ActiViz .NET  5.8.0
Public Types | Public Member Functions | Static Public Member Functions | Public Attributes | Static Public Attributes | Protected Member Functions | Private Member Functions | Static Private Member Functions
Kitware.VTK.vtkInitialValueProblemSolver Class Reference

vtkInitialValueProblemSolver - Integrate a set of ordinary differential equations (initial value problem) in time. More...

Inheritance diagram for Kitware.VTK.vtkInitialValueProblemSolver:
[legend]
Collaboration diagram for Kitware.VTK.vtkInitialValueProblemSolver:
[legend]

List of all members.

Public Types

enum  ErrorCodes { NOT_INITIALIZED = 2, OUT_OF_DOMAIN = 1, UNEXPECTED_VALUE = 3 }
 Returns 1 if the solver uses adaptive stepsize control, 0 otherwise. More...

Public Member Functions

 vtkInitialValueProblemSolver (IntPtr rawCppThis, bool callDisposalMethod, bool strong)
 Automatically generated constructor - called from generated code. DO NOT call directly.
virtual int ComputeNextStep (IntPtr xprev, IntPtr xnext, double t, ref double delT, double maxError, ref double error)
 Given initial values, xprev , initial time, t and a requested time interval, delT calculate values of x at t+delTActual (xnext). For certain concrete sub-classes delTActual != delT. This occurs when the solver supports adaptive stepsize control. If this is the case, the solver tries to change to stepsize such that the (estimated) error of the integration is less than maxError. The solver will not set the stepsize smaller than minStep or larger than maxStep. Also note that delT is an in/out argument. Adaptive solvers will modify delT to reflect the best (estimated) size for the next integration step. An estimated value for the error is returned (by reference) in error. Note that only some concrete sub-classes support this. Otherwise, the error is set to 0. This method returns an error code representing the nature of the failure: OutOfDomain = 1, NotInitialized = 2, UnexpectedValue = 3.
virtual int ComputeNextStep (IntPtr xprev, IntPtr dxprev, IntPtr xnext, double t, ref double delT, double maxError, ref double error)
 Given initial values, xprev , initial time, t and a requested time interval, delT calculate values of x at t+delTActual (xnext). For certain concrete sub-classes delTActual != delT. This occurs when the solver supports adaptive stepsize control. If this is the case, the solver tries to change to stepsize such that the (estimated) error of the integration is less than maxError. The solver will not set the stepsize smaller than minStep or larger than maxStep. Also note that delT is an in/out argument. Adaptive solvers will modify delT to reflect the best (estimated) size for the next integration step. An estimated value for the error is returned (by reference) in error. Note that only some concrete sub-classes support this. Otherwise, the error is set to 0. This method returns an error code representing the nature of the failure: OutOfDomain = 1, NotInitialized = 2, UnexpectedValue = 3.
virtual int ComputeNextStep (IntPtr xprev, IntPtr xnext, double t, ref double delT, ref double delTActual, double minStep, double maxStep, double maxError, ref double error)
 Given initial values, xprev , initial time, t and a requested time interval, delT calculate values of x at t+delTActual (xnext). For certain concrete sub-classes delTActual != delT. This occurs when the solver supports adaptive stepsize control. If this is the case, the solver tries to change to stepsize such that the (estimated) error of the integration is less than maxError. The solver will not set the stepsize smaller than minStep or larger than maxStep. Also note that delT is an in/out argument. Adaptive solvers will modify delT to reflect the best (estimated) size for the next integration step. An estimated value for the error is returned (by reference) in error. Note that only some concrete sub-classes support this. Otherwise, the error is set to 0. This method returns an error code representing the nature of the failure: OutOfDomain = 1, NotInitialized = 2, UnexpectedValue = 3.
virtual int ComputeNextStep (IntPtr xprev, IntPtr dxprev, IntPtr xnext, double t, ref double delT, ref double delTActual, double minStep, double maxStep, double maxError, ref double error)
 Given initial values, xprev , initial time, t and a requested time interval, delT calculate values of x at t+delTActual (xnext). For certain concrete sub-classes delTActual != delT. This occurs when the solver supports adaptive stepsize control. If this is the case, the solver tries to change to stepsize such that the (estimated) error of the integration is less than maxError. The solver will not set the stepsize smaller than minStep or larger than maxStep. Also note that delT is an in/out argument. Adaptive solvers will modify delT to reflect the best (estimated) size for the next integration step. An estimated value for the error is returned (by reference) in error. Note that only some concrete sub-classes support this. Otherwise, the error is set to 0. This method returns an error code representing the nature of the failure: OutOfDomain = 1, NotInitialized = 2, UnexpectedValue = 3.
virtual vtkFunctionSet GetFunctionSet ()
 Set / get the dataset used for the implicit function evaluation.
override int IsA (string type)
 Undocumented Block.
virtual int IsAdaptive ()
 Returns 1 if the solver uses adaptive stepsize control, 0 otherwise.
new vtkInitialValueProblemSolver NewInstance ()
 Undocumented Block.
virtual void SetFunctionSet (vtkFunctionSet functionset)
 Set / get the dataset used for the implicit function evaluation.

Static Public Member Functions

static new int IsTypeOf (string type)
 Undocumented Block.
static new
vtkInitialValueProblemSolver 
SafeDownCast (vtkObjectBase o)
 Undocumented Block.

Public Attributes

new const string MRFullTypeName = "Kitware.VTK.vtkInitialValueProblemSolver"
 Automatically generated type registration mechanics.

Static Public Attributes

static new readonly string MRClassNameKey = "28vtkInitialValueProblemSolver"
 Automatically generated type registration mechanics.

Protected Member Functions

override void Dispose (bool disposing)
 Automatically generated protected Dispose method - called from public Dispose or the C# destructor. DO NOT call directly.

Private Member Functions

static internal int vtkInitialValueProblemSolver_ComputeNextStep_01 (HandleRef pThis, IntPtr xprev, IntPtr xnext, double t, ref double delT, double maxError, ref double error)
static internal int vtkInitialValueProblemSolver_ComputeNextStep_02 (HandleRef pThis, IntPtr xprev, IntPtr dxprev, IntPtr xnext, double t, ref double delT, double maxError, ref double error)
static internal int vtkInitialValueProblemSolver_ComputeNextStep_03 (HandleRef pThis, IntPtr xprev, IntPtr xnext, double t, ref double delT, ref double delTActual, double minStep, double maxStep, double maxError, ref double error)
static internal int vtkInitialValueProblemSolver_ComputeNextStep_04 (HandleRef pThis, IntPtr xprev, IntPtr dxprev, IntPtr xnext, double t, ref double delT, ref double delTActual, double minStep, double maxStep, double maxError, ref double error)
static internal IntPtr vtkInitialValueProblemSolver_GetFunctionSet_05 (HandleRef pThis, ref uint mteStatus, ref uint mteIndex, ref uint rawRefCount)
static internal int vtkInitialValueProblemSolver_IsA_06 (HandleRef pThis, string type)
static internal int vtkInitialValueProblemSolver_IsAdaptive_07 (HandleRef pThis)
static internal int vtkInitialValueProblemSolver_IsTypeOf_08 (string type)
static internal IntPtr vtkInitialValueProblemSolver_NewInstance_09 (HandleRef pThis, ref uint mteStatus, ref uint mteIndex, ref uint rawRefCount)
static internal IntPtr vtkInitialValueProblemSolver_SafeDownCast_10 (HandleRef o, ref uint mteStatus, ref uint mteIndex, ref uint rawRefCount)
static internal void vtkInitialValueProblemSolver_SetFunctionSet_11 (HandleRef pThis, HandleRef functionset)

Static Private Member Functions

static vtkInitialValueProblemSolver ()
 Automatically generated type registration mechanics.

Detailed Description

vtkInitialValueProblemSolver - Integrate a set of ordinary differential equations (initial value problem) in time.


Member Enumeration Documentation

Returns 1 if the solver uses adaptive stepsize control, 0 otherwise.

Enumerator:
NOT_INITIALIZED 

enum member

OUT_OF_DOMAIN 

enum member

UNEXPECTED_VALUE 

enum member


Constructor & Destructor Documentation

Automatically generated type registration mechanics.

Kitware.VTK.vtkInitialValueProblemSolver.vtkInitialValueProblemSolver ( IntPtr  rawCppThis,
bool  callDisposalMethod,
bool  strong 
)

Automatically generated constructor - called from generated code. DO NOT call directly.


Member Function Documentation

virtual int Kitware.VTK.vtkInitialValueProblemSolver.ComputeNextStep ( IntPtr  xprev,
IntPtr  xnext,
double  t,
ref double  delT,
double  maxError,
ref double  error 
) [virtual]

Given initial values, xprev , initial time, t and a requested time interval, delT calculate values of x at t+delTActual (xnext). For certain concrete sub-classes delTActual != delT. This occurs when the solver supports adaptive stepsize control. If this is the case, the solver tries to change to stepsize such that the (estimated) error of the integration is less than maxError. The solver will not set the stepsize smaller than minStep or larger than maxStep. Also note that delT is an in/out argument. Adaptive solvers will modify delT to reflect the best (estimated) size for the next integration step. An estimated value for the error is returned (by reference) in error. Note that only some concrete sub-classes support this. Otherwise, the error is set to 0. This method returns an error code representing the nature of the failure: OutOfDomain = 1, NotInitialized = 2, UnexpectedValue = 3.

Reimplemented in Kitware.VTK.vtkRungeKutta45, Kitware.VTK.vtkRungeKutta2, and Kitware.VTK.vtkRungeKutta4.

virtual int Kitware.VTK.vtkInitialValueProblemSolver.ComputeNextStep ( IntPtr  xprev,
IntPtr  dxprev,
IntPtr  xnext,
double  t,
ref double  delT,
double  maxError,
ref double  error 
) [virtual]

Given initial values, xprev , initial time, t and a requested time interval, delT calculate values of x at t+delTActual (xnext). For certain concrete sub-classes delTActual != delT. This occurs when the solver supports adaptive stepsize control. If this is the case, the solver tries to change to stepsize such that the (estimated) error of the integration is less than maxError. The solver will not set the stepsize smaller than minStep or larger than maxStep. Also note that delT is an in/out argument. Adaptive solvers will modify delT to reflect the best (estimated) size for the next integration step. An estimated value for the error is returned (by reference) in error. Note that only some concrete sub-classes support this. Otherwise, the error is set to 0. This method returns an error code representing the nature of the failure: OutOfDomain = 1, NotInitialized = 2, UnexpectedValue = 3.

Reimplemented in Kitware.VTK.vtkRungeKutta45, Kitware.VTK.vtkRungeKutta2, and Kitware.VTK.vtkRungeKutta4.

virtual int Kitware.VTK.vtkInitialValueProblemSolver.ComputeNextStep ( IntPtr  xprev,
IntPtr  xnext,
double  t,
ref double  delT,
ref double  delTActual,
double  minStep,
double  maxStep,
double  maxError,
ref double  error 
) [virtual]

Given initial values, xprev , initial time, t and a requested time interval, delT calculate values of x at t+delTActual (xnext). For certain concrete sub-classes delTActual != delT. This occurs when the solver supports adaptive stepsize control. If this is the case, the solver tries to change to stepsize such that the (estimated) error of the integration is less than maxError. The solver will not set the stepsize smaller than minStep or larger than maxStep. Also note that delT is an in/out argument. Adaptive solvers will modify delT to reflect the best (estimated) size for the next integration step. An estimated value for the error is returned (by reference) in error. Note that only some concrete sub-classes support this. Otherwise, the error is set to 0. This method returns an error code representing the nature of the failure: OutOfDomain = 1, NotInitialized = 2, UnexpectedValue = 3.

Reimplemented in Kitware.VTK.vtkRungeKutta45, Kitware.VTK.vtkRungeKutta2, and Kitware.VTK.vtkRungeKutta4.

virtual int Kitware.VTK.vtkInitialValueProblemSolver.ComputeNextStep ( IntPtr  xprev,
IntPtr  dxprev,
IntPtr  xnext,
double  t,
ref double  delT,
ref double  delTActual,
double  minStep,
double  maxStep,
double  maxError,
ref double  error 
) [virtual]

Given initial values, xprev , initial time, t and a requested time interval, delT calculate values of x at t+delTActual (xnext). For certain concrete sub-classes delTActual != delT. This occurs when the solver supports adaptive stepsize control. If this is the case, the solver tries to change to stepsize such that the (estimated) error of the integration is less than maxError. The solver will not set the stepsize smaller than minStep or larger than maxStep. Also note that delT is an in/out argument. Adaptive solvers will modify delT to reflect the best (estimated) size for the next integration step. An estimated value for the error is returned (by reference) in error. Note that only some concrete sub-classes support this. Otherwise, the error is set to 0. This method returns an error code representing the nature of the failure: OutOfDomain = 1, NotInitialized = 2, UnexpectedValue = 3.

Reimplemented in Kitware.VTK.vtkRungeKutta45, Kitware.VTK.vtkRungeKutta2, and Kitware.VTK.vtkRungeKutta4.

override void Kitware.VTK.vtkInitialValueProblemSolver.Dispose ( bool  disposing) [protected]

Automatically generated protected Dispose method - called from public Dispose or the C# destructor. DO NOT call directly.

Reimplemented from Kitware.VTK.vtkObject.

Reimplemented in Kitware.VTK.vtkRungeKutta2, Kitware.VTK.vtkRungeKutta4, and Kitware.VTK.vtkRungeKutta45.

Set / get the dataset used for the implicit function evaluation.

Here is the call graph for this function:

override int Kitware.VTK.vtkInitialValueProblemSolver.IsA ( string  type) [virtual]

Undocumented Block.

Reimplemented from Kitware.VTK.vtkObject.

Reimplemented in Kitware.VTK.vtkRungeKutta45, Kitware.VTK.vtkRungeKutta2, and Kitware.VTK.vtkRungeKutta4.

Returns 1 if the solver uses adaptive stepsize control, 0 otherwise.

static new int Kitware.VTK.vtkInitialValueProblemSolver.IsTypeOf ( string  type) [static]

Undocumented Block.

Reimplemented from Kitware.VTK.vtkObject.

Reimplemented in Kitware.VTK.vtkRungeKutta45, Kitware.VTK.vtkRungeKutta2, and Kitware.VTK.vtkRungeKutta4.

Undocumented Block.

Reimplemented from Kitware.VTK.vtkObject.

Reimplemented in Kitware.VTK.vtkRungeKutta45, Kitware.VTK.vtkRungeKutta2, and Kitware.VTK.vtkRungeKutta4.

Undocumented Block.

Reimplemented from Kitware.VTK.vtkObject.

Reimplemented in Kitware.VTK.vtkRungeKutta45, Kitware.VTK.vtkRungeKutta2, and Kitware.VTK.vtkRungeKutta4.

Here is the call graph for this function:

Set / get the dataset used for the implicit function evaluation.

static internal int Kitware.VTK.vtkInitialValueProblemSolver.vtkInitialValueProblemSolver_ComputeNextStep_01 ( HandleRef  pThis,
IntPtr  xprev,
IntPtr  xnext,
double  t,
ref double  delT,
double  maxError,
ref double  error 
) [private]
static internal int Kitware.VTK.vtkInitialValueProblemSolver.vtkInitialValueProblemSolver_ComputeNextStep_02 ( HandleRef  pThis,
IntPtr  xprev,
IntPtr  dxprev,
IntPtr  xnext,
double  t,
ref double  delT,
double  maxError,
ref double  error 
) [private]
static internal int Kitware.VTK.vtkInitialValueProblemSolver.vtkInitialValueProblemSolver_ComputeNextStep_03 ( HandleRef  pThis,
IntPtr  xprev,
IntPtr  xnext,
double  t,
ref double  delT,
ref double  delTActual,
double  minStep,
double  maxStep,
double  maxError,
ref double  error 
) [private]
static internal int Kitware.VTK.vtkInitialValueProblemSolver.vtkInitialValueProblemSolver_ComputeNextStep_04 ( HandleRef  pThis,
IntPtr  xprev,
IntPtr  dxprev,
IntPtr  xnext,
double  t,
ref double  delT,
ref double  delTActual,
double  minStep,
double  maxStep,
double  maxError,
ref double  error 
) [private]
static internal IntPtr Kitware.VTK.vtkInitialValueProblemSolver.vtkInitialValueProblemSolver_GetFunctionSet_05 ( HandleRef  pThis,
ref uint  mteStatus,
ref uint  mteIndex,
ref uint  rawRefCount 
) [private]
static internal int Kitware.VTK.vtkInitialValueProblemSolver.vtkInitialValueProblemSolver_IsA_06 ( HandleRef  pThis,
string  type 
) [private]
static internal IntPtr Kitware.VTK.vtkInitialValueProblemSolver.vtkInitialValueProblemSolver_NewInstance_09 ( HandleRef  pThis,
ref uint  mteStatus,
ref uint  mteIndex,
ref uint  rawRefCount 
) [private]
static internal IntPtr Kitware.VTK.vtkInitialValueProblemSolver.vtkInitialValueProblemSolver_SafeDownCast_10 ( HandleRef  o,
ref uint  mteStatus,
ref uint  mteIndex,
ref uint  rawRefCount 
) [private]
static internal void Kitware.VTK.vtkInitialValueProblemSolver.vtkInitialValueProblemSolver_SetFunctionSet_11 ( HandleRef  pThis,
HandleRef  functionset 
) [private]

Member Data Documentation

new readonly string Kitware.VTK.vtkInitialValueProblemSolver.MRClassNameKey = "28vtkInitialValueProblemSolver" [static]

Automatically generated type registration mechanics.

Reimplemented from Kitware.VTK.vtkObject.

Reimplemented in Kitware.VTK.vtkRungeKutta2, Kitware.VTK.vtkRungeKutta4, and Kitware.VTK.vtkRungeKutta45.

new const string Kitware.VTK.vtkInitialValueProblemSolver.MRFullTypeName = "Kitware.VTK.vtkInitialValueProblemSolver"

Automatically generated type registration mechanics.

Reimplemented from Kitware.VTK.vtkObject.

Reimplemented in Kitware.VTK.vtkRungeKutta2, Kitware.VTK.vtkRungeKutta4, and Kitware.VTK.vtkRungeKutta45.


The documentation for this class was generated from the following file: