ActiViz .NET  5.8.0
Public Member Functions | Static Public Member Functions | Public Attributes | Static Public Attributes | Protected Member Functions | Private Member Functions | Static Private Member Functions
Kitware.VTK.vtkPerspectiveTransform Class Reference

vtkPerspectiveTransform - describes a 4x4 matrix transformation More...

Inheritance diagram for Kitware.VTK.vtkPerspectiveTransform:
[legend]
Collaboration diagram for Kitware.VTK.vtkPerspectiveTransform:
[legend]

List of all members.

Public Member Functions

 vtkPerspectiveTransform (IntPtr rawCppThis, bool callDisposalMethod, bool strong)
 Automatically generated constructor - called from generated code. DO NOT call directly.
 vtkPerspectiveTransform ()
 Undocumented Block.
void AdjustViewport (double oldXMin, double oldXMax, double oldYMin, double oldYMax, double newXMin, double newXMax, double newYMin, double newYMax)
 Perform an adjustment to the viewport coordinates. By default Ortho, Frustum, and Perspective provide a window of ([-1,+1],[-1,+1]). In PreMultiply mode, you call this method before calling Ortho, Frustum, or Perspective. In PostMultiply mode you can call it after. Note that if you must apply both AdjustZBuffer and AdjustViewport, it makes no difference which order you apply them in.
void AdjustZBuffer (double oldNearZ, double oldFarZ, double newNearZ, double newFarZ)
 Perform an adjustment to the Z-Buffer range that the near and far clipping planes map to. By default Ortho, Frustum, and Perspective map the near clipping plane to -1 and the far clipping plane to +1. In PreMultiply mode, you call this method before calling Ortho, Frustum, or Perspective. In PostMultiply mode you can call it after.
override int CircuitCheck (vtkAbstractTransform transform)
 Check for self-reference. Will return true if concatenating with the specified transform, setting it to be our inverse, or setting it to be our input will create a circular reference. CircuitCheck is automatically called by SetInput(), SetInverse(), and Concatenate(vtkXTransform *). Avoid using this function, it is experimental.
void Concatenate (vtkMatrix4x4 matrix)
 Concatenates the matrix with the current transformation according to PreMultiply or PostMultiply semantics.
void Concatenate (IntPtr elements)
 Concatenates the matrix with the current transformation according to PreMultiply or PostMultiply semantics.
void Concatenate (vtkHomogeneousTransform transform)
 Concatenate the specified transform with the current transformation according to PreMultiply or PostMultiply semantics. The concatenation is pipelined, meaning that if any of the transformations are changed, even after Concatenate() is called, those changes will be reflected when you call TransformPoint().
void Frustum (double xmin, double xmax, double ymin, double ymax, double znear, double zfar)
 Create an perspective projection matrix and concatenate it by the current transformation. The matrix maps a frustum with a back plane at -zfar and a front plane at -znear with extent [xmin,xmax],[ymin,ymax] to [-1,+1], [-1,+1], [+1,-1].
vtkHomogeneousTransform GetConcatenatedTransform (int i)
 Description Get one of the concatenated transformations as a vtkAbstractTransform. These transformations are applied, in series, every time the transformation of a coordinate occurs. This method is provided to make it possible to decompose a transformation into its constituents, for example to save a transformation to a file.
vtkHomogeneousTransform GetInput ()
 Set the input for this transformation. This will be used as the base transformation if it is set. This method allows you to build a transform pipeline: if the input is modified, then this transformation will automatically update accordingly. Note that the InverseFlag, controlled via Inverse(), determines whether this transformation will use the Input or the inverse of the Input.
int GetInverseFlag ()
 Get the inverse flag of the transformation. This controls whether it is the Input or the inverse of the Input that is used as the base transformation. The InverseFlag is flipped every time Inverse() is called. The InverseFlag is off when a transform is first created.
override uint GetMTime ()
 Override GetMTime to account for input and concatenation.
int GetNumberOfConcatenatedTransforms ()
 Get the total number of transformations that are linked into this one via Concatenate() operations or via SetInput().
void Identity ()
 Set this transformation to the identity transformation. If the transform has an Input, then the transformation will be reset so that it is the same as the Input.
override void Inverse ()
 Invert the transformation. This will also set a flag so that the transformation will use the inverse of its Input, if an Input has been set.
override int IsA (string type)
 Undocumented Block.
override vtkAbstractTransform MakeTransform ()
 Make a new transform of the same type -- you are responsible for deleting the transform when you are done with it.
new vtkPerspectiveTransform NewInstance ()
 Undocumented Block.
void Ortho (double xmin, double xmax, double ymin, double ymax, double znear, double zfar)
 Create an orthogonal projection matrix and concatenate it by the current transformation. The matrix maps [xmin,xmax], [ymin,ymax], [-znear,-zfar] to [-1,+1], [-1,+1], [+1,-1].
void Perspective (double angle, double aspect, double znear, double zfar)
 Create a perspective projection matrix by specifying the view angle (this angle is in the y direction), the aspect ratio, and the near and far clipping range. The projection matrix is concatenated with the current transformation. This method works via Frustum.
void Pop ()
 Deletes the transformation on the top of the stack and sets the top to the next transformation on the stack.
void PostMultiply ()
 Sets the internal state of the transform to PostMultiply. All subsequent operations will occur after those already represented in the current transformation. In homogeneous matrix notation, M = A*M where M is the current transformation matrix and A is the applied matrix. The default is PreMultiply.
void PreMultiply ()
 Sets the internal state of the transform to PreMultiply. All subsequent operations will occur before those already represented in the current transformation. In homogeneous matrix notation, M = M*A where M is the current transformation matrix and A is the applied matrix. The default is PreMultiply.
void Push ()
 Pushes the current transformation onto the transformation stack.
void RotateWXYZ (double angle, double x, double y, double z)
 Create a rotation matrix and concatenate it with the current transformation according to PreMultiply or PostMultiply semantics. The angle is in degrees, and (x,y,z) specifies the axis that the rotation will be performed around.
void RotateWXYZ (double angle, IntPtr axis)
 Create a rotation matrix and concatenate it with the current transformation according to PreMultiply or PostMultiply semantics. The angle is in degrees, and (x,y,z) specifies the axis that the rotation will be performed around.
void RotateX (double angle)
 Create a rotation matrix about the X, Y, or Z axis and concatenate it with the current transformation according to PreMultiply or PostMultiply semantics. The angle is expressed in degrees.
void RotateY (double angle)
 Create a rotation matrix about the X, Y, or Z axis and concatenate it with the current transformation according to PreMultiply or PostMultiply semantics. The angle is expressed in degrees.
void RotateZ (double angle)
 Create a rotation matrix about the X, Y, or Z axis and concatenate it with the current transformation according to PreMultiply or PostMultiply semantics. The angle is expressed in degrees.
void Scale (double x, double y, double z)
 Create a scale matrix (i.e. set the diagonal elements to x, y, z) and concatenate it with the current transformation according to PreMultiply or PostMultiply semantics.
void Scale (IntPtr s)
 Create a scale matrix (i.e. set the diagonal elements to x, y, z) and concatenate it with the current transformation according to PreMultiply or PostMultiply semantics.
void SetInput (vtkHomogeneousTransform input)
 Set the input for this transformation. This will be used as the base transformation if it is set. This method allows you to build a transform pipeline: if the input is modified, then this transformation will automatically update accordingly. Note that the InverseFlag, controlled via Inverse(), determines whether this transformation will use the Input or the inverse of the Input.
void SetMatrix (vtkMatrix4x4 matrix)
 Set the current matrix directly. This actually calls Identity(), followed by Concatenate(matrix).
void SetMatrix (IntPtr elements)
 Set the current matrix directly. This actually calls Identity(), followed by Concatenate(matrix).
void SetupCamera (IntPtr position, IntPtr focalpoint, IntPtr viewup)
 Set a view transformation matrix for the camera (this matrix does not contain any perspective) and concatenate it with the current transformation.
void SetupCamera (double p0, double p1, double p2, double fp0, double fp1, double fp2, double vup0, double vup1, double vup2)
 Set a view transformation matrix for the camera (this matrix does not contain any perspective) and concatenate it with the current transformation.
void Shear (double dxdz, double dydz, double zplane)
 Create a shear transformation about a plane at distance z from the camera. The values dxdz (i.e. dx/dz) and dydz specify the amount of shear in the x and y directions. The 'zplane' specifies the distance from the camera to the plane at which the shear causes zero displacement. Generally you want this plane to be the focal plane. This transformation can be used in combination with Ortho to create an oblique projection. It can also be used in combination with Perspective to provide correct stereo views when the eye is at arbitrary but known positions relative to the center of a flat viewing screen.
void Stereo (double angle, double focaldistance)
 Create a stereo shear matrix and concatenate it with the current transformation. This can be applied in conjunction with either a perspective transformation (via Frustum or Projection) or an orthographic projection. You must specify the distance from the camera plane to the focal plane, and the angle between the distance vector and the eye. The angle should be negative for the left eye, and positive for the right. This method works via Oblique.
void Translate (double x, double y, double z)
 Create a translation matrix and concatenate it with the current transformation according to PreMultiply or PostMultiply semantics.
void Translate (IntPtr x)
 Create a translation matrix and concatenate it with the current transformation according to PreMultiply or PostMultiply semantics.

Static Public Member Functions

static new vtkPerspectiveTransform New ()
 Undocumented Block.
static new int IsTypeOf (string type)
 Undocumented Block.
static new vtkPerspectiveTransform SafeDownCast (vtkObjectBase o)
 Undocumented Block.

Public Attributes

new const string MRFullTypeName = "Kitware.VTK.vtkPerspectiveTransform"
 Automatically generated type registration mechanics.

Static Public Attributes

static new readonly string MRClassNameKey = "23vtkPerspectiveTransform"
 Automatically generated type registration mechanics.

Protected Member Functions

override void Dispose (bool disposing)
 Automatically generated protected Dispose method - called from public Dispose or the C# destructor. DO NOT call directly.

Private Member Functions

static internal IntPtr vtkPerspectiveTransform_New (ref uint mteStatus, ref uint mteIndex, ref uint rawRefCount)
static internal void vtkPerspectiveTransform_AdjustViewport_01 (HandleRef pThis, double oldXMin, double oldXMax, double oldYMin, double oldYMax, double newXMin, double newXMax, double newYMin, double newYMax)
static internal void vtkPerspectiveTransform_AdjustZBuffer_02 (HandleRef pThis, double oldNearZ, double oldFarZ, double newNearZ, double newFarZ)
static internal int vtkPerspectiveTransform_CircuitCheck_03 (HandleRef pThis, HandleRef transform)
static internal void vtkPerspectiveTransform_Concatenate_04 (HandleRef pThis, HandleRef matrix)
static internal void vtkPerspectiveTransform_Concatenate_05 (HandleRef pThis, IntPtr elements)
static internal void vtkPerspectiveTransform_Concatenate_06 (HandleRef pThis, HandleRef transform)
static internal void vtkPerspectiveTransform_Frustum_07 (HandleRef pThis, double xmin, double xmax, double ymin, double ymax, double znear, double zfar)
static internal IntPtr vtkPerspectiveTransform_GetConcatenatedTransform_08 (HandleRef pThis, int i, ref uint mteStatus, ref uint mteIndex, ref uint rawRefCount)
static internal IntPtr vtkPerspectiveTransform_GetInput_09 (HandleRef pThis, ref uint mteStatus, ref uint mteIndex, ref uint rawRefCount)
static internal int vtkPerspectiveTransform_GetInverseFlag_10 (HandleRef pThis)
static internal uint vtkPerspectiveTransform_GetMTime_11 (HandleRef pThis)
static internal int vtkPerspectiveTransform_GetNumberOfConcatenatedTransforms_12 (HandleRef pThis)
static internal void vtkPerspectiveTransform_Identity_13 (HandleRef pThis)
static internal void vtkPerspectiveTransform_Inverse_14 (HandleRef pThis)
static internal int vtkPerspectiveTransform_IsA_15 (HandleRef pThis, string type)
static internal int vtkPerspectiveTransform_IsTypeOf_16 (string type)
static internal IntPtr vtkPerspectiveTransform_MakeTransform_17 (HandleRef pThis, ref uint mteStatus, ref uint mteIndex, ref uint rawRefCount)
static internal IntPtr vtkPerspectiveTransform_NewInstance_19 (HandleRef pThis, ref uint mteStatus, ref uint mteIndex, ref uint rawRefCount)
static internal void vtkPerspectiveTransform_Ortho_20 (HandleRef pThis, double xmin, double xmax, double ymin, double ymax, double znear, double zfar)
static internal void vtkPerspectiveTransform_Perspective_21 (HandleRef pThis, double angle, double aspect, double znear, double zfar)
static internal void vtkPerspectiveTransform_Pop_22 (HandleRef pThis)
static internal void vtkPerspectiveTransform_PostMultiply_23 (HandleRef pThis)
static internal void vtkPerspectiveTransform_PreMultiply_24 (HandleRef pThis)
static internal void vtkPerspectiveTransform_Push_25 (HandleRef pThis)
static internal void vtkPerspectiveTransform_RotateWXYZ_26 (HandleRef pThis, double angle, double x, double y, double z)
static internal void vtkPerspectiveTransform_RotateWXYZ_27 (HandleRef pThis, double angle, IntPtr axis)
static internal void vtkPerspectiveTransform_RotateX_28 (HandleRef pThis, double angle)
static internal void vtkPerspectiveTransform_RotateY_29 (HandleRef pThis, double angle)
static internal void vtkPerspectiveTransform_RotateZ_30 (HandleRef pThis, double angle)
static internal IntPtr vtkPerspectiveTransform_SafeDownCast_31 (HandleRef o, ref uint mteStatus, ref uint mteIndex, ref uint rawRefCount)
static internal void vtkPerspectiveTransform_Scale_32 (HandleRef pThis, double x, double y, double z)
static internal void vtkPerspectiveTransform_Scale_33 (HandleRef pThis, IntPtr s)
static internal void vtkPerspectiveTransform_SetInput_34 (HandleRef pThis, HandleRef input)
static internal void vtkPerspectiveTransform_SetMatrix_35 (HandleRef pThis, HandleRef matrix)
static internal void vtkPerspectiveTransform_SetMatrix_36 (HandleRef pThis, IntPtr elements)
static internal void vtkPerspectiveTransform_SetupCamera_37 (HandleRef pThis, IntPtr position, IntPtr focalpoint, IntPtr viewup)
static internal void vtkPerspectiveTransform_SetupCamera_38 (HandleRef pThis, double p0, double p1, double p2, double fp0, double fp1, double fp2, double vup0, double vup1, double vup2)
static internal void vtkPerspectiveTransform_Shear_39 (HandleRef pThis, double dxdz, double dydz, double zplane)
static internal void vtkPerspectiveTransform_Stereo_40 (HandleRef pThis, double angle, double focaldistance)
static internal void vtkPerspectiveTransform_Translate_41 (HandleRef pThis, double x, double y, double z)
static internal void vtkPerspectiveTransform_Translate_42 (HandleRef pThis, IntPtr x)

Static Private Member Functions

static vtkPerspectiveTransform ()
 Automatically generated type registration mechanics.

Detailed Description

vtkPerspectiveTransform - describes a 4x4 matrix transformation

Description A vtkPerspectiveTransform can be used to describe the full range of homogeneous transformations. It was designed in particular to describe a camera-view of a scene. <P>The order in which you set up the display coordinates (via AdjustZBuffer() and AdjustViewport()), the projection (via Perspective(), Frustum(), or Ortho()) and the camera view (via SetupCamera()) are important. If the transform is in PreMultiply mode, which is the default, set the Viewport and ZBuffer first, then the projection, and finally the camera view. Once the view is set up, the Translate and Rotate methods can be used to move the camera around in world coordinates. If the Oblique() or Stereo() methods are used, they should be called just before SetupCamera(). <P>In PostMultiply mode, you must perform all transformations in the opposite order. This is necessary, for example, if you already have a perspective transformation set up but must adjust the viewport. Another example is if you have a view transformation, and wish to perform translations and rotations in the camera's coordinate system rather than in world coordinates. <P>The SetInput and Concatenate methods can be used to create a transformation pipeline with vtkPerspectiveTransform. See vtkTransform for more information on the transformation pipeline.

vtkGeneralTransform vtkTransform vtkMatrix4x4 vtkCamera


Constructor & Destructor Documentation

Automatically generated type registration mechanics.

Kitware.VTK.vtkPerspectiveTransform.vtkPerspectiveTransform ( IntPtr  rawCppThis,
bool  callDisposalMethod,
bool  strong 
)

Automatically generated constructor - called from generated code. DO NOT call directly.

Undocumented Block.


Member Function Documentation

void Kitware.VTK.vtkPerspectiveTransform.AdjustViewport ( double  oldXMin,
double  oldXMax,
double  oldYMin,
double  oldYMax,
double  newXMin,
double  newXMax,
double  newYMin,
double  newYMax 
)

Perform an adjustment to the viewport coordinates. By default Ortho, Frustum, and Perspective provide a window of ([-1,+1],[-1,+1]). In PreMultiply mode, you call this method before calling Ortho, Frustum, or Perspective. In PostMultiply mode you can call it after. Note that if you must apply both AdjustZBuffer and AdjustViewport, it makes no difference which order you apply them in.

void Kitware.VTK.vtkPerspectiveTransform.AdjustZBuffer ( double  oldNearZ,
double  oldFarZ,
double  newNearZ,
double  newFarZ 
)

Perform an adjustment to the Z-Buffer range that the near and far clipping planes map to. By default Ortho, Frustum, and Perspective map the near clipping plane to -1 and the far clipping plane to +1. In PreMultiply mode, you call this method before calling Ortho, Frustum, or Perspective. In PostMultiply mode you can call it after.

Check for self-reference. Will return true if concatenating with the specified transform, setting it to be our inverse, or setting it to be our input will create a circular reference. CircuitCheck is automatically called by SetInput(), SetInverse(), and Concatenate(vtkXTransform *). Avoid using this function, it is experimental.

Reimplemented from Kitware.VTK.vtkAbstractTransform.

Concatenates the matrix with the current transformation according to PreMultiply or PostMultiply semantics.

Concatenates the matrix with the current transformation according to PreMultiply or PostMultiply semantics.

Concatenate the specified transform with the current transformation according to PreMultiply or PostMultiply semantics. The concatenation is pipelined, meaning that if any of the transformations are changed, even after Concatenate() is called, those changes will be reflected when you call TransformPoint().

override void Kitware.VTK.vtkPerspectiveTransform.Dispose ( bool  disposing) [protected]

Automatically generated protected Dispose method - called from public Dispose or the C# destructor. DO NOT call directly.

Reimplemented from Kitware.VTK.vtkHomogeneousTransform.

void Kitware.VTK.vtkPerspectiveTransform.Frustum ( double  xmin,
double  xmax,
double  ymin,
double  ymax,
double  znear,
double  zfar 
)

Create an perspective projection matrix and concatenate it by the current transformation. The matrix maps a frustum with a back plane at -zfar and a front plane at -znear with extent [xmin,xmax],[ymin,ymax] to [-1,+1], [-1,+1], [+1,-1].

Description Get one of the concatenated transformations as a vtkAbstractTransform. These transformations are applied, in series, every time the transformation of a coordinate occurs. This method is provided to make it possible to decompose a transformation into its constituents, for example to save a transformation to a file.

Here is the call graph for this function:

Set the input for this transformation. This will be used as the base transformation if it is set. This method allows you to build a transform pipeline: if the input is modified, then this transformation will automatically update accordingly. Note that the InverseFlag, controlled via Inverse(), determines whether this transformation will use the Input or the inverse of the Input.

Here is the call graph for this function:

Get the inverse flag of the transformation. This controls whether it is the Input or the inverse of the Input that is used as the base transformation. The InverseFlag is flipped every time Inverse() is called. The InverseFlag is off when a transform is first created.

override uint Kitware.VTK.vtkPerspectiveTransform.GetMTime ( ) [virtual]

Override GetMTime to account for input and concatenation.

Reimplemented from Kitware.VTK.vtkAbstractTransform.

Get the total number of transformations that are linked into this one via Concatenate() operations or via SetInput().

Set this transformation to the identity transformation. If the transform has an Input, then the transformation will be reset so that it is the same as the Input.

override void Kitware.VTK.vtkPerspectiveTransform.Inverse ( ) [virtual]

Invert the transformation. This will also set a flag so that the transformation will use the inverse of its Input, if an Input has been set.

Reimplemented from Kitware.VTK.vtkAbstractTransform.

override int Kitware.VTK.vtkPerspectiveTransform.IsA ( string  type) [virtual]

Undocumented Block.

Reimplemented from Kitware.VTK.vtkHomogeneousTransform.

static new int Kitware.VTK.vtkPerspectiveTransform.IsTypeOf ( string  type) [static]

Undocumented Block.

Reimplemented from Kitware.VTK.vtkHomogeneousTransform.

Make a new transform of the same type -- you are responsible for deleting the transform when you are done with it.

Reimplemented from Kitware.VTK.vtkAbstractTransform.

Undocumented Block.

Reimplemented from Kitware.VTK.vtkObject.

Undocumented Block.

Reimplemented from Kitware.VTK.vtkHomogeneousTransform.

void Kitware.VTK.vtkPerspectiveTransform.Ortho ( double  xmin,
double  xmax,
double  ymin,
double  ymax,
double  znear,
double  zfar 
)

Create an orthogonal projection matrix and concatenate it by the current transformation. The matrix maps [xmin,xmax], [ymin,ymax], [-znear,-zfar] to [-1,+1], [-1,+1], [+1,-1].

void Kitware.VTK.vtkPerspectiveTransform.Perspective ( double  angle,
double  aspect,
double  znear,
double  zfar 
)

Create a perspective projection matrix by specifying the view angle (this angle is in the y direction), the aspect ratio, and the near and far clipping range. The projection matrix is concatenated with the current transformation. This method works via Frustum.

Deletes the transformation on the top of the stack and sets the top to the next transformation on the stack.

Sets the internal state of the transform to PostMultiply. All subsequent operations will occur after those already represented in the current transformation. In homogeneous matrix notation, M = A*M where M is the current transformation matrix and A is the applied matrix. The default is PreMultiply.

Sets the internal state of the transform to PreMultiply. All subsequent operations will occur before those already represented in the current transformation. In homogeneous matrix notation, M = M*A where M is the current transformation matrix and A is the applied matrix. The default is PreMultiply.

Pushes the current transformation onto the transformation stack.

void Kitware.VTK.vtkPerspectiveTransform.RotateWXYZ ( double  angle,
double  x,
double  y,
double  z 
)

Create a rotation matrix and concatenate it with the current transformation according to PreMultiply or PostMultiply semantics. The angle is in degrees, and (x,y,z) specifies the axis that the rotation will be performed around.

void Kitware.VTK.vtkPerspectiveTransform.RotateWXYZ ( double  angle,
IntPtr  axis 
)

Create a rotation matrix and concatenate it with the current transformation according to PreMultiply or PostMultiply semantics. The angle is in degrees, and (x,y,z) specifies the axis that the rotation will be performed around.

Create a rotation matrix about the X, Y, or Z axis and concatenate it with the current transformation according to PreMultiply or PostMultiply semantics. The angle is expressed in degrees.

Create a rotation matrix about the X, Y, or Z axis and concatenate it with the current transformation according to PreMultiply or PostMultiply semantics. The angle is expressed in degrees.

Create a rotation matrix about the X, Y, or Z axis and concatenate it with the current transformation according to PreMultiply or PostMultiply semantics. The angle is expressed in degrees.

Undocumented Block.

Reimplemented from Kitware.VTK.vtkHomogeneousTransform.

Here is the call graph for this function:

void Kitware.VTK.vtkPerspectiveTransform.Scale ( double  x,
double  y,
double  z 
)

Create a scale matrix (i.e. set the diagonal elements to x, y, z) and concatenate it with the current transformation according to PreMultiply or PostMultiply semantics.

Create a scale matrix (i.e. set the diagonal elements to x, y, z) and concatenate it with the current transformation according to PreMultiply or PostMultiply semantics.

Set the input for this transformation. This will be used as the base transformation if it is set. This method allows you to build a transform pipeline: if the input is modified, then this transformation will automatically update accordingly. Note that the InverseFlag, controlled via Inverse(), determines whether this transformation will use the Input or the inverse of the Input.

Set the current matrix directly. This actually calls Identity(), followed by Concatenate(matrix).

Set the current matrix directly. This actually calls Identity(), followed by Concatenate(matrix).

void Kitware.VTK.vtkPerspectiveTransform.SetupCamera ( IntPtr  position,
IntPtr  focalpoint,
IntPtr  viewup 
)

Set a view transformation matrix for the camera (this matrix does not contain any perspective) and concatenate it with the current transformation.

void Kitware.VTK.vtkPerspectiveTransform.SetupCamera ( double  p0,
double  p1,
double  p2,
double  fp0,
double  fp1,
double  fp2,
double  vup0,
double  vup1,
double  vup2 
)

Set a view transformation matrix for the camera (this matrix does not contain any perspective) and concatenate it with the current transformation.

void Kitware.VTK.vtkPerspectiveTransform.Shear ( double  dxdz,
double  dydz,
double  zplane 
)

Create a shear transformation about a plane at distance z from the camera. The values dxdz (i.e. dx/dz) and dydz specify the amount of shear in the x and y directions. The 'zplane' specifies the distance from the camera to the plane at which the shear causes zero displacement. Generally you want this plane to be the focal plane. This transformation can be used in combination with Ortho to create an oblique projection. It can also be used in combination with Perspective to provide correct stereo views when the eye is at arbitrary but known positions relative to the center of a flat viewing screen.

void Kitware.VTK.vtkPerspectiveTransform.Stereo ( double  angle,
double  focaldistance 
)

Create a stereo shear matrix and concatenate it with the current transformation. This can be applied in conjunction with either a perspective transformation (via Frustum or Projection) or an orthographic projection. You must specify the distance from the camera plane to the focal plane, and the angle between the distance vector and the eye. The angle should be negative for the left eye, and positive for the right. This method works via Oblique.

void Kitware.VTK.vtkPerspectiveTransform.Translate ( double  x,
double  y,
double  z 
)

Create a translation matrix and concatenate it with the current transformation according to PreMultiply or PostMultiply semantics.

Create a translation matrix and concatenate it with the current transformation according to PreMultiply or PostMultiply semantics.

static internal void Kitware.VTK.vtkPerspectiveTransform.vtkPerspectiveTransform_AdjustViewport_01 ( HandleRef  pThis,
double  oldXMin,
double  oldXMax,
double  oldYMin,
double  oldYMax,
double  newXMin,
double  newXMax,
double  newYMin,
double  newYMax 
) [private]
static internal void Kitware.VTK.vtkPerspectiveTransform.vtkPerspectiveTransform_AdjustZBuffer_02 ( HandleRef  pThis,
double  oldNearZ,
double  oldFarZ,
double  newNearZ,
double  newFarZ 
) [private]
static internal int Kitware.VTK.vtkPerspectiveTransform.vtkPerspectiveTransform_CircuitCheck_03 ( HandleRef  pThis,
HandleRef  transform 
) [private]
static internal void Kitware.VTK.vtkPerspectiveTransform.vtkPerspectiveTransform_Concatenate_04 ( HandleRef  pThis,
HandleRef  matrix 
) [private]
static internal void Kitware.VTK.vtkPerspectiveTransform.vtkPerspectiveTransform_Concatenate_05 ( HandleRef  pThis,
IntPtr  elements 
) [private]
static internal void Kitware.VTK.vtkPerspectiveTransform.vtkPerspectiveTransform_Concatenate_06 ( HandleRef  pThis,
HandleRef  transform 
) [private]
static internal void Kitware.VTK.vtkPerspectiveTransform.vtkPerspectiveTransform_Frustum_07 ( HandleRef  pThis,
double  xmin,
double  xmax,
double  ymin,
double  ymax,
double  znear,
double  zfar 
) [private]
static internal IntPtr Kitware.VTK.vtkPerspectiveTransform.vtkPerspectiveTransform_GetConcatenatedTransform_08 ( HandleRef  pThis,
int  i,
ref uint  mteStatus,
ref uint  mteIndex,
ref uint  rawRefCount 
) [private]
static internal IntPtr Kitware.VTK.vtkPerspectiveTransform.vtkPerspectiveTransform_GetInput_09 ( HandleRef  pThis,
ref uint  mteStatus,
ref uint  mteIndex,
ref uint  rawRefCount 
) [private]
static internal int Kitware.VTK.vtkPerspectiveTransform.vtkPerspectiveTransform_GetInverseFlag_10 ( HandleRef  pThis) [private]
static internal uint Kitware.VTK.vtkPerspectiveTransform.vtkPerspectiveTransform_GetMTime_11 ( HandleRef  pThis) [private]
static internal void Kitware.VTK.vtkPerspectiveTransform.vtkPerspectiveTransform_Identity_13 ( HandleRef  pThis) [private]
static internal void Kitware.VTK.vtkPerspectiveTransform.vtkPerspectiveTransform_Inverse_14 ( HandleRef  pThis) [private]
static internal int Kitware.VTK.vtkPerspectiveTransform.vtkPerspectiveTransform_IsA_15 ( HandleRef  pThis,
string  type 
) [private]
static internal int Kitware.VTK.vtkPerspectiveTransform.vtkPerspectiveTransform_IsTypeOf_16 ( string  type) [private]
static internal IntPtr Kitware.VTK.vtkPerspectiveTransform.vtkPerspectiveTransform_MakeTransform_17 ( HandleRef  pThis,
ref uint  mteStatus,
ref uint  mteIndex,
ref uint  rawRefCount 
) [private]
static internal IntPtr Kitware.VTK.vtkPerspectiveTransform.vtkPerspectiveTransform_New ( ref uint  mteStatus,
ref uint  mteIndex,
ref uint  rawRefCount 
) [private]
static internal IntPtr Kitware.VTK.vtkPerspectiveTransform.vtkPerspectiveTransform_NewInstance_19 ( HandleRef  pThis,
ref uint  mteStatus,
ref uint  mteIndex,
ref uint  rawRefCount 
) [private]
static internal void Kitware.VTK.vtkPerspectiveTransform.vtkPerspectiveTransform_Ortho_20 ( HandleRef  pThis,
double  xmin,
double  xmax,
double  ymin,
double  ymax,
double  znear,
double  zfar 
) [private]
static internal void Kitware.VTK.vtkPerspectiveTransform.vtkPerspectiveTransform_Perspective_21 ( HandleRef  pThis,
double  angle,
double  aspect,
double  znear,
double  zfar 
) [private]
static internal void Kitware.VTK.vtkPerspectiveTransform.vtkPerspectiveTransform_Pop_22 ( HandleRef  pThis) [private]
static internal void Kitware.VTK.vtkPerspectiveTransform.vtkPerspectiveTransform_PostMultiply_23 ( HandleRef  pThis) [private]
static internal void Kitware.VTK.vtkPerspectiveTransform.vtkPerspectiveTransform_PreMultiply_24 ( HandleRef  pThis) [private]
static internal void Kitware.VTK.vtkPerspectiveTransform.vtkPerspectiveTransform_Push_25 ( HandleRef  pThis) [private]
static internal void Kitware.VTK.vtkPerspectiveTransform.vtkPerspectiveTransform_RotateWXYZ_26 ( HandleRef  pThis,
double  angle,
double  x,
double  y,
double  z 
) [private]
static internal void Kitware.VTK.vtkPerspectiveTransform.vtkPerspectiveTransform_RotateWXYZ_27 ( HandleRef  pThis,
double  angle,
IntPtr  axis 
) [private]
static internal void Kitware.VTK.vtkPerspectiveTransform.vtkPerspectiveTransform_RotateX_28 ( HandleRef  pThis,
double  angle 
) [private]
static internal void Kitware.VTK.vtkPerspectiveTransform.vtkPerspectiveTransform_RotateY_29 ( HandleRef  pThis,
double  angle 
) [private]
static internal void Kitware.VTK.vtkPerspectiveTransform.vtkPerspectiveTransform_RotateZ_30 ( HandleRef  pThis,
double  angle 
) [private]
static internal IntPtr Kitware.VTK.vtkPerspectiveTransform.vtkPerspectiveTransform_SafeDownCast_31 ( HandleRef  o,
ref uint  mteStatus,
ref uint  mteIndex,
ref uint  rawRefCount 
) [private]
static internal void Kitware.VTK.vtkPerspectiveTransform.vtkPerspectiveTransform_Scale_32 ( HandleRef  pThis,
double  x,
double  y,
double  z 
) [private]
static internal void Kitware.VTK.vtkPerspectiveTransform.vtkPerspectiveTransform_Scale_33 ( HandleRef  pThis,
IntPtr  s 
) [private]
static internal void Kitware.VTK.vtkPerspectiveTransform.vtkPerspectiveTransform_SetInput_34 ( HandleRef  pThis,
HandleRef  input 
) [private]
static internal void Kitware.VTK.vtkPerspectiveTransform.vtkPerspectiveTransform_SetMatrix_35 ( HandleRef  pThis,
HandleRef  matrix 
) [private]
static internal void Kitware.VTK.vtkPerspectiveTransform.vtkPerspectiveTransform_SetMatrix_36 ( HandleRef  pThis,
IntPtr  elements 
) [private]
static internal void Kitware.VTK.vtkPerspectiveTransform.vtkPerspectiveTransform_SetupCamera_37 ( HandleRef  pThis,
IntPtr  position,
IntPtr  focalpoint,
IntPtr  viewup 
) [private]
static internal void Kitware.VTK.vtkPerspectiveTransform.vtkPerspectiveTransform_SetupCamera_38 ( HandleRef  pThis,
double  p0,
double  p1,
double  p2,
double  fp0,
double  fp1,
double  fp2,
double  vup0,
double  vup1,
double  vup2 
) [private]
static internal void Kitware.VTK.vtkPerspectiveTransform.vtkPerspectiveTransform_Shear_39 ( HandleRef  pThis,
double  dxdz,
double  dydz,
double  zplane 
) [private]
static internal void Kitware.VTK.vtkPerspectiveTransform.vtkPerspectiveTransform_Stereo_40 ( HandleRef  pThis,
double  angle,
double  focaldistance 
) [private]
static internal void Kitware.VTK.vtkPerspectiveTransform.vtkPerspectiveTransform_Translate_41 ( HandleRef  pThis,
double  x,
double  y,
double  z 
) [private]
static internal void Kitware.VTK.vtkPerspectiveTransform.vtkPerspectiveTransform_Translate_42 ( HandleRef  pThis,
IntPtr  x 
) [private]

Member Data Documentation

new readonly string Kitware.VTK.vtkPerspectiveTransform.MRClassNameKey = "23vtkPerspectiveTransform" [static]

Automatically generated type registration mechanics.

Reimplemented from Kitware.VTK.vtkHomogeneousTransform.

new const string Kitware.VTK.vtkPerspectiveTransform.MRFullTypeName = "Kitware.VTK.vtkPerspectiveTransform"

Automatically generated type registration mechanics.

Reimplemented from Kitware.VTK.vtkHomogeneousTransform.


The documentation for this class was generated from the following file: