the instance
is zero (because that is what the reference count is initialized to by the Shar ed base class of Ti meCf Dayl). When the constructor calls
soneFunct i on, the compiler creates a temporary smart pointer, which increments the reference count of the instance and, once
soneFunct i on completes, the compiler dutifully destroys that temporary smart pointer again. But, of course, that drops the reference count
back to zero and causes the Ti meCf Day| instance to self-destruct by calling del et e t hi s. The net effect is that the call to new

Ti meOf Day| returns a pointer to an already deleted object, which is likely to cause the program to crash.

To get around the problem, you can call __set NoDel et e:

C++

Ti meOf Dayl : : Ti meOf Dayl ()

{
__set NoDel ete(true);
soneFunction(this);
__set NoDel ete(fal se);
}

The code disables self-destruction while someFunct i on uses its temporary smart pointer by calling __set NoDel et e(t rue) . By doing
this, the reference count of the instance is incremented before someFunct i on is called and decremented back to zero when
soneFunct i on completes without causing the object to self-destruct. The constructor then re-enables self-destruction by calling

__set NoDel et e(fal se) before returning, so the statement

C++

Ti mreOf DayPtr tod = new Ti meCf Dayl ;

does the usual thing, namely to increment the reference count of the object to 1, despite the fact that a temporary smart pointer existed while
the constructor ran.

F:

In general, whenever a class constructor passes t hi s to a function or another class that accepts a smart pointer, you
must temporarily disable self-destruction.

Smart Pointers and Exception Safety

Smart pointers are exception safe: if an exception causes the thread of execution to leave a scope containing a stack-allocated smart
pointer, the C++ run time ensures that the smart pointer's destructor is called, so no resource leaks can occur:

223 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C++

{ Il Enter scope...
Ti neOf DayPtr tod = new TimeOfDayl; // Allocate instance
sonmeFuncThat M ght Throw() ; /1 Mght throw...
11

} /1 No leak here, even if an exception is thrown

If an exception is thrown, the destructor of t od runs and ensures that it deallocates the underlying class instance.
There is one potential pitfall you must be aware of though: if a constructor of a base class throws an exception, and another class instance

holds a smart pointer to the instance being constructed, you can end up with a double deallocation. You can use the __set NoDel et e
mechanism to temporarily disable self-destruction in this case, as described above.

Smart Pointers and Cycles

One thing you need to be aware of is the inability of reference counting to deal with cyclic dependencies. For example, consider the following
simple self-referential class:

Slice
cl ass Node {
int val;
Node next;
I

Intuitively, this class implements a linked list of nodes. As long as there are no cycles in the list of nodes, everything is fine, and our smart
pointers will correctly deallocate the class instances. However, if we introduce a cycle, we have a problem:

C++

{ /'l Open scope. ..

NodePtr nl = new Node; // Nl refcount == 1

NodePtr n2 = new Node; // N2 refcount == 1

nl->next = n2; /1 N2 refcount == 2

n2->next = nl; /1 Nl refcount == 2
} /1 Destructors run: /1 N2 refcount == 1,

/1 N1 refcount == 1, nenory | eak!

The nodes pointed to by n1 and n2 do not have names but, for the sake of illustration, let us assume that n1's node is called N1, and n2's
node is called N2. When we allocate the N1 instance and assign it to n1, the smart pointer n1 increments N1's reference count to 1.
Similarly, N2's reference count is 1 after allocating the node and assigning it to n2. The next two statements set up a cyclic dependency
between nl and n2 by making their next pointers point at each other. This sets the reference count of both N1 and N2 to 2. When the
enclosing scope closes, the destructor of n2 is called first and decrements N2's reference count to 1, followed by the destructor of n1, which
decrements N1's reference count to 1. The net effect is that neither reference count ever drops to zero, so both N1 and N2 are leaked.

Garbage Collection of Class Instances

The previous example illustrates a problem that is generic to using reference counts for deallocation: if a cyclic dependency exists anywhere
in a graph (possibly via many intermediate nodes), all nodes in the cycle are leaked.

To avoid memory leaks due to such cycles, Ice for C++ contains a garbage collector. The collector identifies class instances that are part of
one or more cycles but are no longer reachable from the program and deletes such instances:

® By default, garbage is collected whenever you destroy a communicator. This means that no memory is leaked when your program

224 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

exits. (Of course, this assumes that you correctly destroy your communicators.)
® You can also explicitly run the garbage collector by calling | ce: : col | ect Gar bage. For example, the leak caused by the
preceding example can be avoided as follows:

C++
{ /1 Open scope. ..

NodePtr nl = new Node; // Nl refcount ==
NodePtr n2 = new Node; // N2 refcount ==
nl->next = n2; /1 N1 refcount ==
n2->next = ni; /1 N2 refcount ==

} /1 Destructors run: /1 N2 refcount == 1,
/1 Nl refcount ==

I ce::col | ect Gar bage(); /] Deletes NI and N2

The callto | ce: : col | ect Gar bage deletes the no longer reachable instances N1 and N2 (as well as any other non-reachable
instances that may have accumulated earlier).

® Deleting leaked memory with explicit calls to the garbage collector can be inconvenient because it requires polluting the code with
calls to the collector. You can ask the Ice run time to run a garbage collection thread that periodically cleans up leaked memory by
setting the property | ce. GC. | nt er val to a non-zero value. For example, setting | ce. GC. | nt er val to 5 causes the collector
thread to run the garbage collector once every five seconds. You can trace the execution of the collector by setting | ce. Tr ace. GC
to a non-zero value.

Note that the garbage collector is useful only if your program actually creates cyclic class graphs. There is no point in running the garbage
collector in programs that do not create such cycles. (For this reason, the collector thread is disabled by default and runs only if you explicitly
setl ce. CC. I nt erval toanon-zero value.)

Smart Pointer Comparison

As for proxy handles, class handles support the comparison operators ==, ! =, and <. This allows you to use class handles in STL sorted
containers. Be aware that, for smart pointers, object identity is not used for the comparison, because class instances do not have identity.
Instead, these operators simply compare the memory address of the classes they point to. This means that oper at or == returns true only if
two smart pointers point at the same physical class instance:

C++
/Il Create a class instance and initialize
11
Ti meOf Dayl Ptr pl = new Ti meCf Dayl ;
pl- >hour = 23;
pl->mnute = 10;
pl->second = 18;
/1 Create another class instance with
/'l the same nmenber val ues
11
Ti mreOf Dayl Ptr p2 = new Ti meCf Dayl ;
p2- >hour = 23;
p2->m nute = 10;
p2->second = 18;
assert(pl != p2); /1 The two do not conpare equal
TimeOf Dayl Ptr p3 = pl; // Point at first class again
assert(pl == p3); /'l Now they conpare equal
See Also
® Classes

® C++ Mapping for Classes

225 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Asynchronous Method Invocation (AMI) in C++
The Server-Side main Function in C++
Properties and Configuration

The C++ Shared and SimpleShared Classes
References

1. Stroustrup, B. 1997. The C++ Programming Language. Reading, MA: Addison-Wesley.

226 Copyright © 2011, ZeroC, Inc.

http://amzn.com/0201700735

Ice 3.4.2 Documentation

Asynchronous Method Invocation (AMI) in C++

Asynchronous Method Invocation (AMI) is the term used to describe the client-side support for the asynchronous programming model. AMI
supports both oneway and twoway requests, but unlike their synchronous counterparts, AMI requests never block the calling thread. When a
client issues an AMI request, the Ice run time hands the message off to the local transport buffer or, if the buffer is currently full, queues the
request for later delivery. The application can then continue its activities and poll or wait for completion of the invocation, or receive a
callback when the invocation completes.

AMI is transparent to the server: there is no way for the server to tell whether a client sent a request synchronously or asynchronously.

As of version 3.4, Ice provides a new API for asynchronous method invocation. This page describes the new API. Note that
the old APl is deprecated and will be removed in a future release.

On this page:

® Basic Asynchronous APl in C++

® Asynchronous Proxy Methods in C++

® Asynchronous Exception Semantics in C++
® AsyncResult Classin C++
® Polling for Completion in C++
® Generic Completion Callbacks in C++

® Using Cookies for Generic Completion Callbacks in C++
® Type-Safe Completion Callbacks in C++

® Using Cookies for Type-Safe Completion Callbacks in C++

Asynchronous Oneway Invocations in C++
Flow Control in C++
Asynchronous Batch Requests in C++
Concurrency Semantics for AMI in C++
AMI Limitations in C++

Basic Asynchronous APl in C++

Consider the following simple Slice definition:

Slice

nmodul e Denp {
interface Enpl oyees {
string get Name(int nunber);
h
h

Asynchronous Proxy Methods in C++

Besides the synchronous proxy methods, sl i ce2cpp generates the following asynchronous proxy methods:

C++

I ce:: AsyncResul t Ptr begi n_get Name(l ce:: I nt nunber);
I ce:: AsyncResul t Ptr begi n_get Name(lce::Int nunber, const lce::Context& _ ctx)

std::string end_get Nane(const Ice::AsyncResultPtr&);

lﬂ Four additional overloads of begi n_get Nane are generated for use with generic callbacks and type-safe callbacks.

As you can see, the single get Nane operation results in begi n_get Nanme and end_get Nane methods. (The begi n_ method is overloaded
SO you can pass a per-invocation context.)

®* The begi n_get Name method sends (or queues) an invocation of get Nane. This method does not block the calling thread.

227 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

®* The end_get Nanme method collects the result of the asynchronous invocation. If, at the time the calling thread calls end_get Namne,
the result is not yet available, the calling thread blocks until the invocation completes. Otherwise, if the invocation completed some
time before the call to end_get Nane, the method returns immediately with the result.

A client could call these methods as follows:

C++

Enpl oyeesPrx e = ... ;
Ice::AsyncResul tPtr r = e->begi n_get Nane(99);

// Continue to do other things here...

string nane = e->end_get Name(r);

Because begi n_get Nane does not block, the calling thread can do other things while the operation is in progress.

Note that begi n_get Nane returns a value of type AsyncResul t Pt r. The AsyncResul t associated with this smart pointer contains the
state that the Ice run time requires to keep track of the asynchronous invocation. You must pass the AsyncResul t Pt r that is returned by
the begi n_ method to the corresponding end_ method.

The begi n_ method has one parameter for each in-parameter of the corresponding Slice operation. Similarly, the end_ method has one
out-parameter for each out-parameter of the corresponding Slice operation (plus the AsyncResul t Pt r parameter). For example, consider
the following operation:

Slice

doubl e op(int inpl, string inp2, out bool outpl, out |Iong outp2);

The begi n_op and end_op methods have the following signature:

C++

Ice::AsyncResul t Ptr begin_op(lce::Int inpl, const ::std::string& inp2)

I ce:: Doubl e end_op(bool & outpl, |ce::Long& outp2, const |ce::AsyncResultPtr&);

Asynchronous Exception Semantics in C++

If an invocation raises an exception, the exception is thrown by the end_ method, even if the actual error condition for the exception was
encountered during the begi n_ method ("on the way out"). The advantage of this behavior is that all exception handling is located with the
code that calls the end_ method (instead of being present twice, once where the begi n_ method is called, and again where the end_
method is called).

There is one exception to the above rule: if you destroy the communicator and then make an asynchronous invocation, the begi n_ method
throws Communi cat or Dest r oyedExcept i on. This is necessary because, once the run time is finalized, it can no longer throw an
exception from the end_ method.

The only other exception that is thrown by the begi n_ and end_ methodsis | ceUti | :: 111 egal Argunent Except i on. This exception
indicates that you have used the API incorrectly. For example, the begi n_ method throws this exception if you call an operation that has a
return value or out-parameters on a oneway proxy. Similarly, the end_ method throws this exception if you use a different proxy to call the

end_ method than the proxy you used to call the begi n_ method, or if the AsyncResul t you pass to the end_ method was obtained by
calling the begi n_ method for a different operation.

AsyncResul t Class in C++

The AsyncResul t that is returned by the begi n_ method encapsulates the state of the asynchronous invocation:

228 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C++

class AsyncResult : virtual public IceUil::Shared, private lIceUtil::noncopyable {
public:

s

virtual bool operator==(const AsyncResult&) const;
virtual bool operator<(const AsyncResult&) const;

virtual Int getHash() const;

virtual Commruni catorPtr get Communi cator() const;
virtual ConnectionPtr getConnection() const;
virtual ObjectPrx getProxy() const;

const string& getOperation() const;

Local Obj ect Ptr get Cooki e() const;

bool isConpleted() const;
voi d wai t For Conpl et ed();

bool isSent() const;
voi d waitForSent();

voi d throwLocal Exception() const;

bool sent Synchronously() const;

The methods have the following semantics:

229

bool operator==(const AsyncResult&) const

bool operator<(const AsyncResult&) const

Int getHash() const

These methods allow you to create ordered or hashed collections of pending asynchronous invocations. This is useful, for example,
if you can have a number of outstanding requests, and need to pass state between the begi n_ and the end_ methods. In this case,
you can use the returned {{AsyncResult}}s as keys into a map that stores the state for each call.

Conmuni cat or Pt r get Conmuni cator () const
This method returns the communicator that sent the invocation.

virtual ConnectionPtr getConnection() const
This method returns the connection that was used for the invocation.

virtual ObjectPrx getProxy() const
This method returns the proxy that was used to call the begi n_ method.

const string& getOperation() const
This method returns the name of the operation.

Local Qbj ect Ptr get Cooki e() const
This method returns the cookie that was passed to the begi n_ method. If you did not pass a cookie to the begi n_ method, the
return value is null.

bool isConpleted() const
This method returns true if, at the time it is called, the result of an invocation is available, indicating that a call to the end_ method
will not block the caller. Otherwise, if the result is not yet available, the method returns false.

voi d wai t For Conpl et ed()
This method blocks the caller until the result of an invocation becomes available.

bool isSent() const

When you call the begi n_ method, the Ice run time attempts to write the corresponding request to the client-side transport. If the
transport cannot accept the request, the Ice run time queues the request for later transmission. i sSent returns true if, at the time it
is called, the request has been written to the local transport (whether it was initially queued or not). Otherwise, if the request is still
queued or an exception occurred before the request could be sent, i sSent returns false.

voi d wait For Sent ()

This method blocks the calling thread until a request has been written to the client-side transport, or an exception occurs. After
wai t For Sent returns, i sSent returns true if the request was successfully written to the client-side transport, or false if an

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

exception occurred. In the case of a failure, you can call the corresponding end_ method or t hr owLocal Except i on to obtain the
exception.

® void throwLocal Exception() const
This method throws the local exception that caused the invocation to fail. If no exception has occurred yet, t hr omLocal Excepti on
does nothing.

® bool sentSynchronously() const
This method returns true if a request was written to the client-side transport without first being queued. If the request was initially
queued, sent Synchr onousl y returns false (independent of whether the request is still in the queue or has since been written to
the client-side transport).

Polling for Completion in C++

The AsyncResul t methods allow you to poll for call completion. Polling is useful in a variety of cases. As an example, consider the
following simple interface to transfer files from client to server:

Slice

interface FileTransfer

{
voi d send(int offset, ByteSeq bytes);

}

The client repeatedly calls send to send a chunk of the file, indicating at which offset in the file the chunk belongs. A naive way to transmit a
file would be along the following lines:

C++
Fil eHandl e file = open(...);
Fil eTransferPrx ft = ...;
const int chunkSize = ...;
lce::Int offset = 0;
while (!file.eof()) {
Byt eSeq bs;
bs = file.read(chunkSize); // Read a chunk
ft->send(of fset, bs); /1 Send the chunk
of fset += bs.size();
}

This works, but not very well: because the client makes synchronous calls, it writes each chunk on the wire and then waits for the server to
receive the data, process it, and return a reply before writing the next chunk. This means that both client and server spend much of their time
doing nothing — the client does nothing while the server processes the data, and the server does nothing while it waits for the client to send
the next chunk.

Using asynchronous calls, we can improve on this considerably:

230 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C++

FileHandl e file = open(...);
Fil eTransferPrx ft = ...;
const int chunkSize = ...;
lce::Int offset = 0;

list<lce::AsyncResultPtr> results;
const int nunRequests = 5;

while (!file.eof()) {
Byt eSeq bs;
bs = file.read(chunkSi ze);

/1 Send up to nunRequests + 1 chunks asynchronously.
Ice::AsyncResul tPtr r = ft->begi n_send(offset, bs);
of fset += bs.size();

r->wait For Sent () ;
resul ts. push_back(r);

/1 Once there are nore than nunmRequests, wait for the | east
/1 recent one to conplete.
while (results.size() > nunRequests) {

Ice::AsyncResultPtr r = results.front();

results. pop_front();

r->wai t For Conpl et ed() ;

}

/1 Wait for any remaining requests to conplete.
while (!results.empty()) {
Ice::AsyncResultPtr r = results.front();
results. pop_front();
r->wai t For Conpl et ed() ;

/1 Wait until this request has been passed to the transport.

With this code, the client sends up to nunRequest s + 1 chunks before it waits for the least recent one of these requests to complete. In
other words, the client sends the next request without waiting for the preceding request to complete, up to the limit set by nunRequest s. In
effect, this allows the client to "keep the pipe to the server full of data": the client keeps sending data, so both client and server continuously

do work.

Obviously, the correct chunk size and value of nunmRequest s depend on the bandwidth of the network as well as the amount of time taken
by the server to process each request. However, with a little testing, you can quickly zoom in on the point where making the requests larger
or queuing more requests no longer improves performance. With this technique, you can realize the full bandwidth of the link to within a

percent or two of the theoretical bandwidth limit of a native socket connection.

Generic Completion Callbacks in C++

The begi n_ method is overloaded to allow you to provide completion callbacks. Here are the corresponding methods for the get Nane

operation:

231

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C++

I ce::AsyncResul t Ptr begi n_get Namg(
I ce:: I nt nunber,
const lce::CallbackPtr& _ del,
const lce::Local ObjectPtr& _ cookie = 0);

I ce:: AsyncResul t Ptr begi n_get Name(
I ce:: 1 nt nunber,
const lce::Context& __ctx,
const |ce:: CallbackPtré& __del,
const lce::Local ObjectPtr& __cookie

0);

The second version of begi n_get Nane lets you override the default context. (We discuss the purpose of the cooki e parameter in the next
section.) Following the in-parameters, the begi n_ method accepts a parameter of type | ce: : Cal | backPt r. This is a smart pointer to a
callback class that is provided by the Ice run time. This class stores an instance of a callback class that you implement. The Ice run time
invokes a method on your callback instance when an asynchronous operation completes. Your callback class must provide a method that
returns voi d and accepts a single parameter of type const AsyncResul t Pt r & for example:

C++

class MyCal Il back : public IceUtil:: Shared {
public:
voi d finished(const Ice::AsyncResultPtré& r) {
Enpl oyeesPrx e = Enpl oyeesPrx: : uncheckedCast (r->get Proxy());
try {
string name = e->end_get Nanme(r);
cout << "Name is: " << nanme << endl;
} catch (const |ce::Exception& ex) {
cerr << "Exception is: " << ex << endl;
}
}
b
typedef Iceltil::Handl e<MyCal | back> MyCal | backPtr;

Note that your callback class must derive from | ceUt i | : : Shar ed. The callback method can have any name you prefer but its signature
must match the preceding example.

The implementation of your callback method must call the end_ method. The proxy for the call is available via the get Pr oxy method on the
AsyncResul t that is passed by the Ice run time. The return type of get Proxy is | ce: : Obj ect Pr x, so you must down-cast the proxy to
its correct type. (You should always use an uncheckedCast to do this, otherwise you will send an additional message to the server to verify
the proxy type.)

Your callback method should catch and handle any exceptions that may be thrown by the end_ method. If you allow an exception to escape
from the callback method, the Ice run time produces a log entry by default and ignores the exception. (You can disable the log message by
setting the property | ce. War n. AM Cal | back to zero.)

To inform the Ice run time that you want to receive a callback for the completion of the asynchronous call, you pass the callback instance to
the begi n_ method:

C++

Enpl oyeesPrx e = ...

MyCal | backPtr cb = new MyCal | back;
Ice::Call backPtr d = Ice::newCall back(ch, &WcCallback::finished);

e- >begi n_get Name(99, d);

Note the call to | ce: : newCal | back in this example. This helper function expects a smart pointer to your callback instance and a member
function pointer that specifies your callback method.

232 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Using Cookies for Generic Completion Callbacks in C++

It is common for the end_ method to require access to some state that is established by the code that calls the begi n_ method. As an
example, consider an application that asynchronously starts a number of operations and, as each operation completes, needs to update
different user interface elements with the results. In this case, the begi n_ method knows which user interface element should receive the
update, and the end_ method needs access to that element.

The API allows you to pass such state by providing a cookie. A cookie is an instance of a class that you write; the class can contain
whatever data you want to pass, as well as any methods you may want to add to manipulate that data.

The only requirement on the cookie class is that it must derive from | ce: : Local Obj ect . Here is an example implementation that stores a
W dget Handl e. (We assume that this class provides whatever methods are needed by the end_ method to update the display.)

C++

class Cookie : public Ice::Local Object

{
public:
Cooki e(Wdget Handl e h) : _h(h) {}
W dget Handl e getWdget () { return _h; }
private:
W dget Handl e _h;
b
typedef IceUtil:: Handl e<Cooki e> CookiePtr;

When you call the begi n_ method, you pass the appropriate cookie instance to inform the end_ method how to update the display:

C++

/'l Make cookie for call to getName(99).
Cooki ePtr cooki el = new Cooki e(w dget Handl el) ;

/1 Make cookie for call to getName(42);
Cooki ePtr cooki e2 = new Cooki e(w dget Handl e2) ;

/1 I nvoke the getNane operation with different cookies.
e->begi n_get Nane(99, get NaneCB, cookiel);
e->begi n_get Nane(24, get NaneCB, cookie2);

The end_ method can retrieve the cookie from the AsyncResul t by calling get Cooki e. For this example, we assume that widgets have a
wr i t eStri ng method that updates the relevant Ul element:

C++
voi d
MyCal | back: : get Name(const |ce:: AsyncResul tPtré& r)
{

Enpl oyeesPrx e = Enpl oyeesPrx: : uncheckedCast (r->get Proxy());
Cooki ePtr cooki e = Cooki ePtr::dynam cCast (r->get Cookie());
try {

string nane = e->end_get Nanme(r);

cooki e- >get Wdget ()->witeString(nane);
} catch (const Ice::Exception& ex) {

handl eExcepti on(ex);

}

The cookie provides a simple and effective way for you to pass state between the point where an operation is invoked and the point where
its results are processed. Moreover, if you have a number of operations that share common state, you can pass the same cookie instance to
multiple invocations.

233 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Type-Safe Completion Callbacks in C++

The generic callback API is not entirely type-safe:

You must down-cast the return value of get Pr oxy to the correct proxy type before you can call the end_ method.

You must call the correct end_ method to match the operation called by the begi n_ method.

If you use a cookie, you must down-cast the cookie to the correct type before you can access the data inside the cookie.

You must remember to catch exceptions when you call the end_ method; if you forget to do this, you will not know that the operation

failed.

sl i ce2cpp generates an additional type-safe API that takes care of these chores for you. The type-safe API is provided as a template that
works much like the | ce: : Cal | back class of the generic API, but requires strongly-typed method signatures.

To use type-safe callbacks, you must implement a callback class that provides two callback methods:

® A success callback that is called if the operation succeeds
® A failure callback that is called if the operation raises an exception

As for the generic API, your callback class must derive from | ceUt i | : : Shar ed. Here is a callback class for an invocation of the get Nare
operation:

C++

class MWyCallback : public lceUtil:: Shared
{
public:
voi d get NameCB(const string& name) {
cout << "Name is: " << name << endl|;

}

voi d failureCB(const Ice::Exception& ex) {
cerr << "Exception is: << ex << endl;

}

}

The callback methods can have any name you prefer and must have voi d return type. The failure callback always has a single parameter of
type const | ce:: Excepti on& The success callback parameters depend on the operation signature. If the operation has non-voi d
return type, the first parameter of the success callback is the return value. The return value (if any) is followed by a parameter for each
out-parameter of the corresponding Slice operation, in the order of declaration.

To receive these callbacks, you instantiate your callback instance and specify the methods you have defined before passing a smart pointer
to a callback wrapper instance to the begi n_ method:

C++

MyCal | backPtr cb = new MyCal | back;

Cal | back_Enpl oyees_get NanePtr get NaneCB =
newCal | back_Enpl oyees_get Nane(cb, &WCal | back: : get NaneCB, &W¢Cal | back: : fail ureCB);

Cal | back_Enpl oyees_get Nunber Pt r get Nunber CB =
newCal | back_Enpl oyees_get Nunber (cb, &WCal | back: : get Nunber CB, &WCal | back: : fail ureCB);

e->begi n_get Nane(99, get NaneCB);
e->begi n_get Nunber (" Fred", get Nunber CB);

Note how this code creates instances of two smart pointer types generated by sl i ce2cpp named Cal | back_Enpl oyees_get NanePt r
and Cal | back_Enpl oyees_get Nunber Pt r . Each smart pointer points to a template instance that encapsulates your callback instance
and two member function pointers for the callback methods. The name of this smart pointer type is formed as follows:

<nmodul e>: : Cal | back_<i nt erface>_<operati on>Ptr
Also note that the code uses helper functions to initialize the smart pointers. The first argument to the helper function is your callback

instance, and the two following arguments are the success and failure member function pointers, respectively. The name of this helper
function is formed as follows:

234 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

<nmodul e>: : newCal | back_<i nt er f ace>_<operati on>

Itis legal to pass a null pointer as the success or failure callback. For the success callback, this is legal only for operations that have voi d
return type and no out-parameters. This is useful if you do not care when the operation completes but want to know if the call failed. If you
pass a null exception callback, the Ice run time will ignore any exception that is raised by the invocation.

The type of the success and exception member function pointers is provided as Response and Except i on typedefs by the callback
template. For example, you can ignore exceptions for an invocation of get Narre as follows:

C++

Cal | back_Enpl oyees_op: : Excepti on nul | Exception = 0;
MyCal | backPtr cb = new MyCal | back;

Cal | back_Enpl oyees_get NanePtr get NaneCB =
newCal | back_Enpl oyees_get Nane(cb, &WCal | back: : get NaneCB, nul | Exception);

e->begi n_get Name(99, getNaneCB); // Ignores exceptions

Using Cookies for Type-Safe Completion Callbacks in C++

The begi n_ method optionally accepts a cookie as a trailing parameter. As for the generic API, you can use the cookie to share state
between the begi n_ and end_ methods. However, with the type-safe API, there is no need to down-cast the cookie. Instead, the cookie
parameter that is passed to the end_ method is strongly typed. Assuming that you have defined a Cooki e class and Cooki ePt r smart
pointer, you can pass a cookie to the begi n_ method as follows:

C++

MyCal | backPtr cb = new MyCal | back;

Cal | back_Enpl oyees_get NanePtr get NaneCB =
newCal | back_Enpl oyees_get Nane(cb, &WCal | back: : get NaneCB, &WCal | back: :fail ureCB);

Cooki ePtr cooki e = new Cooki e(w dget Handl e) ;
e->begi n_get Nane(99, get NameCB, cookie);

The callback methods of your callback class simply add the cookie parameter:

C++

class MWCallback : public lceUtil:: Shared
{
public:
voi d get NameCB(const string& name, const Cooki ePtr& cookie) {
cooki e- >get Wdget ()->witeString(nane);
}

voi d failureCB(const Ice::Exception& ex, const CookiePtr& cookie) {
cooki e- >get Wdget ()->writeError(ex.what());
}
}

Asynchronous Oneway Invocations in C++

You can invoke operations via oneway proxies asynchronously, provided the operation has voi d return type, does not have any
out-parameters, and does not raise user exceptions. If you call the begi n_ method on a oneway proxy for an operation that returns values
or raises a user exception, the begi n_ method throws an | celUti |l :: 111 egal Argunent Excepti on.

For the generic API, the callback method looks exactly as for a twoway invocation. However, for oneway invocations, the Ice run time does
not call the callback method unless the invocation raised an exception during the begi n_ method ("on the way out").

235 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

For the type-safe API, the newCal | back helper for voi d operations is overloaded so you can omit the success callback. For example, here
is how you could call i ce_pi ng asynchronously:

C++

MyCal | backPtr cb = new MyCal | back;

I ce:: Cal | back_Qbj ect_ice_pingPtr callback =
I ce:: newCal | back_Qbj ect _i ce_pi ng(ch, &WCall back::failureCB);

p- >begi n_opVoi d(cal | back) ;

Flow Control in C++

Asynchronous method invocations never block the thread that calls the begi n_ method: the Ice run time checks to see whether it can write
the request to the local transport. If it can, it does so immediately in the caller's thread. (In that case,

AsyncResul t: : sent Synchr onousl y returns true.) Alternatively, if the local transport does not have sufficient buffer space to accept the
request, the Ice run time queues the request internally for later transmission in the background. (In that case,

AsyncResul t: : sent Synchr onousl y returns false.)

This creates a potential problem: if a client sends many asynchronous requests at the time the server is too busy to keep up with them, the
requests pile up in the client-side run time until, eventually, the client runs out of memory.

The API provides a way for you to implement flow control by counting the number of requests that are queued so, if that number exceeds
some threshold, the client stops invoking more operations until some of the queued operations have drained out of the local transport.

For the generic API, you can create an additional callback method:

C++

class MyCal Il back : public lIceUtil::Shared {
public:
voi d finished(const Ice::AsyncResultPtr&);
voi d sent(const |ce::AsyncResultPtr&);
b
typedef Iceltil::Handl e<MyCal | back> MyCal | backPtr;

As with any other callback method, you are free to choose any name you like. For this example, the name of the callback method is sent .
You inform the Ice run time that you want to be informed when a call has been passed to the local transport by specifying the sent method
as an additional parameter when you create the | ce: : Cal | back:

C++

Enpl oyeesPrx e = ... ;

MyCal | backPtr cb = new MyCal | back;
Ice::CallbackPtr d = Ice::newCal | back(cb, &WCall back::finished, &WcCall back::sent);

e->begi n_get Nane(99, d);

If the Ice run time can immediately pass the request to the local transport, it does so and invokes the sent method from the thread that calls
the begi n_ method. On the other hand, if the run time has to queue the request, it calls the sent method from a different thread once it has
written the request to the local transport. In addition, you can find out from the AsyncResul t that is returned by the begi n_ method
whether the request was sent synchronously or was queued, by calling sent Synchr onousl y.

For the generic API, the sent method has the following signature:

C++

voi d sent(const |ce::AsyncResult&);

236 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

For the type-safe API, there are two versions, one without and one with a cookie:

C++

voi d sent (bool sent Synchronously);
voi d sent(bool sentSynchronously, const <CookiePtr>& cookie);

For the version with a cookie, <Cooki ePt r > is replaced with the actual type of the cookie smart pointer you passed to the begi n_ method.

The sent methods allow you to limit the number of queued requests by counting the number of requests that are queued and decrementing
the count when the Ice run time passes a request to the local transport.

Asynchronous Batch Requests in C++

Applications that send batched requests can either flush a batch explicitly or allow the Ice run time to flush automatically. The proxy method
i ce_fl ushBat chRequest s performs an immediate flush using the synchronous invocation model and may block the calling thread until
the entire message can be sent. Ice also provides asynchronous versions of this method so you can flush batch requests asynchronously.

begi n_i ce_f | ushBat chRequest s and end_i ce_f | ushBat chRequest s are proxy methods that flush any batch requests queued by
that proxy.

In addition, similar methods are available on the communicator and the Connect i on object that is returned by
AsyncResul t: : get Connecti on. These methods flush batch requests sent via the same communicator and via the same connection,
respectively.

Concurrency Semantics for AMI in C++

The Ice run time always invokes your callback methods from a separate thread. This means that you can safely use a non-recursive mutex
without risking deadlock. There is one exception to this rule: the run time calls the sent callback from the thread calling the begi n_ method
if the request could be sent synchronously. In the sent callback, you know which thread is calling the callback by looking at the

sent Synchr onousl| y member or parameter, so you can take appropriate action to avoid a self-deadlock.

AMI Limitations in C++

AMI invocations cannot be sent using collocated optimization. If you attempt to invoke an AMI operation using a proxy that is configured to
use collocation optimization, the Ice run time raises Col | ocat i onOpti mi zat i onExcept i on if the servant happens to be collocated; the
request is sent normally if the servant is not collocated. You can disable this optimization if necessary.

See Also

C++ Mapping for Classes
Smart Pointers for Classes
Request Contexts

Batched Invocations
Location Transparency

237 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

slice2cpp Command-Line Options

On this page:

® slice2cpp Command-Line Options
® --header-ext EXT
® --source-ext EXT
® --add-header HDR[, GUARD|
® --include-dir DR
* - -inpl
® --depend
® --dll-export SYMBOL
® --checksum
® --stream
® Include Directives
® Header Files
® Source Files

sl i ce2cpp Command-Line Options
The Slice-to-C++ compiler, sl i ce2cpp, offers the following command-line options in addition to the standard options.

- - header - ext EXT

Changes the file extension for the generated header files from the default h to the extension specified by EXT.

You can also change the header file extension with a global metadata directive:

Slice

[["cpp: header - ext: hpp"]]

I

Only one such directive can appear in each source file. If you specify a header extension on both the command line and with a metadata
directive, the metadata directive takes precedence. This ensures that included Slice files that were compiled separately get the correct
header extension (provided that the included Slice files contain a corresponding metadata directive). For example:

Slice

Il File exanple.ice
#i ncl ude <l ce/BuiltinSequences.ice>

/1

Compiling this file with

$ slice2cpp --header-ext=hpp -1/opt/Icel/include exanple.ice

generates exanpl e. hpp, but the #i ncl ude directive in that file is for | ce/ Bui | ti nSequences. h (not | ce/ Bui | ti nSequences. hpp)
because Bui | ti nSequences. i ce contains the metadata directive [[" cpp: header-ext: h"]].

You normally will not need to use this metadata directive. The directive is necessary only if:
You #i ncl ude a Slice file in one of your own Slice files.
The included Slice file is part of a library you link against.

The library ships with the included Slice file's header.

L]
L]
°
® The library header uses a different header extension than your own code.

For example, if the library uses . hpp as the header extension, but your own code uses . h, the library's Slice file should contain a

238 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

[["cpp: header ?ext: hpp"]] directive. (If the directive is missing, you can add it to the library's Slice file.)
--source-ext EXT

Changes the file extension for the generated source files from the default cpp to the extension specified by EXT.
- - add- header HDR[, GUARD]

This option adds an include directive for the specified header at the beginning of the generated source file (preceding any other include
directives). If GUARD is specified, the include directive is protected by the specified guard. For example, - - add?header
preconpi |l ed. h, _ PRECOWPI LED_H__ results in the following directives at the beginning of the generated source file:

C++

#i fndef _ PRECOWPI LED H
#define _ PRECOWPILED H _
#i ncl ude <preconpil ed. h>
#endi f

The option can be repeated to create include directives for several files.

As suggested by the preceding example, this option is useful mainly to integrate the generated code with a compiler's precompiled header
mechanism.

--include-dir DR

Modifies #i ncl ude directives in source files to prepend the path name of each header file with the directory DI R.
--impl

Generate sample implementation files. This option will not overwrite an existing file.

- -depend

Prints makefile dependency information to standard output. No code is generated when this option is specified. The output generally needs
to be filtered before it can be included in a makefile; the Ice build system uses the script conf i g/ makedepend. py for this purpose.

--dl | -export SYMBOL

Use SYMBOL to control DLL exports or imports. This option allows you to selectively export or import global symbols in the generated code.
As an example, compiling a Slice definition with:

$ slice2cpp --dll-export ENABLE DLL x.ice

results in the following additional code being generated into x. h:

C++

#i f ndef ENABLE_DLL

ifdef ENABLE DLL_EXPORTS

define ENABLE DLL | CE_DECLSPEC EXPORT
el se

define ENABLE DLL | CE_DECLSPEC | MPORT
endi f

#endi f

| CE_DECLSPEC _EXPORT and | CE_DECLSPEC | MPORT are platform-specific macros. For example, for Windows, they are defined as
decl spec(dl | export) and decl spec(dl |i nport), respectively; for Solaris using CC version 5.5 or later, | CE_DECLSPEC_EXPORT is
defined as gl obal , and | CE_DECLSPEC_| MPORT is empty.

239 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Similar definitions exist for other platforms. For platforms that do not have any concept of explicit export or import of shared
library symbols, both macros are empty.

The symbol name you specify on the command line (ENABLE_DLL in this example) is used by the generated code to export or import any
symbols that must be visible to code outside the generated compilation unit. The net effect is that, if you want to create a DLL that includes
X. cpp, but also want to use the generated types in compilation units outside the DLL, you can arrange for the relevant symbols to be
exported by compiling x. cpp with - DENABLE_DLL_EXPORTS.

--checksum

Generate checksums for Slice definitions.

--Stream

Generate streaming helper functions for Slice types.

Include Directives

he #i ncl ude directives generated by the Slice-to-C++ compiler can be a source of confusion if the semantics governing their generation are
not well-understood. The generation of #i ncl ude directives is influenced by the command-line options - | and - - i ncl ude- di r ; these
options are discussed in more detail below. The - - out put - di r option directs the translator to place all generated files in a particular
directory, but has no impact on the contents of the generated code.

Given that the #i ncl ude directives in header files and source files are generated using different semantics, we describe them in separate
sections.

Header Files

In most cases, the compiler generates the appropriate #i ncl ude directives by default. As an example, suppose file A. i ce includes B. i ce
using the following statement:

Slice

/Il Aice
#i ncl ude <B.ice>

Assuming both files are in the current working directory, we run the compiler as shown below:

$ slice2cpp -1. Alice

The generated file A. h contains this #i ncl ude directive:

C++

/1 Ah
#i ncl ude <B. h>

If the proper include paths are specified to the C++ compiler, everything should compile correctly.

Similarly, consider the common case where A. i ce includes B. i ce from a subdirectory:

Slice

/Il Aice
#i ncl ude <inc/B.ice>

Assuming both files are in the i nc subdirectory, we run the compiler as shown below:

240 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

$ slice2cpp -1. inc/Aice

The default output of the compiler produces this #i ncl ude directive in A. h:

C++

/1 A h
#i ncl ude <inc/B. h>

Again, it is the user's responsibility to ensure that the C++ compiler is configured to find i nc/ B. h during compilation.

Now let us consider a more complex example, in which we do not want the #i ncl ude directive in the header file to match that of the Slice
file. This can be necessary when the organizational structure of the Slice files does not match the application's C++ code. In such a case, the
user may need to relocate the generated files from the directory in which they were created, and the #i ncl ude directives must be aligned
with the new structure.

For example, let us assume that B. i ce is located in the subdirectory sl i ce/ i nc:

Slice

/Il Aice
#i nclude <slice/inc/B.ice>

However, we do not want the sl i ce subdirectory to appear in the #i ncl ude directive generated in the header file, therefore we specify the
additional compiler option - | sl i ce:

$ slice2cpp -1. -Islice slicel/linc/Aice

The generated code demonstrates the impact of this extra option:

C++

/1 A h
#i ncl ude <inc/B. h>

As you can see, the #i ncl ude directives generated in header files are affected by the include paths that you specify when running the
compiler. Specifically, the include paths are used to abbreviate the path name in generated #i ncl ude directives.

When translating an #i ncl ude directive from a Slice file to a header file, the compiler compares each of the include paths against the path
of the included file. If an include path matches the leading portion of the included file, the compiler removes that leading portion when
generating the #i ncl ude directive in the header file. If more than one include path matches, the compiler selects the one that results in the
shortest path for the included file.

For example, suppose we had used the following options when compiling A. i ce:

$ slice2cpp -1. -Islice -Islicelinc slicel/linc/A ice

In this case, the compiler compares all of the include paths against the included file sl i ce/ i nc/ B. i ce and generates the following
directive:

C++

/1 A h
#i ncl ude <B. h>

The option - 1 sl i ce/ i nc produces the shortest result, therefore the default path for the included file (sl i ce/ i nc/ B. h) is replaced with
B. h.

241 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

In general, the - | option plays two roles: it enables the preprocessor to locate included Slice files, and it provides you with a certain amount
of control over the generated #i ncl ude directives. In the last example above, the preprocessor locates sl i ce/ i nc/ B. i ce using the
include path specified by the - | . option. The remaining - | options do not help the preprocessor locate included files; they are simply hints
to the compiler.

Finally, we recommend using caution when specifying include paths. If the preprocessor is able to locate an included file via multiple include
paths, it always uses the first include path that successfully locates the file. If you intend to modify the generated #i ncl ude directives by

specifying extra - | options, you must ensure that your include path hints match the include path selected by the preprocessor to locate the
included file. As a general rule, you should avoid specifying include paths that enable the preprocessor to locate a file in multiple ways.

Source Files

By default, the compiler generates #i ncl ude directives in source files using only the base name of the included file. This behavior is usually
appropriate when the source file and header file reside in the same directory.

For example, suppose A. i ce includes B. i ce from a subdirectory, as shown in the following snippet of A. i ce:

Slice

/Il Aice
#i ncl ude <inc/B.ice>

We generate the source file using this command:

$ slice2cpp -1. inc/Aice

Upon examination, we see that the source file contains the following #i ncl ude directive:

C++

/Il A cpp
#i ncl ude <B. h>

However, suppose that we wish to enforce a particular standard for generated #i ncl ude directives so that they are compatible with our C++
compiler's existing include path settings. In this case, we use the - - i ncl ude- di r option to modify the generated code. For example,
consider the compiler command shown below:

$ slice2cpp --include-dir src -1. inc/Aice

The source file now contains the following #i ncl ude directive:

C++

Il A cpp
#i ncl ude <src/B. h>

Any leading path in the included file is discarded as usual, and the value of the - - i ncl ude- di r option is prepended.

See Also
® Using the Slice Compilers

® Using Slice Checksums in C++
® Streaming Interfaces

242 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Using Slice Checksums in C++

The Slice compilers can optionally generate checksums of Slice definitions. For sl i ce2cpp, the - - checksumoption causes the compiler to
generate code in each C++ source file that accumulates checksums in a global map. A copy of this map can be obtained by calling a
function defined in the header file | ce/ Sl i ceChecksuns. h:

C++

nanmespace Ice {
I ce:: SliceChecksunDi ct sliceChecksuns();

}

In order to verify a server's checksums, a client could simply compare the dictionaries using the equality operator. However, this is not
feasible if it is possible that the server might be linked with more Slice definitions than the client. A more general solution is to iterate over the
local checksums as demonstrated below:

C++
I ce:: SliceChecksunDi ct serverChecksunms = ...
Ice:: SliceChecksunDi ct |ocal Checksuns = Ice::sliceChecksuns();
for (lce::SliceChecksunDict::const_iterator p = | ocal Checksuns. begi n();

p != local Checksuns. end(); ++p) {

Ice::SliceChecksunDict::const_iterator g = serverChecksuns. find(p->first);
if (g == serverChecksuns.end()) {

/1 No match found for type id!
} else if (p->second != g->second) {

/1 Checksum mi smat ch!

}

In this example, the client first verifies that the server's dictionary contains an entry for each Slice type ID, and then it proceeds to compare
the checksums.

See Also

® Slice Checksums
¢ slice2cpp Command-Line Options

243 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Example of a File System Client in C++

This page presents a very simple client to access a server that implements the file system we developed in Slice for a Simple File System.

The C++ code shown here hardly differs from the code you would write for an ordinary C++ program. This is one of the biggest advantages
of using Ice: accessing a remote object is as easy as accessing an ordinary, local C++ object. This allows you to put your effort where you

should, namely, into developing your application logic instead of having to struggle with arcane networking APIs. This is true for the server

side as well, meaning that you can develop distributed applications easily and efficiently.

We now have seen enough of the client-side C++ mapping to develop a complete client to access our remote file system. For reference,
here is the Slice definition once more:

Slice

nmodul e Fil esystem {
interface Node {
i denpotent string name();

}s

exception GenericError {
string reason;

I
sequence<string> Lines;

interface File extends Node {
i denpot ent Lines read();
i denpotent void wite(Lines text) throws GenericError;

s
sequence<Node* > NodeSeq;

interface Directory extends Node {
i demrpot ent NodeSeq list();
I
b

To exercise the file system, the client does a recursive listing of the file system, starting at the root directory. For each node in the file
system, the client shows the name of the node and whether that node is a file or directory. If the node is a file, the client retrieves the
contents of the file and prints them.

The body of the client code looks as follows:

244 Copyright © 2011, ZeroC, Inc.

245

Ice 3.4.2 Documentation

C++

#i nclude <lce/lce. h>

#i ncl ude <Fil esystem h>
#i ncl ude <i ostreanp

#i ncl ude <iterator>

usi ng nanespace std;
usi ng nanespace Fil esystem

static void
|i stRecursive(const DirectoryPrx& dir, int depth = 0)

{
}

int

mai n(int argc, char* argv[])

{

11

int status = O;
I ce:: Communi catorPtr ic;

try {
/'l Create a conmuni cator
/1
ic =lce::initialize(argc, argv);

/'l Create a proxy for the root directory

/1
Ice::CbjectPrx base = ic->stringToProxy("RootDir:default -p 10000");
if (!base)

throw "Coul d not create proxy";

/1 Down-cast the proxy to a Directory proxy
/1
DirectoryPrx rootDir = DirectoryPrx::checkedCast (base);
if (lrootDr)
throw "I nvalid proxy";

/1 Recursively list the contents of the root directory
/1
cout << "Contents of root directory:
|'i st Recursive(rootDir);

} catch (const Ice::Exception& ex) {
cerr << ex << endl;
status = 1;

} catch (const char* nsg) {
cerr << nsg << endl;
status = 1;

<< endl;

}

/1 dean up
/1
if (ic)
i c->destroy();

return status;

1. The code includes a few header files:

® |cellce. h:

Always included in both client and server source files, provides definitions that are necessary for accessing the Ice run time.
® Filesystem h:

The header that is generated by the Slice compiler from the Slice definitions in Fi | esystem i ce.
® jostream

The client uses the i ost r eamlibrary to produce its output.

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

® jterator:
The implementation of | i st Recur si ve uses an STL iterator.

2. The code adds usi ng declarations for the st d and Fi | esyst emnamespaces.

3. The structure of the code in mai n follows what we saw in Hello World Application. After initializing the run time, the client creates a
proxy to the root directory of the file system. For this example, we assume that the server runs on the local host and listens using the
default protocol (TCP/IP) at port 10000. The object identity of the root directory is known to be Root Di r.

4. The client down-casts the proxy to Di r ect or yPr x and passes that proxy to | i st Recur si ve, which prints the contents of the file
system.

Most of the work happensin | i st Recur si ve:

C++
/'l Recursively print the contents of directory "dir" in
/Il tree fashion. For files, show the contents of each file.
/'l The "depth" paranmeter is the current nesting |evel
/1 (for indentation).
static void
IistRecursive(const DirectoryPrx& dir, int depth = 0)
{
string indent(++depth, "\t');
NodeSeq contents = dir->list();
for (NodeSeq::const_iterator i = contents.begin(); i != contents.end(); ++i) {
DirectoryPrx dir = DirectoryPrx::checkedCast(*i);
FilePrx file = FilePrx::uncheckedCast(*i);
cout << indent << (*i)->name() << (dir ? " (directory):" : " (file):") << endl;
if (dir) {
I'i st Recursive(dir, depth);
} else {
Lines text = file->read();
for (Lines::const_iterator j = text.begin(); j !=text.end(); ++) {
cout << indent << "\t" << *j << endl;
}
}
}
}

The function is passed a proxy to a directory to list, and an indent level. (The indent level increments with each recursive call and allows the
code to print the name of each node at an indent level that corresponds to the depth of the tree at that node.) | i st Recur si ve calls the list
operation on the directory and iterates over the returned sequence of nodes:

1. The code does a checkedCast to narrow the Node proxy to a Di r ect ory proxy, as well as an uncheckedCast to narrow the
Node proxy to a Fi | e proxy. Exactly one of those casts will succeed, so there is no need to call checkedCast twice: if the Node
is-a Di rect ory, the code uses the Di r ect or yPr x returned by the checkedCast ; if the checkedCast fails, we know that the
Node is-a Fi | e and, therefore, an uncheckedCast is sufficient to geta Fi | ePr x.

In general, if you know that a down-cast to a specific type will succeed, it is preferable to use an uncheckedCast instead of a
checkedCast because an uncheckedCast does not incur any network traffic.

2. The code prints the name of the file or directory and then, depending on which cast succeeded, prints " (di rectory) " or
"(file)" following the name.

3. The code checks the type of the node:

® Ifitis a directory, the code recurses, incrementing the indent level.
® Ifitis a file, the code calls the r ead operation on the file to retrieve the file contents and then iterates over the returned
sequence of lines, printing each line.

Assume that we have a small file system consisting of two files and a directory as follows:

246 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

— F H
O = Directory ;hi RootDir

¥ ;
. = File / \\

r.
Coleridge :/—\ . README

Kubla-Khan

A small file system.

The output produced by the client for this file system is:

Contents of root directory:
READMVE (file):
This file systemcontains a collection of poetry.
Col eridge (directory):
Kubl a_Khan (file):
I'n Xanadu di d Kubl a Khan
A stately pl easure-done decree:
Where Al ph, the sacred river, ran
Through caverns neasurel ess to man
Down to a sunl ess sea.

Note that, so far, our client (and server) are not very sophisticated:

® The protocol and address information are hard-wired into the code.
® The client makes more remote procedure calls than strictly necessary; with minor redesign of the Slice definitions, many of these
calls can be avoided.

We will see how to address these shortcomings in our discussions of IceGrid and object life cycle.

See Also

Hello World Application

Slice for a Simple File System

Example of a File System Server in C++
Object Life Cycle

IceGrid

247 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Server-Side Slice-to-C++ Mapping

The mapping for Slice data types to C++ is identical on the client side and server side. This means that everything in Client-Side
Slice-to-C++ Mapping also applies to the server side. However, for the server side, there are a few additional things you need to know —
specifically how to:

Initialize and finalize the server-side run time
Implement servants

Pass parameters and throw exceptions
Create servants and register them with the Ice

run time.

Because the mapping for Slice data types is identical for clients and servers, the server-side mapping only adds a few additional
mechanisms to the client side: a small API to initialize and finalize the run time, plus a few rules for how to derive servant classes from
skeletons and how to register servants with the server-side run time.

Although the examples we present are very simple, they accurately reflect the basics of writing an Ice server. Of course, for more
sophisticated servers, you will be using additional APIs, for example, to improve performance or scalability. However, these APIs are all
described in Slice, so, to use these APIs, you need not learn any C++ mapping rules beyond those we describe here.

Topics

248

The Server-Side main Function in C++
Server-Side C++ Mapping for Interfaces
Parameter Passing in C++

Raising Exceptions in C++

Object Incarnation in C++

Asynchronous Method Dispatch (AMD) in C++
Example of a File System Server in C++

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

The Server-Side main Function in C++

On this page:

® A Basic nai n Function in C++
® Thelce:: Application Class
® Using | ce:: Appl i cati on on the Client Side
® Catching Signals in C++
| ce:: Appl i cati on and Properties
Limitations of | ce: : Appl i cati on
e:: Servi ce Class
| ce: : Servi ce Member Functions
Unix Daemons
Windows Services
| ce: : Servi ce Logging Considerations

® Thel

e e 0 060 o o

A Basic nai n Function in C++

The main entry point to the Ice run time is represented by the local Slice interface | ce: : Communi cat or . As for the client side, you must
initialize the Ice run time by calling | ce: : i ni ti al i ze before you can do anything else in your server. | ce: ;i ni ti al i ze returns a smart
pointer to an instance of an | ce: : Conmuni cat or :

C++
int
mai n(int argc, char* argv[])
{
I ce:: Communi catorPtr ic = lce::initialize(argc, argv);
/1
}

lce::initialize acceptsa C++ reference to ar gc and ar gv. The function scans the argument vector for any command-line options that
are relevant to the Ice run time; any such options are removed from the argument vector so, when | ce: : i ni ti al i ze returns, the only
options and arguments remaining are those that concern your application. If anything goes wrong during initialization, i ni ti al i ze throws
an exception.

) Ice::initialize has additional overloads to permit other information to be passed to the Ice run time.

Before leaving your mai n function, you must call Conmuni cat or : : dest r oy. The dest r oy operation is responsible for finalizing the Ice
run time. In particular, dest r oy waits for any operation implementations that are still executing in the server to complete. In addition,
dest r oy ensures that any outstanding threads are joined with and reclaims a number of operating system resources, such as file
descriptors and memory. Never allow your mai n function to terminate without calling dest r oy first; doing so has undefined behavior.

The general shape of our server-side mai n function is therefore as follows:

249 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C++

#i nclude <lce/lce. h>

int
mai n(int argc, char* argv[])
{

int status = O;

I ce:: Comruni catorPtr ic;

try {
ic = lce::initialize(argc, argv);

/1 Server code here...

} catch (const Ice::Exception& e) {
cerr << e << endl;
status = 1;
} catch (const std::string& msg) {
cerr << msg << endl;
status = 1;
} catch (const char* nmsg) {
cerr << nsg << endl;
status = 1;
}
if (ic) {
try {
i c->destroy();
} catch (const Ice::Exception& e) {
cerr << e << endl;
status = 1;
}
}

return status;

Note that the code placesthe calltol ce::initializeintoatry block and takes care to return the correct exit status to the operating

system. Also note that an attempt to destroy the communicator is made only if the initialization succeeded.

The cat ch handlers for const std::string &andconst char * arein place as a convenience feature: if we encounter a fatal error
condition anywhere in the server code, we can simply throw a string or a string literal containing an error message; this causes the stack to
be unwound back to mai n, at which point the error message is printed and, after destroying the communicator, mai n terminates with

non-zero exit status.

Thel ce:: Application Class

The preceding structure for the nmai n function is so common that Ice offers a class, | ce: : Appl i cat i on, that encapsulates all the correct
initialization and finalization activities. The definition of the class is as follows (with some detail omitted for now):

250

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C++

nanmespace Ice {
enum Si gnal Pol i cy { Handl eSi gnal s, NoSi gnal Handl ing };

class Application /* ... */ {

public:
Application(Signal Policy = Handl eSi gnal s);
virtual ~Application();

nt main(int argc, char*[] argv);

nt main(int argc, char*[] argv, const char* config);

nt main(int argc, char*[] argv, const Ice::InitializationData& id);

nt main(int argc, char* const [] argv);

nt main(int argc, char* const [] argv, const char* config);

nt main(int argc, char* const [] argv, const lce::InitializationData& id);
nt main(const lce::StringSeq&);

nt mai n(const Ice::StringSeq& const char* config);

nt mai n(const Ice::StringSeq& const Ice::InitializationData& id);

#i fdef _WN32
int nain(int argc, wchar_t*[] argv);
int nain(int argc, wchar_t*[] argv, const char* config);
int nmain(int argc, wchar_t*[] argv, const lce::InitializationData& id);

#endi f
virtual int run(int, char*[]) = 0;
static const char* appNane();
static Conmmuni catorPtr communi cator();
11
h
}

The intent of this class is that you specialize | ce: : Appl i cat i on and implement the pure virtual r un method in your derived class.
Whatever code you would normally place in mai n goes into the r un method instead. Using | ce: : Appl i cati on, our program looks as
follows:

C++

#i ncl ude <lce/lce. h>
class MyApplication : virtual public lce::Application {
public:

virtual int run(int, char*[]) {

/1 Server code here...

return O;

}
H
int
main(int argc, char* argv[])
{

M/ Appl i cation app;

return app.main(argc, argv);
}

Note that Appl i cati on: : mai n is overloaded: you can pass a string sequence instead of an ar gc/ar gv pair. This is useful if you need to
parse application-specific property settings on the command line. You also can call mai n with an optional file name or an
InitializationDat a structure.

If you pass a configuration file name to mai n, the property settings in this file are overridden by settings in a file identified by the

251 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

| CE_CONFI Genvironment variable (if defined). Property settings supplied on the command line take precedence over all other settings.
The Appl i cati on: : mai n function does the following:

1. Itinstalls an exception handler for | ce: : Excepti on. If your code fails to handle an Ice exception, Appl i cat i on: : nai n prints the
exception details on st der r before returning with a non-zero return value.

2. Itinstalls exception handlers for const std::string &andconst char*. This allows you to terminate your server in response
to a fatal error condition by throwing a st d: : st ri ng or a string literal. Appl i cati on: : mai n prints the string on st derr before
returning a non-zero return value.

3. Itinitializes (by calling | ce: : i ni ti al i ze) and finalizes (by calling Conmruni cat or : : dest r oy) a communicator. You can get
access to the communicator for your server by calling the static communi cat or () member function.

4. It scans the argument vector for options that are relevant to the Ice run time and removes any such options. The argument vector
that is passed to your r un method therefore is free of Ice-related options and only contains options and arguments that are specific
to your application.

5. It provides the name of your application via the static appNanme member function. The return value from this call is ar gv[0] , so you
can get at ar gv[0] from anywhere in your code by calling | ce: : Appl i cati on: : appNane (which is often necessary for error
messages).

6. Itinstalls a signal handler that properly destroys the communicator.

7. ltinstalls a per-process logger if the application has not already configured one. The per-process logger uses the value of the
| ce. Progr amNane property as a prefix for its messages and sends its output to the standard error channel. An application can
also specify an alternate logger.

Using | ce: : Appl i cat i on ensures that your program properly finalizes the Ice run time, whether your server terminates normally or in
response to an exception or signal. We recommend that all your programs use this class; doing so makes your life easier. In addition,

I ce: : Appl i cati on also provides features for signal handling and configuration that you do not have to implement yourself when you use
this class.

Using | ce: : Appl i cati on on the Client Side

You canuse | ce: : Appl i cati on for your clients as well: simply implement a class that derives from | ce: : Appl i cat i on and place the
client code into its r un method. The advantage of this approach is the same as for the server side: | ce: : Appl i cat i on ensures that the
communicator is destroyed correctly even in the presence of exceptions.

Catching Signals in C++

The simple server we developed in Hello World Application had no way to shut down cleanly: we simply interrupted the server from the
command line to force it to exit. Terminating a server in this fashion is unacceptable for many real-life server applications: typically, the
server has to perform some cleanup work before terminating, such as flushing database buffers or closing network connections. This is
particularly important on receipt of a signal or keyboard interrupt to prevent possible corruption of database files or other persistent data.

To make it easier to deal with signals, | ce: : Appl i cat i on encapsulates the platform-independent signal handling capabilities provided by
theclass | ceUtil:: Ctrl CHandl er. This allows you to cleanly shut down on receipt of a signal and to use the same source code
regardless of the underlying operating system and threading package:

C++

nanespace |ce {
class Application : /* ... */ {
public:
/1
static void destroyOninterrupt();
static void shutdownOnlnterrupt();
static void ignorelnterrupt();
static void call backOnlnterrupt();
static void holdinterrupt();
static void releaselnterrupt();
static bool interrupted();

virtual void interruptCallback(int);

You canuse | ce: : Appl i cat i on under both Windows and Unix: for Unix, the member functions control the behavior of your application for
SI A NT, SI GHUP, and SI GTERM for Windows, the member functions control the behavior of your application for CTRL_C_EVENT,
CTRL_BREAK_EVENT, CTRL_CLOSE_EVENT, CTRL_LOGOFF_EVENT, and CTRL_SHUTDOWN_EVENT.

The functions behave as follows:

252 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

dest royOnl nt er r upt
This function creates an | ceUti | : : Ctrl CHandl er that destroys the communicator when one of the monitored signals is raised.
This is the default behavior.

shut downOnl nt er r upt
This function creates an | ceUti | : : Ctr| CHandl er that shuts down the communicator when one of the monitored signals is
raised.

i gnorel nterrupt
This function causes signals to be ignored.

cal | backOnl nt er rupt

This function configures | ce: : Appl i cati on to invoke i nt er r upt Cal | back when a signal occurs, thereby giving the subclass
responsibility for handling the signal. Note that if the signal handler needs to terminate the program, you must call _exi t (instead of
exi t). This prevents global destructors from running which, depending on the activities of other threads in the program, could cause
deadlock or assertion failures.

hol dI nt errupt
This function causes signals to be held.

rel easel nterrupt
This function restores signal delivery to the previous disposition. Any signal that arrives after hol dl nt er r upt was called is
delivered when you call r el easel nt errupt.

interrupted
This function returns t r ue if a signal caused the communicator to shut down, f al se otherwise. This allows us to distinguish
intentional shutdown from a forced shutdown that was caused by a signal. This is useful, for example, for logging purposes.

i nterrupt Cal | back
A subclass overrides this function to respond to signals. The Ice run time may call this function concurrently with any other thread. If
the function raises an exception, the Ice run time prints a warning on cer r and ignores the exception.

By default, | ce: : Appl i cati on behaves as if dest r oyOnl nt er r upt was invoked, therefore our server nai n function requires no change
to ensure that the program terminates cleanly on receipt of a signal. (You can disable the signal-handling functionality of

I ce: : Appl i cati on by passing the enumerator NoSi gnal Handl i ng to the constructor. In that case, signals retain their default behavior,
that is, terminate the process.) However, we add a diagnostic to report the occurrence of a signal, so our mai n function now looks like:

C++
#i nclude <lce/lce. h>

class MyApplication : virtual public Ice::Application {
public:
virtual int run(int, char*[]) {

/1 Server code here...

if (interrupted())
cerr << appNane() <<

termnating" << endl;

return O;

}
H
int
mai n(int argc, char* argv[])
{

M/ Appl i cation app;

return app.main(argc, argv);
}

Note that, if your server is interrupted by a signal, the Ice run time waits for all currently executing operations to finish. This means that an
operation that updates persistent state cannot be interrupted in the middle of what it was doing and cause partial update problems.

Under Unix, if you handle signals with your own handler (by deriving a subclass from | ce: : Appl i cati on and calling
cal | backOnl nt er r upt), the handler is invoked synchronously from a separate thread. This means that the handler can safely call into the

253

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Ice run time or make system calls that are not async-signal-safe without fear of deadlock or data corruption. Note that | ce: : Appl i cati on
blocks delivery of SI G NT, SI GHUP, and SI GTERM |If your application calls exec, this means that the child process will also ignore these
signals; if you need the default behavior of these signals in the exec'd process, you must explicitly reset them to SI G_DFL before calling
exec.

I ce:: Applicationand Properties

Apart from the functionality shown in this section, | ce: : Appl i cat i on also takes care of initializing the Ice run time with property values.
Properties allow you to configure the run time in various ways. For example, you can use properties to control things such as the thread pool
size or port number for a server.

Limitations of | ce: : Appl i cati on

I ce:: Appl i cati on is a singleton class that creates a single communicator. If you are using multiple communicators, you cannot use
I ce:: Appl i cati on. Instead, you must structure your code as we saw in Hello World Application (taking care to always destroy the
communicators).

The |l ce: : Servi ce Class

The | ce: : Appl i cati on class is very convenient for general use by Ice client and server applications. In some cases, however, an
application may need to run at the system level as a Unix daemon or Windows service. For these situations, Ice includes | ce: : Servi ce, a
singleton class that is comparable to | ce: : Appl i cat i on but also encapsulates the low-level, platform-specific initialization and shutdown
procedures common to system services. The | ce: : Ser vi ce class is defined as follows:

254 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C++

nanmespace Ice {
class Service {
public:
Service();

virtual bool shutdown();
virtual void interrupt();

int main(int& argc, char* argv[],
const lce::InitializationData& = lce::InitializationData());
int nain(lce::StringSeqg& args,
const lce::InitializationData& = lce::InitializationData());
I ce:: Comuni cator Ptr communi cator () const;
static Service* instance();
bool service() const;
std::string nane() const;
bool checkSysten() const;

int run(int& argc, char* argv[], const lce::InitializationData&);

#ifdef _WN32
int main(int& argc, wchar_t* argv[], const InitializationData& = InitializationData());

voi d configureService(const std::string& nane);

#el se
voi d confi gureDaenon(bool changeDir, bool closeFiles, const std::string& pidFile);
#endi f
virtual void handlelnterrupt(int);
protected:
virtual bool start(int argc, char* argv[], int& status) = 0;
virtual void waitFor Shutdown();
virtual bool stop();
virtual Ice::ConmmunicatorPtr initializeComunicator(
int& argc, char* argv[],
const lce::InitializationDatag&);
virtual void syserror(const std::string& nsg);
virtual void error(const std::string& nsg);
virtual void warning(const std::string& nsg);
virtual void trace(const std::string& nsg);
virtual void print(const std::string& nsg);
voi d enabl el nterrupt();
voi d disablelnterrupt();
/1
i
}

At a minimum, an Ice application that uses the | ce: : Ser vi ce class must define a subclass and override the st art member function,
which is where the service must perform its startup activities, such as processing command-line arguments, creating an object adapter, and
registering servants. The application's mai n function must instantiate the subclass and typically invokes its mai n member function, passing
the program's argument vector as parameters. The example below illustrates a minimal | ce: : Ser vi ce subclass:

255 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C++

#i ncl ude <l ce/ Service. h>

class MyService : public lce::Service {

protect ed:
virtual bool start(int, char*[], int&;
private:
I ce:: Cbj ect AdapterPtr _adapter;
b
bool

MyService::start(int argc, char* argv[], int& status)
{
_adapt er = conmmuni cator () ->creat eObj ect Adapt er (" M/Adapter");
_adapt er - >addW t hUUI D(new MyServant|);
_adapter->activate();
status = EXI T_SUCCESS;
return true;

}
int
mai n(int argc, char* argv[])
{
M/ Servi ce svc;
return svc.main(argc, argv);
}

The Ser vi ce: : mai n member function performs the following sequence of tasks:

1. Scans the argument vector for reserved options that indicate whether the program should run as a system service and removes
these options from the argument vector (ar gc is adjusted accordingly). Additional reserved options are supported for administrative

tasks.

2. Configures the program for running as a system service (if necessary) by invoking conf i gur eSer vi ce or conf i gur eDaenon, as

3.

appropriate for the platform.
Invokes the r un member function and returns its result.

Note that, as for Appl i cati on: : mai n, Servi ce: : mai n is overloaded to accept a string sequence instead of an ar gc/ar gv pair. This is
useful if you need to parse application-specific property settings on the command line.

The Ser vi ce: : r un member function executes the service in the steps shown below:

1.
2. Invokes theini ti al i zeComuni cat or member function to obtain a communicator. The communicator instance can be accessed

w

No ok~

Installs a signal handler.

using the conmruni cat or member function.

Invokes the st art member function. If st art returns f al se to indicate failure, r un destroys the communicator and returns

immediately using the exit status provided in st at us.

Invokes the wai t For Shut down member function, which should block until shut down is invoked.

Invokes the st op member function. If st op returns t r ue, r un considers the application to have terminated successfully.

Destroys the communicator.
Gracefully terminates the system service (if necessary).

If an unhandled exception is caught by Ser vi ce: : r un, a descriptive message is logged, the communicator is destroyed and the service is
terminated.

lce::

Ser vi ce Member Functions

The virtual member functions in | ce: : Ser vi ce represent the points at which a subclass can intercept the service activities. All of the virtual
member functions (except st ar t) have default implementations.

® void handl elnterrupt(int sig)
Invoked by the Ct r | CHandl er when a signal occurs. The default implementation ignores the signal if it represents a logoff event
and the | ce. Nohup property is set to a value larger than zero, otherwise it invokes the i nt er r upt member function.

® | ce::ConmunicatorPtr initializeConmunicator(int & argc,

256

char * argv[],

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

const lce::InitializationData & data)
Initializes a communicator. The default implementation invokes | ce: : i ni ti al i ze and passes the given arguments.

voi d interrupt()
Invoked by the signal handler to indicate a signal was received. The default implementation invokes the shut down member
function.

bool shut down()
Causes the service to begin the shutdown process. The default implementation invokes shut down on the communicator. The
subclass must return t r ue if shutdown was started successfully, and f al se otherwise.

bool start(int argc, char * argv[], int & status)

Allows the subclass to perform its startup activities, such as scanning the provided argument vector for recognized command-line
options, creating an object adapter, and registering servants. The subclass must return t r ue if startup was successful, and f al se
otherwise. The subclass can set an exit status via the st at us parameter. This status is returned by mai n.

bool stop()
Allows the subclass to clean up prior to termination. The default implementation does nothing but return t r ue. The subclass must
return t r ue if the service has stopped successfully, and f al se otherwise.

voi d syserror(const std::string & nsg)

void error(const std::string & nsg)

voi d warni ng(const std::string & nmsg)

voi d trace(const std::string & nsg)

void print(const std::string & nsg)

Convenience functions for logging messages to the communicator's logger. The syser r or member function includes a description
of the system's current error code.

voi d wai t For Shut down()
Waits indefinitely for the service to shut down. The default implementation invokes wai t For Shut down on the communicator.

The non-virtual member functions shown in the class definition are described below:

257

bool checkSystem() const
Returns true if the operating system supports Windows services or Unix daemons. This function returns false on Windows
95/98/ME.

I ce: : Conmuni cat or Ptr conmmuni cator () const
Returns the communicator used by the service, as created by i ni ti al i zeConmmuni cat or.

voi d confi gureDaenon(bool chdir, bool close, const std::string & pidFile)

Configures the program to run as a Unix daemon. The chdi r parameter determines whether the daemon changes its working
directory to the root directory. The cl ose parameter determines whether the daemon closes unnecessary file descriptors (i.e., stdin,
stdout, etc.). If a non-empty string is provided in the pi dFi | e parameter, the daemon writes its process ID to the given file.

voi d configureService(const std::string & nane)
Configures the program to run as a Windows service with the given name.

voi d di sabl el nterrupt()
Disables the signal handling behavior in | ce: : Ser vi ce. When disabled, signals are ignored.

voi d enabl el nterrupt()
Enables the signal handling behavior in | ce: : Ser vi ce. When enabled, the occurrence of a signal causes the handl el nt er r upt
member function to be invoked.

static Service * instance()
Returns the singleton | ce: : Ser vi ce instance.

int main(int & argc, char * argv[],

const lce::InitializationData & data = lce::InitializationData())
int main(lce::StringSeq& args,

const lce::InitializationData& = lce::InitializationData());
int main(int & argc, wchar_t * argv[],

const lce::lInitializationData & data = lce::InitializationData())

The primary entry point of the | ce: : Ser vi ce class. The tasks performed by this function are described earlier in this section. The
function returns EXI T_SUCCESS for success, EXI T_FAI LURE for failure. For Windows, this function is overloaded to allow you to
pass awchar _t argument vector.

std::string name() const
Returns the name of the service. If the program is running as a Windows service, the return value is the Windows service name,

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

otherwise it returns the value of ar gv[0] .

® int run(int & argc, char * argv[], const Ice::InitializationData & data)
Alternative entry point for applications that prefer a different style of service configuration. The program must invoke
confi gureServi ce (Windows) or conf i gur eDaenon (Unix) in order to run as a service. The tasks performed by this function
were described earlier. The function normally returns EXI T_SUCCESS or EXI T_FAI LURE, but the st art method can also supply a
different value via its st at us argument.

® bool service() const
Returns true if the program is running as a Windows service or Unix daemon, or false otherwise.

Unix Daemons

On Unix platforms, | ce: : Ser vi ce recognizes the following command-line options:

® --daenon
Indicates that the program should run as a daemon. This involves the creation of a background child process in which
Ser vi ce: : mai n performs its tasks. The parent process does not terminate until the child process has successfully invoked the
st art member function.

This behavior avoids the uncertainty often associated with starting a daemon from a shell script, because it
ensures that the command invocation does not complete until the daemon is ready to receive requests.

Unless instructed otherwise, | ce: : Ser vi ce changes the current working directory of the child process to the root directory, and
closes all unnecessary file descriptors. Note that the file descriptors are not closed until after the communicator is initialized,
meaning standard input, standard output, and standard error are available for use during this time. For example, the IceSSL plug-in
may need to prompt for a passphrase on standard input, or Ice may print the child's process id on standard output if the property

I ce. PrintProcessldis set.

® --pidfile FILE
This option writes the process ID of the service into the specified FI LE. (This option requires - - daenon.)

® --nocl ose
Prevents | ce: : Ser vi ce from closing unnecessary file descriptors. This can be useful during debugging and diagnosis because it
provides access to the output from the daemon's standard output and standard error.

® --nochdir
Prevents | ce: : Ser vi ce from changing the current working directory.

The - - nocl ose and - - nochdi r options can only be specified in conjunction with - - daenon. These options are removed from the
argument vector that is passed to the st art member function.

Windows Services

On Windows, | ce: : Ser vi ce recognizes the following command-line options:
® --service NAME
Run as a Windows service named NAME, which must already be installed. This option is removed from the argument vector that is
passed to the st art member function.

Installing and configuring a Windows service is outside the scope of the | ce: : Ser vi ce class. Ice includes a utility for installing its services
which you can use as a model for your own applications.

The | ce: : Servi ce class supports the Windows service control codes SERVI CE_CONTROL_| NTERROGATE and SERVI CE_CONTROL_STOP
. Upon receipt of SERVI CE_CONTROL_STOP, | ce: : Ser vi ce invokes the shut down member function.

| ce:: Servi ce Logging Considerations

A service that uses a custom logger has several ways of configuring it:
® as a process-wide logger,
® inthelnitializationDataargument thatis passed to nai n,
® by overriding the i ni ti al i zeCommuni cat or member function.

On Windows, | ce: : Ser vi ce installs its own logger that uses the Windows Appl i cat i on event log if no custom logger is defined. The

258 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

source name for the event log is the service's name unless a different value is specified using the property | ce. Event Log. Sour ce.

On Unix, the default Ice logger (which logs to the standard error output) is used when no other logger is configured. For daemons, this is not
appropriate because the output will be lost. To change this, you can either implement a custom logger or set the | ce. UseSysl| og property,
which selects a logger implementation that logs to the sysl og facility. Alternatively, you can set the | ce. LogFi | e property to write log
messages to a file.

Note that | ce: : Ser vi ce may encounter errors before the communicator is initialized. In this situation, | ce: : Ser vi ce uses its default
logger unless a process-wide logger is configured. Therefore, even if a failing service is configured to use a different logger implementation,
you may find useful diagnostic information in the Appl i cat i on event log (on Windows) or sent to standard error (on Unix).

See Also

Hello World Application
Properties and Configuration
Communicator Initialization
Logger Facility

Portable Signal Handling in C++
Windows Services

259 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Server-Side C++ Mapping for Interfaces

The server-side mapping for interfaces provides an up-call API for the Ice run time: by implementing virtual functions in a servant class, you
provide the hook that gets the thread of control from the Ice server-side run time into your application code.

On this page:
® Skeleton Classes in C++

® Servant Classes in C++
® Normal and i denpot ent Operations in C++

Skeleton Classes in C++

On the client side, interfaces map to proxy classes. On the server side, interfaces map to skeleton classes. A skeleton is a class that has a
pure virtual member function for each operation on the corresponding interface. For example, consider our Slice definition for the Node
interface:

Slice

nmodul e Fil esystem {
interface Node {
i denpotent string name();

The Slice compiler generates the following definition for this interface:

C++
nanespace Fil esystem {
class Node : virtual public Ice:: Object {
public:
virtual std::string nane(const lce::Current& = Ice::Current()) = 0;
/1
b
11

For the moment, we will ignore a number of other member functions of this class. The important points to note are:

® As for the client side, Slice modules are mapped to C++ namespaces with the same name, so the skeleton class definition is nested
in the namespace Fi | esyst em

The name of the skeleton class is the same as the name of the Slice interface (Node).

The skeleton class contains a pure virtual member function for each operation in the Slice interface.

The skeleton class is an abstract base class because its member functions are pure virtual.

The skeleton class inherits from | ce: : Obj ect (which forms the root of the Ice object hierarchy).

Servant Classes in C++

In order to provide an implementation for an Ice object, you must create a servant class that inherits from the corresponding skeleton class.
For example, to create a servant for the Node interface, you could write:

260 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C++

#i nclude <Filesystemh> // Slice-generated header

class Nodel : public virtual Filesystem:Node {
public:

Nodel (const std::string&);

virtual std::string name(const lce::Currentg&);
private:

std::string _nane;

}s

By convention, servant classes have the name of their interface with an | -suffix, so the servant class for the Node interface is called Nodel .
(This is a convention only: as far as the Ice run time is concerned, you can choose any name you prefer for your servant classes.)

Note that Nodel inherits from Fi | esyst em : Node, that is, it derives from its skeleton class. It is a good idea to always use virtual
inheritance when defining servant classes. Strictly speaking, virtual inheritance is necessary only for servants that implement interfaces that
use multiple inheritance; however, the vi rt ual keyword does no harm and, if you add multiple inheritance to an interface hierarchy
half-way through development, you do not have to go back and add a vi rt ual keyword to all your servant classes.

As far as Ice is concerned, the Nodel class must implement only a single member function: the pure virtual nane function that it inherits
from its skeleton. This makes the servant class a concrete class that can be instantiated. You can add other member functions and data
members as you see fit to support your implementation. For example, in the preceding definition, we added a _nane member and a
constructor. Obviously, the constructor initializes the _nanme member and the nane function returns its value:

C++
Nodel : : Nodel (const std::string& nane) : _nane(nane)
{
}

std::string
Nodel : : nanme(const Ice::Current&) const

{
}

return _name;

Normal and i denpot ent Operations in C++

The nanme member function of the Nodel skeleton is not a const member function. However, given that the operation does not modify the
state of its object, it really should be a const member function. We can achieve this by adding the [" cpp: const "] metadata directive. For
example:

Slice

interface Exanple {
voi d normal Op();

i denpotent void idenpotentQp();
["cpp: const™]

i dempotent voi d readonl yOp();
b

The skeleton class for this interface looks like this:

261 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C++
class Exanple : virtual public Ice:: Object {
public:
virtual void normal Op(const lce::Current& = lce::Current()) = O;
virtual void idenpotentQp(const lce::Current& = Ice::Current()) = O;
virtual void readonlyOp(const lce::Current& = Ice::Current()) const = O;
/1
|

Note that r eadonl yOp is mapped as a const member function due to the [" cpp: const "] metadata directive; normal and i denpot ent
operations (without the metadata directive) are mapped as ordinary, non-const member functions.

See Also

® Slice for a Simple File System
® C++ Mapping for Interfaces
® Parameter Passing in C++
® Raising Exceptions in C++

262 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Parameter Passing in C++

For each parameter of a Slice operation, the C++ mapping generates a corresponding parameter for the virtual member function in the
skeleton. In addition, every operation has an additional, trailing parameter of type | ce: : Cur r ent . For example, the nane operation of the
Node interface has no parameters, but the name member function of the Node skeleton class has a single parameter of type

I ce: : Current.We will ignore this parameter for now.

Parameter passing on the server side follows the rules for the client side:
® in-parameters are passed by value or const reference.
® out-parameters are passed by reference.

® return values are passed by value

To illustrate the rules, consider the following interface that passes string parameters in all possible directions:

Slice
nmodul e M {
interface Exanple {
string op(string sin, out string sout);
b
H
The generated skeleton class for this interface looks as follows:
C++
namespace M {
class Exanple : virtual public ::lce::Object {

public:
virtual std::string op(const std::string& std::string&,
const lce::Current& = Ice::Current()) = O;
/1

}s

As you can see, there are no surprises here. For example, we could implement op as follows:

C++

std::string
Exanpl el : : op(const std::string& sin, std::string& sout, const Ice::Current&)
{

cout << sin << endl; /1 In paranmeters are initialized

sout = "Hello World!'"; /] Assign out paraneter

return "Done"; // Return a string
}

This code is in no way different from what you would normally write if you were to pass strings to and from a function; the fact that remote
procedure calls are involved does not impact on your code in any way. The same is true for parameters of other types, such as proxies,
classes, or dictionaries: the parameter passing conventions follow normal C++ rules and do not require special-purpose API calls or memory
management.

See Also
® Server-Side C++ Mapping for Interfaces

® Raising Exceptions in C++
® The Current Object

263 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Raising Exceptions in C++

To throw an exception from an operation implementation, you simply instantiate the exception, initialize it, and throw it. For example:

C++
voi d
Filesystem:Filel::wite(const Filesystem:Lines& text, const Ice::Currentg&)
{

/1l Try to wite the file contents here. ..
I/ Assume we are out of space...

if (error) {
Fi |l esystem : GenericError e;
e.reason = "file too |arge";
throw e;

b

No memory management issues arise in the presence of exceptions.

Note that the Slice compiler never generates exception specifications for operations, regardless of whether the corresponding Slice operation
definition has an exception specification or not. This is deliberate: C++ exception specifications do not add any value and are therefore not
used by the Ice C++ mapping [1].

If you throw an arbitrary C++ exception (such as an i nt or other unexpected type), the Ice run time catches the exception and then returns
an UnknownExcept i on to the client. Similarly, if you throw an "impossible" user exception (a user exception that is not listed in the
exception specification of the operation), the client receives an UnknownUser Except i on.

If you throw a run-time exception, such as Menor yLi mi t Except i on, the client receives an UnknownLocal Except i on. For that reason,
you should never throw system exceptions from operation implementations. If you do, all the client will see is an UnknownLocal Excepti on
, which does not tell the client anything useful.

Three run-time exceptions are treated specially and not changed to UnknownLocal Except i on when returned to the
client: Obj ect Not Exi st Except i on, Oper at i onNot Exi st Excepti on, and Facet Not Exi st Excepti on.

See Also

Run-Time Exceptions

C++ Mapping for Exceptions
Server-Side C++ Mapping for Interfaces
Parameter Passing in C++

References

1. Sutter, H. 2002. A Pragmatic Look at Exception Specifications. C/C++ Users Journal 20 (7): 59-64.

264 Copyright © 2011, ZeroC, Inc.

http://www.gotw.ca/publications/mill22.htm

Ice 3.4.2 Documentation

Object Incarnation in C++

Having created a servant class such as the rudimentary Nodel class, you can instantiate the class to create a concrete servant that can
receive invocations from a client. However, merely instantiating a servant class is insufficient to incarnate an object. Specifically, to provide
an implementation of an Ice object, you must follow the following steps:

1. Instantiate a servant class.

2. Create an identity for the Ice object incarnated by the servant.
3. Inform the Ice run time of the existence of the servant.

4. Pass a proxy for the object to a client so the client can reach it.

On this page:

® |nstantiating a C++ Servant
® Creating an Identity in C++
® Activating a C++ Servant
® Servant Life Time and Reference Counts
® UUIDs as Identities in C++
® Creating Proxies in C++
® Proxies and Servant Activation in C++
® Direct Proxy Creation in C++

Instantiating a C++ Servant

Instantiating a servant means to allocate an instance on the heap:

C++

NodePtr servant = new Nodel ("Fred");

This code creates a new Nodel instance on the heap and assigns its address to a smart pointer of type NodePt r . This works because
Nodel is derived from Node, so a smart pointer of type NodePt r can also look after an instance of type Nodel . However, if we want to
invoke a member function of the derived Nodel class at this point, we have a problem: we cannot access member functions of the derived
Nodel class through a NodePt r smart pointer, only member functions of Node base class. (The C++ type rules prevent us from accessing a
member of a derived class through a pointer to a base class.) To get around this, we can modify the code as follows:

C++

typedef IceUtil:: Handl e<Nodel > Nodel Ptr;
Nodel Ptr servant = new Nodel ("Fred");

This code makes use of the smart pointer template by defining Nodel Pt r as a smart pointer to Nodel instances. Whether you use a smart
pointer of type NodePt r or Nodel Pt r depends solely on whether you want to invoke a member function of the Nodel derived class; if you
only want to invoke member functions that are defined in the Node skeleton base class, it is sufficient to use a NodePt r and you need not
define the Nodel Pt r type.

Whether you use NodePt r or Nodel Pt r, the advantages of using a smart pointer class should be obvious from the smart pointer
discussion: they make it impossible to accidentally leak memory.

Creating an Identity in C++

Each Ice object requires an identity. That identity must be unique for all servants using the same object adapter.
lﬂl The Ice object model assumes that all objects (regardless of their adapter) have a globally unique identity.

An Ice object identity is a structure with the following Slice definition:

265 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Slice

nmodul e Ice {
struct ldentity {
string nane;
string category;

The full identity of an object is the combination of both the nane and cat egor y fields of the | dent i t y structure. For now, we will leave the
cat egory field as the empty string and simply use the nane field. (The cat egor y field is most often used in conjunction with servant
locators.)

To create an identity, we simply assign a key that identifies the servant to the nane field of the | dent i t y structure:

C++

lce::ldentity id;
id.nanme = "Fred"; // Not unique, but good enough for now

Activating a C++ Servant

Merely creating a servant instance does nothing: the Ice run time becomes aware of the existence of a servant only once you explicitly tell
the object adapter about the servant. To activate a servant, you invoke the add operation on the object adapter. Assuming that we have
access to the object adapter in the _adapt er variable, we can write:

C++

_adapt er->add(servant, id);

Note the two arguments to add: the smart pointer to the servant and the object identity. Calling add on the object adapter adds the servant
pointer and the servant's identity to the adapter's servant map and links the proxy for an Ice object to the correct servant instance in the
server's memory as follows:

1. The proxy for an Ice object, apart from addressing information, contains the identity of the Ice object. When a client invokes an
operation, the object identity is sent with the request to the server.

2. The object adapter receives the request, retrieves the identity, and uses the identity as an index into the servant map.

3. If a servant with that identity is active, the object adapter retrieves the servant pointer from the servant map and dispatches the
incoming request into the correct member function on the servant.

Assuming that the object adapter is in the active state, client requests are dispatched to the servant as soon as you call add.

Servant Life Time and Reference Counts

Putting the preceding points together, we can write a simple function that instantiates and activates one of our Nodel servants. For this
example, we use a simple helper function called act i vat eSer vant that creates and activates a servant with a given identity:

C++
voi d
activat eServant (const string& nane)
{
NodePtr servant = new Nodel (nane); /1 Refcount == 1
lce::ldentity id;
i d.nane = nane;
_adapt er - >add(servant, id); /1 Refcount ==
} /1 Refcount ==

266 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Note that we create the servant on the heap and that, once act i vat eSer vant returns, we lose the last remaining handle to the servant
(because the ser vant variable goes out of scope). The question is, what happens to the heap-allocated servant instance? The answer lies
in the smart pointer semantics:

®* When the new servant is instantiated, its reference count is initialized to 0.

® Assigning the servant's address to the ser vant smart pointer increments the servant's reference count to 1.

® Calling add passes the ser vant smart pointer to the object adapter which keeps a copy of the handle internally. This increments
the reference count of the servant to 2.

® When acti vat eSer vant returns, the destructor of the ser vant variable decrements the reference count of the servant to 1.

The net effect is that the servant is retained on the heap with a reference count of 1 for as long as the servant is in the servant map of its

object adapter. (If we deactivate the servant, that is, remove it from the servant map, the reference count drops to zero and the memory
occupied by the servant is reclaimed; we discuss these life cycle issues in Object Life Cycle.)

UUIDs as ldentities in C++

The Ice object model assumes that object identities are globally unique. One way of ensuring that uniqueness is to use UUIDs (Universally
Unique Identifiers) as identities. The | ceUt i | namespace contains a helper function to create such identities:

C++

#i nclude <lceUtil/UU D. h>
#i ncl ude <i ostreanp

usi ng nanmespace std;

int
mai n()
{
cout << lceltil::generateUUl D() << endl;
}

When executed, this program prints a unique string such as 5029a22c- e333- 4f 87- 86b1- cd5e0f cce509. Each call to gener at eUUl D
creates a string that differs from all previous ones.

You can use a UUID such as this to create object identities. For convenience, the object adapter has an operation addW t hUUI D that
generates a UUID and adds a servant to the servant map in a single step. Using this operation, we can rewrite the code shown earlier like
this:

C++

voi d

activat eServant (const string& nane)

{
NodePtr servant = new Nodel (nane);
_adapt er - >addW t hUUI D(servant) ;

Creating Proxies in C++

Once we have activated a servant for an Ice object, the server can process incoming client requests for that object. However, clients can
only access the object once they hold a proxy for the object. If a client knows the server's address details and the object identity, it can
create a proxy from a string, as we saw in our first example in Hello World Application. However, creation of proxies by the client in this
manner is usually only done to allow the client access to initial objects for bootstrapping. Once the client has an initial proxy, it typically
obtains further proxies by invoking operations.

The object adapter contains all the details that make up the information in a proxy: the addressing and protocol information, and the object
identity. The Ice run time offers a number of ways to create proxies. Once created, you can pass a proxy to the client as the return value or
as an out-parameter of an operation invocation.

Proxies and Servant Activation in C++

267 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

The add and addW t hUUI D servant activation operations on the object adapter return a proxy for the corresponding Ice object. This means
we can write:

C++

typedef Iceltil:: Handl e<Nodel > Nodel Ptr;
Nodel Ptr servant = new Nodel (namne);
NodePr x proxy = NodePrx::uncheckedCast (_adapt er - >addW t hUUI D(servant)) ;

/1 Pass proxy to client...

Here, addW t hUUI D both activates the servant and returns a proxy for the Ice object incarnated by that servant in a single step.

Note that we need to use an uncheckedCast here because addW t hUUI D returns a proxy of type | ce: : Obj ect Pr x.

Direct Proxy Creation in C++

The object adapter offers an operation to create a proxy for a given identity:

Slice

nmodul e Ice {
local interface ObjectAdapter {
bj ect* createProxy(ldentity id);
/1
I
b

Note that cr eat ePr oxy creates a proxy for a given identity whether a servant is activated with that identity or not. In other words, proxies
have a life cycle that is quite independent from the life cycle of servants:

C++

lce::ldentity id;
id.name = Iceltil::generateUUl D();
Obj ect Prx o = _adapter->createProxy(id);

This creates a proxy for an Ice object with the identity returned by gener at eUUl D. Obviously, no servant yet exists for that object so, if we
return the proxy to a client and the client invokes an operation on the proxy, the client will receive an Obj ect Not Exi st Except i on. (We
examine these life cycle issues in more detail in Object Life Cycle.)

See Also

Hello World Application

Object Adapter States

Servant Locators

Object Life Cycle

The C++ generateUUID Function

268 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Asynchronous Method Dispatch (AMD) in C++

The number of simultaneous synchronous requests a server is capable of supporting is determined by the number of threads in the server's
thread pool. If all of the threads are busy dispatching long-running operations, then no threads are available to process new requests and
therefore clients may experience an unacceptable lack of responsiveness.

Asynchronous Method Dispatch (AMD), the server-side equivalent of AMI, addresses this scalability issue. Using AMD, a server can receive
a request but then suspend its processing in order to release the dispatch thread as soon as possible. When processing resumes and the
results are available, the server sends a response explicitly using a callback object provided by the Ice run time.

AMD is transpa