ActiViz .NET  5.8.0
Public Member Functions | Static Public Member Functions | Public Attributes | Static Public Attributes | Protected Member Functions | Private Member Functions | Static Private Member Functions
Kitware.VTK.vtkTransform Class Reference

vtkTransform - describes linear transformations via a 4x4 matrix More...

Inheritance diagram for Kitware.VTK.vtkTransform:
[legend]
Collaboration diagram for Kitware.VTK.vtkTransform:
[legend]

List of all members.

Public Member Functions

 vtkTransform (IntPtr rawCppThis, bool callDisposalMethod, bool strong)
 Automatically generated constructor - called from generated code. DO NOT call directly.
 vtkTransform ()
 Undocumented Block.
override int CircuitCheck (vtkAbstractTransform transform)
 Check for self-reference. Will return true if concatenating with the specified transform, setting it to be our inverse, or setting it to be our input will create a circular reference. CircuitCheck is automatically called by SetInput(), SetInverse(), and Concatenate(vtkXTransform *). Avoid using this function, it is experimental.
void Concatenate (vtkMatrix4x4 matrix)
 Concatenates the matrix with the current transformation according to PreMultiply or PostMultiply semantics.
void Concatenate (IntPtr elements)
 Concatenates the matrix with the current transformation according to PreMultiply or PostMultiply semantics.
void Concatenate (vtkLinearTransform transform)
 Concatenate the specified transform with the current transformation according to PreMultiply or PostMultiply semantics. The concatenation is pipelined, meaning that if any of the transformations are changed, even after Concatenate() is called, those changes will be reflected when you call TransformPoint().
vtkLinearTransform GetConcatenatedTransform (int i)
 Description Get one of the concatenated transformations as a vtkAbstractTransform. These transformations are applied, in series, every time the transformation of a coordinate occurs. This method is provided to make it possible to decompose a transformation into its constituents, for example to save a transformation to a file.
vtkLinearTransform GetInput ()
 Set the input for this transformation. This will be used as the base transformation if it is set. This method allows you to build a transform pipeline: if the input is modified, then this transformation will automatically update accordingly. Note that the InverseFlag, controlled via Inverse(), determines whether this transformation will use the Input or the inverse of the Input.
void GetInverse (vtkMatrix4x4 inverse)
 Return a matrix which is the inverse of the current transformation matrix.
new vtkAbstractTransform GetInverse ()
 Return an inverse transform which will always update itself to match this transform.
int GetInverseFlag ()
 Get the inverse flag of the transformation. This controls whether it is the Input or the inverse of the Input that is used as the base transformation. The InverseFlag is flipped every time Inverse() is called. The InverseFlag is off when a transform is first created.
override uint GetMTime ()
 Override GetMTime to account for input and concatenation.
int GetNumberOfConcatenatedTransforms ()
 Get the total number of transformations that are linked into this one via Concatenate() operations or via SetInput().
void GetOrientation (IntPtr orient)
 Get the x, y, z orientation angles from the transformation matrix as an array of three floating point values.
double[] GetOrientation ()
 Get the x, y, z orientation angles from the transformation matrix as an array of three floating point values.
void GetOrientationWXYZ (IntPtr wxyz)
 Return the wxyz angle+axis representing the current orientation. The angle is in degrees and the axis is a unit vector.
double[] GetOrientationWXYZ ()
 Return the wxyz angle+axis representing the current orientation. The angle is in degrees and the axis is a unit vector.
void GetPosition (IntPtr pos)
 Return the position from the current transformation matrix as an array of three floating point numbers. This is simply returning the translation component of the 4x4 matrix.
double[] GetPosition ()
 Return the position from the current transformation matrix as an array of three floating point numbers. This is simply returning the translation component of the 4x4 matrix.
void GetScale (IntPtr scale)
 Return the scale factors of the current transformation matrix as an array of three float numbers. These scale factors are not necessarily about the x, y, and z axes unless unless the scale transformation was applied before any rotations.
double[] GetScale ()
 Return the scale factors of the current transformation matrix as an array of three float numbers. These scale factors are not necessarily about the x, y, and z axes unless unless the scale transformation was applied before any rotations.
void GetTranspose (vtkMatrix4x4 transpose)
 Return a matrix which is the transpose of the current transformation matrix. This is equivalent to the inverse if and only if the transformation is a pure rotation with no translation or scale.
void Identity ()
 Set the transformation to the identity transformation. If the transform has an Input, then the transformation will be reset so that it is the same as the Input.
override void Inverse ()
 Invert the transformation. This will also set a flag so that the transformation will use the inverse of its Input, if an Input has been set.
override int IsA (string type)
 Undocumented Block.
override vtkAbstractTransform MakeTransform ()
 Make a new transform of the same type.
void MultiplyPoint (IntPtr arg0, IntPtr arg1)
 Use this method only if you wish to compute the transformation in homogeneous (x,y,z,w) coordinates, otherwise use TransformPoint(). This method calls this->GetMatrix()->MultiplyPoint().
new vtkTransform NewInstance ()
 Undocumented Block.
void Pop ()
 Deletes the transformation on the top of the stack and sets the top to the next transformation on the stack.
void PostMultiply ()
 Sets the internal state of the transform to PostMultiply. All subsequent operations will occur after those already represented in the current transformation. In homogeneous matrix notation, M = A*M where M is the current transformation matrix and A is the applied matrix. The default is PreMultiply.
void PreMultiply ()
 Sets the internal state of the transform to PreMultiply. All subsequent operations will occur before those already represented in the current transformation. In homogeneous matrix notation, M = M*A where M is the current transformation matrix and A is the applied matrix. The default is PreMultiply.
void Push ()
 Pushes the current transformation onto the transformation stack.
void RotateWXYZ (double angle, double x, double y, double z)
 Create a rotation matrix and concatenate it with the current transformation according to PreMultiply or PostMultiply semantics. The angle is in degrees, and (x,y,z) specifies the axis that the rotation will be performed around.
void RotateWXYZ (double angle, IntPtr axis)
 Create a rotation matrix and concatenate it with the current transformation according to PreMultiply or PostMultiply semantics. The angle is in degrees, and (x,y,z) specifies the axis that the rotation will be performed around.
void RotateX (double angle)
 Create a rotation matrix about the X, Y, or Z axis and concatenate it with the current transformation according to PreMultiply or PostMultiply semantics. The angle is expressed in degrees.
void RotateY (double angle)
 Create a rotation matrix about the X, Y, or Z axis and concatenate it with the current transformation according to PreMultiply or PostMultiply semantics. The angle is expressed in degrees.
void RotateZ (double angle)
 Create a rotation matrix about the X, Y, or Z axis and concatenate it with the current transformation according to PreMultiply or PostMultiply semantics. The angle is expressed in degrees.
void Scale (double x, double y, double z)
 Create a scale matrix (i.e. set the diagonal elements to x, y, z) and concatenate it with the current transformation according to PreMultiply or PostMultiply semantics.
void Scale (IntPtr s)
 Create a scale matrix (i.e. set the diagonal elements to x, y, z) and concatenate it with the current transformation according to PreMultiply or PostMultiply semantics.
void SetInput (vtkLinearTransform input)
 Set the input for this transformation. This will be used as the base transformation if it is set. This method allows you to build a transform pipeline: if the input is modified, then this transformation will automatically update accordingly. Note that the InverseFlag, controlled via Inverse(), determines whether this transformation will use the Input or the inverse of the Input.
void SetMatrix (vtkMatrix4x4 matrix)
 Set the current matrix directly. This actually calls Identity(), followed by Concatenate(matrix).
void SetMatrix (IntPtr elements)
 Set the current matrix directly. This actually calls Identity(), followed by Concatenate(matrix).
void Translate (double x, double y, double z)
 Create a translation matrix and concatenate it with the current transformation according to PreMultiply or PostMultiply semantics.
void Translate (IntPtr x)
 Create a translation matrix and concatenate it with the current transformation according to PreMultiply or PostMultiply semantics.

Static Public Member Functions

static new vtkTransform New ()
 Undocumented Block.
static void GetOrientation (IntPtr orient, vtkMatrix4x4 matrix)
 Convenience function to get the x, y, z orientation angles from a transformation matrix as an array of three floating point values.
static new int IsTypeOf (string type)
 Undocumented Block.
static new vtkTransform SafeDownCast (vtkObjectBase o)
 Undocumented Block.

Public Attributes

new const string MRFullTypeName = "Kitware.VTK.vtkTransform"
 Automatically generated type registration mechanics.

Static Public Attributes

static new readonly string MRClassNameKey = "12vtkTransform"
 Automatically generated type registration mechanics.

Protected Member Functions

override void Dispose (bool disposing)
 Automatically generated protected Dispose method - called from public Dispose or the C# destructor. DO NOT call directly.

Private Member Functions

static internal IntPtr vtkTransform_New (ref uint mteStatus, ref uint mteIndex, ref uint rawRefCount)
static internal int vtkTransform_CircuitCheck_01 (HandleRef pThis, HandleRef transform)
static internal void vtkTransform_Concatenate_02 (HandleRef pThis, HandleRef matrix)
static internal void vtkTransform_Concatenate_03 (HandleRef pThis, IntPtr elements)
static internal void vtkTransform_Concatenate_04 (HandleRef pThis, HandleRef transform)
static internal IntPtr vtkTransform_GetConcatenatedTransform_05 (HandleRef pThis, int i, ref uint mteStatus, ref uint mteIndex, ref uint rawRefCount)
static internal IntPtr vtkTransform_GetInput_06 (HandleRef pThis, ref uint mteStatus, ref uint mteIndex, ref uint rawRefCount)
static internal void vtkTransform_GetInverse_07 (HandleRef pThis, HandleRef inverse)
static internal IntPtr vtkTransform_GetInverse_08 (HandleRef pThis, ref uint mteStatus, ref uint mteIndex, ref uint rawRefCount)
static internal int vtkTransform_GetInverseFlag_09 (HandleRef pThis)
static internal uint vtkTransform_GetMTime_10 (HandleRef pThis)
static internal int vtkTransform_GetNumberOfConcatenatedTransforms_11 (HandleRef pThis)
static internal void vtkTransform_GetOrientation_12 (HandleRef pThis, IntPtr orient)
static internal IntPtr vtkTransform_GetOrientation_13 (HandleRef pThis)
static internal void vtkTransform_GetOrientation_14 (IntPtr orient, HandleRef matrix)
static internal void vtkTransform_GetOrientationWXYZ_15 (HandleRef pThis, IntPtr wxyz)
static internal IntPtr vtkTransform_GetOrientationWXYZ_16 (HandleRef pThis)
static internal void vtkTransform_GetPosition_17 (HandleRef pThis, IntPtr pos)
static internal IntPtr vtkTransform_GetPosition_18 (HandleRef pThis)
static internal void vtkTransform_GetScale_19 (HandleRef pThis, IntPtr scale)
static internal IntPtr vtkTransform_GetScale_20 (HandleRef pThis)
static internal void vtkTransform_GetTranspose_21 (HandleRef pThis, HandleRef transpose)
static internal void vtkTransform_Identity_22 (HandleRef pThis)
static internal void vtkTransform_Inverse_23 (HandleRef pThis)
static internal int vtkTransform_IsA_24 (HandleRef pThis, string type)
static internal int vtkTransform_IsTypeOf_25 (string type)
static internal IntPtr vtkTransform_MakeTransform_26 (HandleRef pThis, ref uint mteStatus, ref uint mteIndex, ref uint rawRefCount)
static internal void vtkTransform_MultiplyPoint_27 (HandleRef pThis, IntPtr arg0, IntPtr arg1)
static internal IntPtr vtkTransform_NewInstance_29 (HandleRef pThis, ref uint mteStatus, ref uint mteIndex, ref uint rawRefCount)
static internal void vtkTransform_Pop_30 (HandleRef pThis)
static internal void vtkTransform_PostMultiply_31 (HandleRef pThis)
static internal void vtkTransform_PreMultiply_32 (HandleRef pThis)
static internal void vtkTransform_Push_33 (HandleRef pThis)
static internal void vtkTransform_RotateWXYZ_34 (HandleRef pThis, double angle, double x, double y, double z)
static internal void vtkTransform_RotateWXYZ_35 (HandleRef pThis, double angle, IntPtr axis)
static internal void vtkTransform_RotateX_36 (HandleRef pThis, double angle)
static internal void vtkTransform_RotateY_37 (HandleRef pThis, double angle)
static internal void vtkTransform_RotateZ_38 (HandleRef pThis, double angle)
static internal IntPtr vtkTransform_SafeDownCast_39 (HandleRef o, ref uint mteStatus, ref uint mteIndex, ref uint rawRefCount)
static internal void vtkTransform_Scale_40 (HandleRef pThis, double x, double y, double z)
static internal void vtkTransform_Scale_41 (HandleRef pThis, IntPtr s)
static internal void vtkTransform_SetInput_42 (HandleRef pThis, HandleRef input)
static internal void vtkTransform_SetMatrix_43 (HandleRef pThis, HandleRef matrix)
static internal void vtkTransform_SetMatrix_44 (HandleRef pThis, IntPtr elements)
static internal void vtkTransform_Translate_45 (HandleRef pThis, double x, double y, double z)
static internal void vtkTransform_Translate_46 (HandleRef pThis, IntPtr x)

Static Private Member Functions

static vtkTransform ()
 Automatically generated type registration mechanics.

Detailed Description

vtkTransform - describes linear transformations via a 4x4 matrix

Description A vtkTransform can be used to describe the full range of linear (also known as affine) coordinate transformations in three dimensions, which are internally represented as a 4x4 homogeneous transformation matrix. When you create a new vtkTransform, it is always initialized to the identity transformation. <P>The SetInput() method allows you to set another transform, instead of the identity transform, to be the base transformation. There is a pipeline mechanism to ensure that when the input is modified, the current transformation will be updated accordingly. This pipeline mechanism is also supported by the Concatenate() method. <P>Most of the methods for manipulating this transformation, e.g. Translate, Rotate, and Concatenate, can operate in either PreMultiply (the default) or PostMultiply mode. In PreMultiply mode, the translation, concatenation, etc. will occur before any transformations which are represented by the current matrix. In PostMultiply mode, the additional transformation will occur after any transformations represented by the current matrix. <P>This class performs all of its operations in a right handed coordinate system with right handed rotations. Some other graphics libraries use left handed coordinate systems and rotations.

vtkPerspectiveTransform vtkGeneralTransform vtkMatrix4x4 vtkTransformCollection vtkTransformFilter vtkTransformPolyDataFilter vtkImageReslice


Constructor & Destructor Documentation

static Kitware.VTK.vtkTransform.vtkTransform ( ) [static, private]

Automatically generated type registration mechanics.

Kitware.VTK.vtkTransform.vtkTransform ( IntPtr  rawCppThis,
bool  callDisposalMethod,
bool  strong 
)

Automatically generated constructor - called from generated code. DO NOT call directly.

Undocumented Block.


Member Function Documentation

override int Kitware.VTK.vtkTransform.CircuitCheck ( vtkAbstractTransform  transform) [virtual]

Check for self-reference. Will return true if concatenating with the specified transform, setting it to be our inverse, or setting it to be our input will create a circular reference. CircuitCheck is automatically called by SetInput(), SetInverse(), and Concatenate(vtkXTransform *). Avoid using this function, it is experimental.

Reimplemented from Kitware.VTK.vtkAbstractTransform.

Concatenates the matrix with the current transformation according to PreMultiply or PostMultiply semantics.

void Kitware.VTK.vtkTransform.Concatenate ( IntPtr  elements)

Concatenates the matrix with the current transformation according to PreMultiply or PostMultiply semantics.

Concatenate the specified transform with the current transformation according to PreMultiply or PostMultiply semantics. The concatenation is pipelined, meaning that if any of the transformations are changed, even after Concatenate() is called, those changes will be reflected when you call TransformPoint().

override void Kitware.VTK.vtkTransform.Dispose ( bool  disposing) [protected]

Automatically generated protected Dispose method - called from public Dispose or the C# destructor. DO NOT call directly.

Reimplemented from Kitware.VTK.vtkLinearTransform.

Description Get one of the concatenated transformations as a vtkAbstractTransform. These transformations are applied, in series, every time the transformation of a coordinate occurs. This method is provided to make it possible to decompose a transformation into its constituents, for example to save a transformation to a file.

Here is the call graph for this function:

Set the input for this transformation. This will be used as the base transformation if it is set. This method allows you to build a transform pipeline: if the input is modified, then this transformation will automatically update accordingly. Note that the InverseFlag, controlled via Inverse(), determines whether this transformation will use the Input or the inverse of the Input.

Here is the call graph for this function:

Return a matrix which is the inverse of the current transformation matrix.

Return an inverse transform which will always update itself to match this transform.

Reimplemented from Kitware.VTK.vtkAbstractTransform.

Here is the call graph for this function:

Get the inverse flag of the transformation. This controls whether it is the Input or the inverse of the Input that is used as the base transformation. The InverseFlag is flipped every time Inverse() is called. The InverseFlag is off when a transform is first created.

override uint Kitware.VTK.vtkTransform.GetMTime ( ) [virtual]

Override GetMTime to account for input and concatenation.

Reimplemented from Kitware.VTK.vtkAbstractTransform.

Get the total number of transformations that are linked into this one via Concatenate() operations or via SetInput().

void Kitware.VTK.vtkTransform.GetOrientation ( IntPtr  orient)

Get the x, y, z orientation angles from the transformation matrix as an array of three floating point values.

Get the x, y, z orientation angles from the transformation matrix as an array of three floating point values.

static void Kitware.VTK.vtkTransform.GetOrientation ( IntPtr  orient,
vtkMatrix4x4  matrix 
) [static]

Convenience function to get the x, y, z orientation angles from a transformation matrix as an array of three floating point values.

Return the wxyz angle+axis representing the current orientation. The angle is in degrees and the axis is a unit vector.

Return the wxyz angle+axis representing the current orientation. The angle is in degrees and the axis is a unit vector.

Return the position from the current transformation matrix as an array of three floating point numbers. This is simply returning the translation component of the 4x4 matrix.

Return the position from the current transformation matrix as an array of three floating point numbers. This is simply returning the translation component of the 4x4 matrix.

void Kitware.VTK.vtkTransform.GetScale ( IntPtr  scale)

Return the scale factors of the current transformation matrix as an array of three float numbers. These scale factors are not necessarily about the x, y, and z axes unless unless the scale transformation was applied before any rotations.

Return the scale factors of the current transformation matrix as an array of three float numbers. These scale factors are not necessarily about the x, y, and z axes unless unless the scale transformation was applied before any rotations.

Return a matrix which is the transpose of the current transformation matrix. This is equivalent to the inverse if and only if the transformation is a pure rotation with no translation or scale.

Set the transformation to the identity transformation. If the transform has an Input, then the transformation will be reset so that it is the same as the Input.

override void Kitware.VTK.vtkTransform.Inverse ( ) [virtual]

Invert the transformation. This will also set a flag so that the transformation will use the inverse of its Input, if an Input has been set.

Reimplemented from Kitware.VTK.vtkAbstractTransform.

override int Kitware.VTK.vtkTransform.IsA ( string  type) [virtual]

Undocumented Block.

Reimplemented from Kitware.VTK.vtkLinearTransform.

static new int Kitware.VTK.vtkTransform.IsTypeOf ( string  type) [static]

Undocumented Block.

Reimplemented from Kitware.VTK.vtkLinearTransform.

Make a new transform of the same type.

Reimplemented from Kitware.VTK.vtkAbstractTransform.

void Kitware.VTK.vtkTransform.MultiplyPoint ( IntPtr  arg0,
IntPtr  arg1 
)

Use this method only if you wish to compute the transformation in homogeneous (x,y,z,w) coordinates, otherwise use TransformPoint(). This method calls this->GetMatrix()->MultiplyPoint().

static new vtkTransform Kitware.VTK.vtkTransform.New ( ) [static]

Undocumented Block.

Reimplemented from Kitware.VTK.vtkObject.

Undocumented Block.

Reimplemented from Kitware.VTK.vtkLinearTransform.

Deletes the transformation on the top of the stack and sets the top to the next transformation on the stack.

Sets the internal state of the transform to PostMultiply. All subsequent operations will occur after those already represented in the current transformation. In homogeneous matrix notation, M = A*M where M is the current transformation matrix and A is the applied matrix. The default is PreMultiply.

Sets the internal state of the transform to PreMultiply. All subsequent operations will occur before those already represented in the current transformation. In homogeneous matrix notation, M = M*A where M is the current transformation matrix and A is the applied matrix. The default is PreMultiply.

Pushes the current transformation onto the transformation stack.

void Kitware.VTK.vtkTransform.RotateWXYZ ( double  angle,
double  x,
double  y,
double  z 
)

Create a rotation matrix and concatenate it with the current transformation according to PreMultiply or PostMultiply semantics. The angle is in degrees, and (x,y,z) specifies the axis that the rotation will be performed around.

void Kitware.VTK.vtkTransform.RotateWXYZ ( double  angle,
IntPtr  axis 
)

Create a rotation matrix and concatenate it with the current transformation according to PreMultiply or PostMultiply semantics. The angle is in degrees, and (x,y,z) specifies the axis that the rotation will be performed around.

void Kitware.VTK.vtkTransform.RotateX ( double  angle)

Create a rotation matrix about the X, Y, or Z axis and concatenate it with the current transformation according to PreMultiply or PostMultiply semantics. The angle is expressed in degrees.

void Kitware.VTK.vtkTransform.RotateY ( double  angle)

Create a rotation matrix about the X, Y, or Z axis and concatenate it with the current transformation according to PreMultiply or PostMultiply semantics. The angle is expressed in degrees.

void Kitware.VTK.vtkTransform.RotateZ ( double  angle)

Create a rotation matrix about the X, Y, or Z axis and concatenate it with the current transformation according to PreMultiply or PostMultiply semantics. The angle is expressed in degrees.

Undocumented Block.

Reimplemented from Kitware.VTK.vtkLinearTransform.

Here is the call graph for this function:

void Kitware.VTK.vtkTransform.Scale ( double  x,
double  y,
double  z 
)

Create a scale matrix (i.e. set the diagonal elements to x, y, z) and concatenate it with the current transformation according to PreMultiply or PostMultiply semantics.

void Kitware.VTK.vtkTransform.Scale ( IntPtr  s)

Create a scale matrix (i.e. set the diagonal elements to x, y, z) and concatenate it with the current transformation according to PreMultiply or PostMultiply semantics.

Set the input for this transformation. This will be used as the base transformation if it is set. This method allows you to build a transform pipeline: if the input is modified, then this transformation will automatically update accordingly. Note that the InverseFlag, controlled via Inverse(), determines whether this transformation will use the Input or the inverse of the Input.

Set the current matrix directly. This actually calls Identity(), followed by Concatenate(matrix).

void Kitware.VTK.vtkTransform.SetMatrix ( IntPtr  elements)

Set the current matrix directly. This actually calls Identity(), followed by Concatenate(matrix).

void Kitware.VTK.vtkTransform.Translate ( double  x,
double  y,
double  z 
)

Create a translation matrix and concatenate it with the current transformation according to PreMultiply or PostMultiply semantics.

Create a translation matrix and concatenate it with the current transformation according to PreMultiply or PostMultiply semantics.

static internal int Kitware.VTK.vtkTransform.vtkTransform_CircuitCheck_01 ( HandleRef  pThis,
HandleRef  transform 
) [private]
static internal void Kitware.VTK.vtkTransform.vtkTransform_Concatenate_02 ( HandleRef  pThis,
HandleRef  matrix 
) [private]
static internal void Kitware.VTK.vtkTransform.vtkTransform_Concatenate_03 ( HandleRef  pThis,
IntPtr  elements 
) [private]
static internal void Kitware.VTK.vtkTransform.vtkTransform_Concatenate_04 ( HandleRef  pThis,
HandleRef  transform 
) [private]
static internal IntPtr Kitware.VTK.vtkTransform.vtkTransform_GetConcatenatedTransform_05 ( HandleRef  pThis,
int  i,
ref uint  mteStatus,
ref uint  mteIndex,
ref uint  rawRefCount 
) [private]
static internal IntPtr Kitware.VTK.vtkTransform.vtkTransform_GetInput_06 ( HandleRef  pThis,
ref uint  mteStatus,
ref uint  mteIndex,
ref uint  rawRefCount 
) [private]
static internal void Kitware.VTK.vtkTransform.vtkTransform_GetInverse_07 ( HandleRef  pThis,
HandleRef  inverse 
) [private]
static internal IntPtr Kitware.VTK.vtkTransform.vtkTransform_GetInverse_08 ( HandleRef  pThis,
ref uint  mteStatus,
ref uint  mteIndex,
ref uint  rawRefCount 
) [private]
static internal int Kitware.VTK.vtkTransform.vtkTransform_GetInverseFlag_09 ( HandleRef  pThis) [private]
static internal uint Kitware.VTK.vtkTransform.vtkTransform_GetMTime_10 ( HandleRef  pThis) [private]
static internal int Kitware.VTK.vtkTransform.vtkTransform_GetNumberOfConcatenatedTransforms_11 ( HandleRef  pThis) [private]
static internal void Kitware.VTK.vtkTransform.vtkTransform_GetOrientation_12 ( HandleRef  pThis,
IntPtr  orient 
) [private]
static internal IntPtr Kitware.VTK.vtkTransform.vtkTransform_GetOrientation_13 ( HandleRef  pThis) [private]
static internal void Kitware.VTK.vtkTransform.vtkTransform_GetOrientation_14 ( IntPtr  orient,
HandleRef  matrix 
) [private]
static internal void Kitware.VTK.vtkTransform.vtkTransform_GetOrientationWXYZ_15 ( HandleRef  pThis,
IntPtr  wxyz 
) [private]
static internal IntPtr Kitware.VTK.vtkTransform.vtkTransform_GetOrientationWXYZ_16 ( HandleRef  pThis) [private]
static internal void Kitware.VTK.vtkTransform.vtkTransform_GetPosition_17 ( HandleRef  pThis,
IntPtr  pos 
) [private]
static internal IntPtr Kitware.VTK.vtkTransform.vtkTransform_GetPosition_18 ( HandleRef  pThis) [private]
static internal void Kitware.VTK.vtkTransform.vtkTransform_GetScale_19 ( HandleRef  pThis,
IntPtr  scale 
) [private]
static internal IntPtr Kitware.VTK.vtkTransform.vtkTransform_GetScale_20 ( HandleRef  pThis) [private]
static internal void Kitware.VTK.vtkTransform.vtkTransform_GetTranspose_21 ( HandleRef  pThis,
HandleRef  transpose 
) [private]
static internal void Kitware.VTK.vtkTransform.vtkTransform_Identity_22 ( HandleRef  pThis) [private]
static internal void Kitware.VTK.vtkTransform.vtkTransform_Inverse_23 ( HandleRef  pThis) [private]
static internal int Kitware.VTK.vtkTransform.vtkTransform_IsA_24 ( HandleRef  pThis,
string  type 
) [private]
static internal int Kitware.VTK.vtkTransform.vtkTransform_IsTypeOf_25 ( string  type) [private]
static internal IntPtr Kitware.VTK.vtkTransform.vtkTransform_MakeTransform_26 ( HandleRef  pThis,
ref uint  mteStatus,
ref uint  mteIndex,
ref uint  rawRefCount 
) [private]
static internal void Kitware.VTK.vtkTransform.vtkTransform_MultiplyPoint_27 ( HandleRef  pThis,
IntPtr  arg0,
IntPtr  arg1 
) [private]
static internal IntPtr Kitware.VTK.vtkTransform.vtkTransform_New ( ref uint  mteStatus,
ref uint  mteIndex,
ref uint  rawRefCount 
) [private]
static internal IntPtr Kitware.VTK.vtkTransform.vtkTransform_NewInstance_29 ( HandleRef  pThis,
ref uint  mteStatus,
ref uint  mteIndex,
ref uint  rawRefCount 
) [private]
static internal void Kitware.VTK.vtkTransform.vtkTransform_Pop_30 ( HandleRef  pThis) [private]
static internal void Kitware.VTK.vtkTransform.vtkTransform_PostMultiply_31 ( HandleRef  pThis) [private]
static internal void Kitware.VTK.vtkTransform.vtkTransform_PreMultiply_32 ( HandleRef  pThis) [private]
static internal void Kitware.VTK.vtkTransform.vtkTransform_Push_33 ( HandleRef  pThis) [private]
static internal void Kitware.VTK.vtkTransform.vtkTransform_RotateWXYZ_34 ( HandleRef  pThis,
double  angle,
double  x,
double  y,
double  z 
) [private]
static internal void Kitware.VTK.vtkTransform.vtkTransform_RotateWXYZ_35 ( HandleRef  pThis,
double  angle,
IntPtr  axis 
) [private]
static internal void Kitware.VTK.vtkTransform.vtkTransform_RotateX_36 ( HandleRef  pThis,
double  angle 
) [private]
static internal void Kitware.VTK.vtkTransform.vtkTransform_RotateY_37 ( HandleRef  pThis,
double  angle 
) [private]
static internal void Kitware.VTK.vtkTransform.vtkTransform_RotateZ_38 ( HandleRef  pThis,
double  angle 
) [private]
static internal IntPtr Kitware.VTK.vtkTransform.vtkTransform_SafeDownCast_39 ( HandleRef  o,
ref uint  mteStatus,
ref uint  mteIndex,
ref uint  rawRefCount 
) [private]
static internal void Kitware.VTK.vtkTransform.vtkTransform_Scale_40 ( HandleRef  pThis,
double  x,
double  y,
double  z 
) [private]
static internal void Kitware.VTK.vtkTransform.vtkTransform_Scale_41 ( HandleRef  pThis,
IntPtr  s 
) [private]
static internal void Kitware.VTK.vtkTransform.vtkTransform_SetInput_42 ( HandleRef  pThis,
HandleRef  input 
) [private]
static internal void Kitware.VTK.vtkTransform.vtkTransform_SetMatrix_43 ( HandleRef  pThis,
HandleRef  matrix 
) [private]
static internal void Kitware.VTK.vtkTransform.vtkTransform_SetMatrix_44 ( HandleRef  pThis,
IntPtr  elements 
) [private]
static internal void Kitware.VTK.vtkTransform.vtkTransform_Translate_45 ( HandleRef  pThis,
double  x,
double  y,
double  z 
) [private]
static internal void Kitware.VTK.vtkTransform.vtkTransform_Translate_46 ( HandleRef  pThis,
IntPtr  x 
) [private]

Member Data Documentation

new readonly string Kitware.VTK.vtkTransform.MRClassNameKey = "12vtkTransform" [static]

Automatically generated type registration mechanics.

Reimplemented from Kitware.VTK.vtkLinearTransform.

new const string Kitware.VTK.vtkTransform.MRFullTypeName = "Kitware.VTK.vtkTransform"

Automatically generated type registration mechanics.

Reimplemented from Kitware.VTK.vtkLinearTransform.


The documentation for this class was generated from the following file: