ActiViz .NET  5.8.0
Public Member Functions | Static Public Member Functions | Public Attributes | Static Public Attributes | Protected Member Functions | Private Member Functions | Static Private Member Functions
Kitware.VTK.vtkCell Class Reference

vtkCell - abstract class to specify cell behavior More...

Inheritance diagram for Kitware.VTK.vtkCell:
[legend]
Collaboration diagram for Kitware.VTK.vtkCell:
[legend]

List of all members.

Public Member Functions

 vtkCell (IntPtr rawCppThis, bool callDisposalMethod, bool strong)
 Automatically generated constructor - called from generated code. DO NOT call directly.
virtual int CellBoundary (int subId, IntPtr pcoords, vtkIdList pts)
 Given parametric coordinates of a point, return the closest cell boundary, and whether the point is inside or outside of the cell. The cell boundary is defined by a list of points (pts) that specify a face (3D cell), edge (2D cell), or vertex (1D cell). If the return value of the method is != 0, then the point is inside the cell.
virtual void Clip (double value, vtkDataArray cellScalars, vtkIncrementalPointLocator locator, vtkCellArray connectivity, vtkPointData inPd, vtkPointData outPd, vtkCellData inCd, int cellId, vtkCellData outCd, int insideOut)
 Cut (or clip) the cell based on the input cellScalars and the specified value. The output of the clip operation will be one or more cells of the same topological dimension as the original cell. The flag insideOut controls what part of the cell is considered inside - normally cell points whose scalar value is greater than "value" are considered inside. If insideOut is on, this is reversed. Also, if the output cell data is non-NULL, the cell data from the clipped cell is passed to the generated contouring primitives. (Note: the CopyAllocate() method must be invoked on both the output cell and point data. The cellId refers to the cell from which the cell data is copied.)
virtual void Contour (double value, vtkDataArray cellScalars, vtkIncrementalPointLocator locator, vtkCellArray verts, vtkCellArray lines, vtkCellArray polys, vtkPointData inPd, vtkPointData outPd, vtkCellData inCd, int cellId, vtkCellData outCd)
 Generate contouring primitives. The scalar list cellScalars are scalar values at each cell point. The point locator is essentially a points list that merges points as they are inserted (i.e., prevents duplicates). Contouring primitives can be vertices, lines, or polygons. It is possible to interpolate point data along the edge by providing input and output point data - if outPd is NULL, then no interpolation is performed. Also, if the output cell data is non-NULL, the cell data from the contoured cell is passed to the generated contouring primitives. (Note: the CopyAllocate() method must be invoked on both the output cell and point data. The cellId refers to the cell from which the cell data is copied.)
virtual void DeepCopy (vtkCell c)
 Copy this cell by completely copying internal data structures. This is slower but safer than ShallowCopy().
virtual void Derivatives (int subId, IntPtr pcoords, IntPtr values, int dim, IntPtr derivs)
 Compute derivatives given cell subId and parametric coordinates. The values array is a series of data value(s) at the cell points. There is a one-to-one correspondence between cell point and data value(s). Dim is the number of data values per cell point. Derivs are derivatives in the x-y-z coordinate directions for each data value. Thus, if computing derivatives for a scalar function in a hexahedron, dim=1, 8 values are supplied, and 3 deriv values are returned (i.e., derivatives in x-y-z directions). On the other hand, if computing derivatives of velocity (vx,vy,vz) dim=3, 24 values are supplied ((vx,vy,vz)1, (vx,vy,vz)2, ....()8), and 9 deriv values are returned ((d(vx)/dx),(d(vx)/dy),(d(vx)/dz), (d(vy)/dx),(d(vy)/dy), (d(vy)/dz), (d(vz)/dx),(d(vz)/dy),(d(vz)/dz)).
virtual void EvaluateLocation (ref int subId, IntPtr pcoords, IntPtr x, IntPtr weights)
 Determine global coordinate (x[3]) from subId and parametric coordinates. Also returns interpolation weights. (The number of weights is equal to the number of points in the cell.)
virtual int EvaluatePosition (IntPtr x, IntPtr closestPoint, ref int subId, IntPtr pcoords, ref double dist2, IntPtr weights)
 Given a point x[3] return inside(=1), outside(=0) cell, or (-1) computational problem encountered; evaluate parametric coordinates, sub-cell id (!=0 only if cell is composite), distance squared of point x[3] to cell (in particular, the sub-cell indicated), closest point on cell to x[3] (unless closestPoint is null, in which case, the closest point and dist2 are not found), and interpolation weights in cell. (The number of weights is equal to the number of points defining the cell). Note: on rare occasions a -1 is returned from the method. This means that numerical error has occurred and all data returned from this method should be ignored. Also, inside/outside is determine parametrically. That is, a point is inside if it satisfies parametric limits. This can cause problems for cells of topological dimension 2 or less, since a point in 3D can project onto the cell within parametric limits but be "far" from the cell. Thus the value dist2 may be checked to determine true in/out.
void GetBounds (IntPtr bounds)
 Compute cell bounding box (xmin,xmax,ymin,ymax,zmin,zmax). Copy result into user provided array.
double[] GetBounds ()
 Compute cell bounding box (xmin,xmax,ymin,ymax,zmin,zmax). Return pointer to array of six double values.
virtual int GetCellDimension ()
 Return the topological dimensional of the cell (0,1,2, or 3).
virtual int GetCellType ()
 Return the type of cell.
virtual vtkCell GetEdge (int edgeId)
 Return the edge cell from the edgeId of the cell.
virtual vtkCell GetFace (int faceId)
 Return the face cell from the faceId of the cell.
virtual IntPtr GetFaces ()
 Determine whether the cell requires explicit face representation, and methods for setting and getting the faces (see vtkPolyhedron for example usage of these methods).
double GetLength2 ()
 Compute Length squared of cell (i.e., bounding box diagonal squared).
virtual int GetNumberOfEdges ()
 Return the number of edges in the cell.
virtual int GetNumberOfFaces ()
 Return the number of faces in the cell.
int GetNumberOfPoints ()
 Return the number of points in the cell.
virtual int GetParametricCenter (IntPtr pcoords)
 Return center of the cell in parametric coordinates. Note that the parametric center is not always located at (0.5,0.5,0.5). The return value is the subId that the center is in (if a composite cell). If you want the center in x-y-z space, invoke the EvaluateLocation() method.
virtual IntPtr GetParametricCoords ()
 Return a contiguous array of parametric coordinates of the points defining this cell. In other words, (px,py,pz, px,py,pz, etc..) The coordinates are ordered consistent with the definition of the point ordering for the cell. This method returns a non-NULL pointer when the cell is a primary type (i.e., IsPrimaryCell() is true). Note that 3D parametric coordinates are returned no matter what the topological dimension of the cell.
virtual double GetParametricDistance (IntPtr pcoords)
 Return the distance of the parametric coordinate provided to the cell. If inside the cell, a distance of zero is returned. This is used during picking to get the correct cell picked. (The tolerance will occasionally allow cells to be picked who are not really intersected "inside" the cell.)
int GetPointId (int ptId)
 For cell point i, return the actual point id.
vtkIdList GetPointIds ()
 Return the list of point ids defining the cell.
vtkPoints GetPoints ()
 Get the point coordinates for the cell.
void Initialize (int npts, IntPtr pts, vtkPoints p)
 Initialize cell from outside with point ids and point coordinates specified.
virtual void Initialize ()
 Some cells require initialization prior to access. For example, they may have to triangulate themselves or set up internal data structures.
virtual void InterpolateDerivs (IntPtr pcoords, IntPtr derivs)
 Compute the interpolation functions/derivatives (aka shape functions/derivatives) No-ops at this level. Typically overridden in subclasses.
virtual void InterpolateFunctions (IntPtr pcoords, IntPtr weights)
 Compute the interpolation functions/derivatives (aka shape functions/derivatives) No-ops at this level. Typically overridden in subclasses.
virtual int IntersectWithLine (IntPtr p1, IntPtr p2, double tol, ref double t, IntPtr x, IntPtr pcoords, ref int subId)
 Intersect with a ray. Return parametric coordinates (both line and cell) and global intersection coordinates, given ray definition and tolerance. The method returns non-zero value if intersection occurs.
override int IsA (string type)
 Undocumented Block.
virtual int IsExplicitCell ()
 Explicit cells require additional representational information beyond the usual cell type and connectivity list information. Most cells in VTK are implicit cells.
virtual int IsLinear ()
 Non-linear cells require special treatment beyond the usual cell type and connectivity list information. Most cells in VTK are implicit cells.
virtual int IsPrimaryCell ()
 Return whether this cell type has a fixed topology or whether the topology varies depending on the data (e.g., vtkConvexPointSet). This compares to composite cells that are typically composed of primary cells (e.g., a triangle strip composite cell is made up of triangle primary cells).
new vtkCell NewInstance ()
 Undocumented Block.
virtual int RequiresExplicitFaceRepresentation ()
 Determine whether the cell requires explicit face representation, and methods for setting and getting the faces (see vtkPolyhedron for example usage of these methods).
virtual int RequiresInitialization ()
 Some cells require initialization prior to access. For example, they may have to triangulate themselves or set up internal data structures.
virtual void SetFaces (IntPtr arg0)
 Determine whether the cell requires explicit face representation, and methods for setting and getting the faces (see vtkPolyhedron for example usage of these methods).
virtual void ShallowCopy (vtkCell c)
 Copy this cell by reference counting the internal data structures. This is safe if you want a "read-only" copy. If you modify the cell you might wish to use DeepCopy().
virtual int Triangulate (int index, vtkIdList ptIds, vtkPoints pts)
 Generate simplices of proper dimension. If cell is 3D, tetrahedron are generated; if 2D triangles; if 1D lines; if 0D points. The form of the output is a sequence of points, each n+1 points (where n is topological cell dimension) defining a simplex. The index is a parameter that controls which triangulation to use (if more than one is possible). If numerical degeneracy encountered, 0 is returned, otherwise 1 is returned. This method does not insert new points: all the points that define the simplices are the points that define the cell.

Static Public Member Functions

static new int IsTypeOf (string type)
 Undocumented Block.
static new vtkCell SafeDownCast (vtkObjectBase o)
 Undocumented Block.

Public Attributes

new const string MRFullTypeName = "Kitware.VTK.vtkCell"
 Automatically generated type registration mechanics.

Static Public Attributes

static new readonly string MRClassNameKey = "7vtkCell"
 Automatically generated type registration mechanics.

Protected Member Functions

override void Dispose (bool disposing)
 Automatically generated protected Dispose method - called from public Dispose or the C# destructor. DO NOT call directly.

Private Member Functions

static internal int vtkCell_CellBoundary_01 (HandleRef pThis, int subId, IntPtr pcoords, HandleRef pts)
static internal void vtkCell_Clip_02 (HandleRef pThis, double value, HandleRef cellScalars, HandleRef locator, HandleRef connectivity, HandleRef inPd, HandleRef outPd, HandleRef inCd, int cellId, HandleRef outCd, int insideOut)
static internal void vtkCell_Contour_03 (HandleRef pThis, double value, HandleRef cellScalars, HandleRef locator, HandleRef verts, HandleRef lines, HandleRef polys, HandleRef inPd, HandleRef outPd, HandleRef inCd, int cellId, HandleRef outCd)
static internal void vtkCell_DeepCopy_04 (HandleRef pThis, HandleRef c)
static internal void vtkCell_Derivatives_05 (HandleRef pThis, int subId, IntPtr pcoords, IntPtr values, int dim, IntPtr derivs)
static internal void vtkCell_EvaluateLocation_06 (HandleRef pThis, ref int subId, IntPtr pcoords, IntPtr x, IntPtr weights)
static internal int vtkCell_EvaluatePosition_07 (HandleRef pThis, IntPtr x, IntPtr closestPoint, ref int subId, IntPtr pcoords, ref double dist2, IntPtr weights)
static internal void vtkCell_GetBounds_08 (HandleRef pThis, IntPtr bounds)
static internal IntPtr vtkCell_GetBounds_09 (HandleRef pThis)
static internal int vtkCell_GetCellDimension_10 (HandleRef pThis)
static internal int vtkCell_GetCellType_11 (HandleRef pThis)
static internal IntPtr vtkCell_GetEdge_12 (HandleRef pThis, int edgeId, ref uint mteStatus, ref uint mteIndex, ref uint rawRefCount)
static internal IntPtr vtkCell_GetFace_13 (HandleRef pThis, int faceId, ref uint mteStatus, ref uint mteIndex, ref uint rawRefCount)
static internal IntPtr vtkCell_GetFaces_14 (HandleRef pThis)
static internal double vtkCell_GetLength2_15 (HandleRef pThis)
static internal int vtkCell_GetNumberOfEdges_16 (HandleRef pThis)
static internal int vtkCell_GetNumberOfFaces_17 (HandleRef pThis)
static internal int vtkCell_GetNumberOfPoints_18 (HandleRef pThis)
static internal int vtkCell_GetParametricCenter_19 (HandleRef pThis, IntPtr pcoords)
static internal IntPtr vtkCell_GetParametricCoords_20 (HandleRef pThis)
static internal double vtkCell_GetParametricDistance_21 (HandleRef pThis, IntPtr pcoords)
static internal int vtkCell_GetPointId_22 (HandleRef pThis, int ptId)
static internal IntPtr vtkCell_GetPointIds_23 (HandleRef pThis, ref uint mteStatus, ref uint mteIndex, ref uint rawRefCount)
static internal IntPtr vtkCell_GetPoints_24 (HandleRef pThis, ref uint mteStatus, ref uint mteIndex, ref uint rawRefCount)
static internal void vtkCell_Initialize_25 (HandleRef pThis, int npts, IntPtr pts, HandleRef p)
static internal void vtkCell_Initialize_26 (HandleRef pThis)
static internal void vtkCell_InterpolateDerivs_27 (HandleRef pThis, IntPtr pcoords, IntPtr derivs)
static internal void vtkCell_InterpolateFunctions_28 (HandleRef pThis, IntPtr pcoords, IntPtr weights)
static internal int vtkCell_IntersectWithLine_29 (HandleRef pThis, IntPtr p1, IntPtr p2, double tol, ref double t, IntPtr x, IntPtr pcoords, ref int subId)
static internal int vtkCell_IsA_30 (HandleRef pThis, string type)
static internal int vtkCell_IsExplicitCell_31 (HandleRef pThis)
static internal int vtkCell_IsLinear_32 (HandleRef pThis)
static internal int vtkCell_IsPrimaryCell_33 (HandleRef pThis)
static internal int vtkCell_IsTypeOf_34 (string type)
static internal IntPtr vtkCell_NewInstance_35 (HandleRef pThis, ref uint mteStatus, ref uint mteIndex, ref uint rawRefCount)
static internal int vtkCell_RequiresExplicitFaceRepresentation_36 (HandleRef pThis)
static internal int vtkCell_RequiresInitialization_37 (HandleRef pThis)
static internal IntPtr vtkCell_SafeDownCast_38 (HandleRef o, ref uint mteStatus, ref uint mteIndex, ref uint rawRefCount)
static internal void vtkCell_SetFaces_39 (HandleRef pThis, IntPtr arg0)
static internal void vtkCell_ShallowCopy_40 (HandleRef pThis, HandleRef c)
static internal int vtkCell_Triangulate_41 (HandleRef pThis, int index, HandleRef ptIds, HandleRef pts)

Static Private Member Functions

static vtkCell ()
 Automatically generated type registration mechanics.

Detailed Description

vtkCell - abstract class to specify cell behavior

Description vtkCell is an abstract class that specifies the interfaces for data cells. Data cells are simple topological elements like points, lines, polygons, and tetrahedra of which visualization datasets are composed. In some cases visualization datasets may explicitly represent cells (e.g., vtkPolyData, vtkUnstructuredGrid), and in some cases, the datasets are implicitly composed of cells (e.g., vtkStructuredPoints).

Caveats The #define VTK_CELL_SIZE is a parameter used to construct cells and provide a general guideline for controlling object execution. This parameter is not a hard boundary: you can create cells with more points.


Constructor & Destructor Documentation

static Kitware.VTK.vtkCell.vtkCell ( ) [static, private]

Automatically generated type registration mechanics.

Kitware.VTK.vtkCell.vtkCell ( IntPtr  rawCppThis,
bool  callDisposalMethod,
bool  strong 
)

Automatically generated constructor - called from generated code. DO NOT call directly.


Member Function Documentation

virtual int Kitware.VTK.vtkCell.CellBoundary ( int  subId,
IntPtr  pcoords,
vtkIdList  pts 
) [virtual]
virtual void Kitware.VTK.vtkCell.Clip ( double  value,
vtkDataArray  cellScalars,
vtkIncrementalPointLocator  locator,
vtkCellArray  connectivity,
vtkPointData  inPd,
vtkPointData  outPd,
vtkCellData  inCd,
int  cellId,
vtkCellData  outCd,
int  insideOut 
) [virtual]

Cut (or clip) the cell based on the input cellScalars and the specified value. The output of the clip operation will be one or more cells of the same topological dimension as the original cell. The flag insideOut controls what part of the cell is considered inside - normally cell points whose scalar value is greater than "value" are considered inside. If insideOut is on, this is reversed. Also, if the output cell data is non-NULL, the cell data from the clipped cell is passed to the generated contouring primitives. (Note: the CopyAllocate() method must be invoked on both the output cell and point data. The cellId refers to the cell from which the cell data is copied.)

Reimplemented in Kitware.VTK.vtkBiQuadraticQuadraticHexahedron, Kitware.VTK.vtkTetra, Kitware.VTK.vtkTriQuadraticHexahedron, Kitware.VTK.vtkTriangle, Kitware.VTK.vtkBiQuadraticQuadraticWedge, Kitware.VTK.vtkBiQuadraticQuad, Kitware.VTK.vtkQuadraticLinearWedge, Kitware.VTK.vtkQuadraticLinearQuad, Kitware.VTK.vtkPolyhedron, Kitware.VTK.vtkQuadraticTetra, Kitware.VTK.vtkCubicLine, Kitware.VTK.vtkQuadraticHexahedron, Kitware.VTK.vtkQuadraticPyramid, Kitware.VTK.vtkQuadraticWedge, Kitware.VTK.vtkBiQuadraticTriangle, Kitware.VTK.vtkQuadraticTriangle, Kitware.VTK.vtkConvexPointSet, Kitware.VTK.vtkQuadraticQuad, Kitware.VTK.vtkQuadraticEdge, Kitware.VTK.vtkGenericCell, Kitware.VTK.vtkTriangleStrip, Kitware.VTK.vtkQuad, Kitware.VTK.vtkVertex, Kitware.VTK.vtkPixel, Kitware.VTK.vtkPolygon, Kitware.VTK.vtkEmptyCell, Kitware.VTK.vtkLine, Kitware.VTK.vtkPolyLine, Kitware.VTK.vtkPolyVertex, and Kitware.VTK.vtkCell3D.

virtual void Kitware.VTK.vtkCell.Contour ( double  value,
vtkDataArray  cellScalars,
vtkIncrementalPointLocator  locator,
vtkCellArray  verts,
vtkCellArray  lines,
vtkCellArray  polys,
vtkPointData  inPd,
vtkPointData  outPd,
vtkCellData  inCd,
int  cellId,
vtkCellData  outCd 
) [virtual]

Generate contouring primitives. The scalar list cellScalars are scalar values at each cell point. The point locator is essentially a points list that merges points as they are inserted (i.e., prevents duplicates). Contouring primitives can be vertices, lines, or polygons. It is possible to interpolate point data along the edge by providing input and output point data - if outPd is NULL, then no interpolation is performed. Also, if the output cell data is non-NULL, the cell data from the contoured cell is passed to the generated contouring primitives. (Note: the CopyAllocate() method must be invoked on both the output cell and point data. The cellId refers to the cell from which the cell data is copied.)

Reimplemented in Kitware.VTK.vtkTriangle, Kitware.VTK.vtkPolygon, Kitware.VTK.vtkTetra, Kitware.VTK.vtkBiQuadraticQuadraticHexahedron, Kitware.VTK.vtkTriQuadraticHexahedron, Kitware.VTK.vtkBiQuadraticQuadraticWedge, Kitware.VTK.vtkBiQuadraticQuad, Kitware.VTK.vtkQuadraticLinearWedge, Kitware.VTK.vtkPolyhedron, Kitware.VTK.vtkQuadraticLinearQuad, Kitware.VTK.vtkQuadraticTetra, Kitware.VTK.vtkCubicLine, Kitware.VTK.vtkQuadraticHexahedron, Kitware.VTK.vtkQuadraticPyramid, Kitware.VTK.vtkQuadraticWedge, Kitware.VTK.vtkBiQuadraticTriangle, Kitware.VTK.vtkQuadraticTriangle, Kitware.VTK.vtkConvexPointSet, Kitware.VTK.vtkQuadraticQuad, Kitware.VTK.vtkQuadraticEdge, Kitware.VTK.vtkVertex, Kitware.VTK.vtkGenericCell, Kitware.VTK.vtkTriangleStrip, Kitware.VTK.vtkQuad, Kitware.VTK.vtkPixel, Kitware.VTK.vtkEmptyCell, Kitware.VTK.vtkLine, Kitware.VTK.vtkPolyLine, Kitware.VTK.vtkPolyVertex, Kitware.VTK.vtkHexahedron, Kitware.VTK.vtkPyramid, Kitware.VTK.vtkWedge, Kitware.VTK.vtkVoxel, and Kitware.VTK.vtkCell3D.

virtual void Kitware.VTK.vtkCell.DeepCopy ( vtkCell  c) [virtual]

Copy this cell by completely copying internal data structures. This is slower but safer than ShallowCopy().

Reimplemented in Kitware.VTK.vtkGenericCell.

virtual void Kitware.VTK.vtkCell.Derivatives ( int  subId,
IntPtr  pcoords,
IntPtr  values,
int  dim,
IntPtr  derivs 
) [virtual]

Compute derivatives given cell subId and parametric coordinates. The values array is a series of data value(s) at the cell points. There is a one-to-one correspondence between cell point and data value(s). Dim is the number of data values per cell point. Derivs are derivatives in the x-y-z coordinate directions for each data value. Thus, if computing derivatives for a scalar function in a hexahedron, dim=1, 8 values are supplied, and 3 deriv values are returned (i.e., derivatives in x-y-z directions). On the other hand, if computing derivatives of velocity (vx,vy,vz) dim=3, 24 values are supplied ((vx,vy,vz)1, (vx,vy,vz)2, ....()8), and 9 deriv values are returned ((d(vx)/dx),(d(vx)/dy),(d(vx)/dz), (d(vy)/dx),(d(vy)/dy), (d(vy)/dz), (d(vz)/dx),(d(vz)/dy),(d(vz)/dz)).

Reimplemented in Kitware.VTK.vtkTriangle, Kitware.VTK.vtkPolygon, Kitware.VTK.vtkTetra, Kitware.VTK.vtkBiQuadraticQuadraticHexahedron, Kitware.VTK.vtkTriQuadraticHexahedron, Kitware.VTK.vtkBiQuadraticQuadraticWedge, Kitware.VTK.vtkBiQuadraticQuad, Kitware.VTK.vtkQuadraticLinearWedge, Kitware.VTK.vtkPolyhedron, Kitware.VTK.vtkQuadraticLinearQuad, Kitware.VTK.vtkTriangleStrip, Kitware.VTK.vtkGenericCell, Kitware.VTK.vtkQuadraticTetra, Kitware.VTK.vtkQuadraticHexahedron, Kitware.VTK.vtkQuadraticPyramid, Kitware.VTK.vtkQuadraticWedge, Kitware.VTK.vtkBiQuadraticTriangle, Kitware.VTK.vtkCubicLine, Kitware.VTK.vtkQuadraticTriangle, Kitware.VTK.vtkConvexPointSet, Kitware.VTK.vtkQuadraticQuad, Kitware.VTK.vtkQuadraticEdge, Kitware.VTK.vtkVertex, Kitware.VTK.vtkQuad, Kitware.VTK.vtkPixel, Kitware.VTK.vtkEmptyCell, Kitware.VTK.vtkLine, Kitware.VTK.vtkPolyLine, Kitware.VTK.vtkPolyVertex, Kitware.VTK.vtkHexahedron, Kitware.VTK.vtkPyramid, Kitware.VTK.vtkWedge, Kitware.VTK.vtkVoxel, Kitware.VTK.vtkHexagonalPrism, and Kitware.VTK.vtkPentagonalPrism.

override void Kitware.VTK.vtkCell.Dispose ( bool  disposing) [protected]
virtual void Kitware.VTK.vtkCell.EvaluateLocation ( ref int  subId,
IntPtr  pcoords,
IntPtr  x,
IntPtr  weights 
) [virtual]
virtual int Kitware.VTK.vtkCell.EvaluatePosition ( IntPtr  x,
IntPtr  closestPoint,
ref int  subId,
IntPtr  pcoords,
ref double  dist2,
IntPtr  weights 
) [virtual]

Given a point x[3] return inside(=1), outside(=0) cell, or (-1) computational problem encountered; evaluate parametric coordinates, sub-cell id (!=0 only if cell is composite), distance squared of point x[3] to cell (in particular, the sub-cell indicated), closest point on cell to x[3] (unless closestPoint is null, in which case, the closest point and dist2 are not found), and interpolation weights in cell. (The number of weights is equal to the number of points defining the cell). Note: on rare occasions a -1 is returned from the method. This means that numerical error has occurred and all data returned from this method should be ignored. Also, inside/outside is determine parametrically. That is, a point is inside if it satisfies parametric limits. This can cause problems for cells of topological dimension 2 or less, since a point in 3D can project onto the cell within parametric limits but be "far" from the cell. Thus the value dist2 may be checked to determine true in/out.

Reimplemented in Kitware.VTK.vtkPolygon, Kitware.VTK.vtkTriangle, Kitware.VTK.vtkLine, Kitware.VTK.vtkTetra, Kitware.VTK.vtkBiQuadraticQuadraticHexahedron, Kitware.VTK.vtkTriQuadraticHexahedron, Kitware.VTK.vtkBiQuadraticQuadraticWedge, Kitware.VTK.vtkPolyhedron, Kitware.VTK.vtkBiQuadraticQuad, Kitware.VTK.vtkQuadraticLinearWedge, Kitware.VTK.vtkQuadraticLinearQuad, Kitware.VTK.vtkQuadraticTetra, Kitware.VTK.vtkTriangleStrip, Kitware.VTK.vtkGenericCell, Kitware.VTK.vtkQuadraticHexahedron, Kitware.VTK.vtkQuadraticPyramid, Kitware.VTK.vtkQuadraticWedge, Kitware.VTK.vtkBiQuadraticTriangle, Kitware.VTK.vtkQuadraticTriangle, Kitware.VTK.vtkConvexPointSet, Kitware.VTK.vtkQuadraticQuad, Kitware.VTK.vtkCubicLine, Kitware.VTK.vtkQuadraticEdge, Kitware.VTK.vtkVertex, Kitware.VTK.vtkQuad, Kitware.VTK.vtkPixel, Kitware.VTK.vtkEmptyCell, Kitware.VTK.vtkPolyLine, Kitware.VTK.vtkPolyVertex, Kitware.VTK.vtkHexahedron, Kitware.VTK.vtkPyramid, Kitware.VTK.vtkWedge, Kitware.VTK.vtkVoxel, Kitware.VTK.vtkHexagonalPrism, and Kitware.VTK.vtkPentagonalPrism.

void Kitware.VTK.vtkCell.GetBounds ( IntPtr  bounds)

Compute cell bounding box (xmin,xmax,ymin,ymax,zmin,zmax). Copy result into user provided array.

Compute cell bounding box (xmin,xmax,ymin,ymax,zmin,zmax). Return pointer to array of six double values.

virtual int Kitware.VTK.vtkCell.GetCellDimension ( ) [virtual]
virtual int Kitware.VTK.vtkCell.GetCellType ( ) [virtual]
virtual vtkCell Kitware.VTK.vtkCell.GetEdge ( int  edgeId) [virtual]
virtual vtkCell Kitware.VTK.vtkCell.GetFace ( int  faceId) [virtual]
virtual IntPtr Kitware.VTK.vtkCell.GetFaces ( ) [virtual]

Determine whether the cell requires explicit face representation, and methods for setting and getting the faces (see vtkPolyhedron for example usage of these methods).

Reimplemented in Kitware.VTK.vtkPolyhedron, and Kitware.VTK.vtkGenericCell.

Compute Length squared of cell (i.e., bounding box diagonal squared).

virtual int Kitware.VTK.vtkCell.GetNumberOfEdges ( ) [virtual]
virtual int Kitware.VTK.vtkCell.GetNumberOfFaces ( ) [virtual]

Return the number of points in the cell.

virtual int Kitware.VTK.vtkCell.GetParametricCenter ( IntPtr  pcoords) [virtual]
virtual IntPtr Kitware.VTK.vtkCell.GetParametricCoords ( ) [virtual]
virtual double Kitware.VTK.vtkCell.GetParametricDistance ( IntPtr  pcoords) [virtual]

Return the distance of the parametric coordinate provided to the cell. If inside the cell, a distance of zero is returned. This is used during picking to get the correct cell picked. (The tolerance will occasionally allow cells to be picked who are not really intersected "inside" the cell.)

Reimplemented in Kitware.VTK.vtkTriangle, Kitware.VTK.vtkTetra, Kitware.VTK.vtkQuadraticTetra, Kitware.VTK.vtkBiQuadraticTriangle, Kitware.VTK.vtkQuadraticTriangle, and Kitware.VTK.vtkCubicLine.

int Kitware.VTK.vtkCell.GetPointId ( int  ptId)

For cell point i, return the actual point id.

Return the list of point ids defining the cell.

Here is the call graph for this function:

Get the point coordinates for the cell.

Here is the call graph for this function:

void Kitware.VTK.vtkCell.Initialize ( int  npts,
IntPtr  pts,
vtkPoints  p 
)

Initialize cell from outside with point ids and point coordinates specified.

virtual void Kitware.VTK.vtkCell.Initialize ( ) [virtual]

Some cells require initialization prior to access. For example, they may have to triangulate themselves or set up internal data structures.

Reimplemented in Kitware.VTK.vtkPolyhedron, Kitware.VTK.vtkConvexPointSet, and Kitware.VTK.vtkGenericCell.

virtual void Kitware.VTK.vtkCell.InterpolateDerivs ( IntPtr  pcoords,
IntPtr  derivs 
) [virtual]
virtual void Kitware.VTK.vtkCell.InterpolateFunctions ( IntPtr  pcoords,
IntPtr  weights 
) [virtual]
virtual int Kitware.VTK.vtkCell.IntersectWithLine ( IntPtr  p1,
IntPtr  p2,
double  tol,
ref double  t,
IntPtr  x,
IntPtr  pcoords,
ref int  subId 
) [virtual]
override int Kitware.VTK.vtkCell.IsA ( string  type) [virtual]
virtual int Kitware.VTK.vtkCell.IsExplicitCell ( ) [virtual]

Explicit cells require additional representational information beyond the usual cell type and connectivity list information. Most cells in VTK are implicit cells.

Reimplemented in Kitware.VTK.vtkExplicitCell.

virtual int Kitware.VTK.vtkCell.IsLinear ( ) [virtual]

Non-linear cells require special treatment beyond the usual cell type and connectivity list information. Most cells in VTK are implicit cells.

Reimplemented in Kitware.VTK.vtkGenericCell, and Kitware.VTK.vtkNonLinearCell.

virtual int Kitware.VTK.vtkCell.IsPrimaryCell ( ) [virtual]

Return whether this cell type has a fixed topology or whether the topology varies depending on the data (e.g., vtkConvexPointSet). This compares to composite cells that are typically composed of primary cells (e.g., a triangle strip composite cell is made up of triangle primary cells).

Reimplemented in Kitware.VTK.vtkPolygon, Kitware.VTK.vtkPolyhedron, Kitware.VTK.vtkGenericCell, Kitware.VTK.vtkConvexPointSet, Kitware.VTK.vtkPolyLine, Kitware.VTK.vtkTriangleStrip, and Kitware.VTK.vtkPolyVertex.

static new int Kitware.VTK.vtkCell.IsTypeOf ( string  type) [static]

Determine whether the cell requires explicit face representation, and methods for setting and getting the faces (see vtkPolyhedron for example usage of these methods).

Reimplemented in Kitware.VTK.vtkPolyhedron, and Kitware.VTK.vtkGenericCell.

virtual int Kitware.VTK.vtkCell.RequiresInitialization ( ) [virtual]

Some cells require initialization prior to access. For example, they may have to triangulate themselves or set up internal data structures.

Reimplemented in Kitware.VTK.vtkPolyhedron, Kitware.VTK.vtkGenericCell, and Kitware.VTK.vtkConvexPointSet.

virtual void Kitware.VTK.vtkCell.SetFaces ( IntPtr  arg0) [virtual]

Determine whether the cell requires explicit face representation, and methods for setting and getting the faces (see vtkPolyhedron for example usage of these methods).

Reimplemented in Kitware.VTK.vtkGenericCell, and Kitware.VTK.vtkPolyhedron.

virtual void Kitware.VTK.vtkCell.ShallowCopy ( vtkCell  c) [virtual]

Copy this cell by reference counting the internal data structures. This is safe if you want a "read-only" copy. If you modify the cell you might wish to use DeepCopy().

Reimplemented in Kitware.VTK.vtkGenericCell.

virtual int Kitware.VTK.vtkCell.Triangulate ( int  index,
vtkIdList  ptIds,
vtkPoints  pts 
) [virtual]

Generate simplices of proper dimension. If cell is 3D, tetrahedron are generated; if 2D triangles; if 1D lines; if 0D points. The form of the output is a sequence of points, each n+1 points (where n is topological cell dimension) defining a simplex. The index is a parameter that controls which triangulation to use (if more than one is possible). If numerical degeneracy encountered, 0 is returned, otherwise 1 is returned. This method does not insert new points: all the points that define the simplices are the points that define the cell.

Reimplemented in Kitware.VTK.vtkGenericCell, Kitware.VTK.vtkPolygon, Kitware.VTK.vtkTriangle, Kitware.VTK.vtkPolyhedron, Kitware.VTK.vtkTetra, Kitware.VTK.vtkLine, Kitware.VTK.vtkBiQuadraticQuadraticHexahedron, Kitware.VTK.vtkTriQuadraticHexahedron, Kitware.VTK.vtkQuadraticTetra, Kitware.VTK.vtkBiQuadraticQuadraticWedge, Kitware.VTK.vtkQuadraticLinearWedge, Kitware.VTK.vtkConvexPointSet, Kitware.VTK.vtkQuadraticPyramid, Kitware.VTK.vtkQuadraticWedge, Kitware.VTK.vtkQuadraticLinearQuad, Kitware.VTK.vtkQuadraticHexahedron, Kitware.VTK.vtkBiQuadraticTriangle, Kitware.VTK.vtkQuadraticTriangle, Kitware.VTK.vtkBiQuadraticQuad, Kitware.VTK.vtkWedge, Kitware.VTK.vtkPyramid, Kitware.VTK.vtkCubicLine, Kitware.VTK.vtkQuadraticQuad, Kitware.VTK.vtkQuadraticEdge, Kitware.VTK.vtkVoxel, Kitware.VTK.vtkQuad, Kitware.VTK.vtkVertex, Kitware.VTK.vtkHexagonalPrism, Kitware.VTK.vtkPentagonalPrism, Kitware.VTK.vtkPolyLine, Kitware.VTK.vtkHexahedron, Kitware.VTK.vtkPixel, Kitware.VTK.vtkTriangleStrip, Kitware.VTK.vtkPolyVertex, and Kitware.VTK.vtkEmptyCell.

static internal int Kitware.VTK.vtkCell.vtkCell_CellBoundary_01 ( HandleRef  pThis,
int  subId,
IntPtr  pcoords,
HandleRef  pts 
) [private]
static internal void Kitware.VTK.vtkCell.vtkCell_Clip_02 ( HandleRef  pThis,
double  value,
HandleRef  cellScalars,
HandleRef  locator,
HandleRef  connectivity,
HandleRef  inPd,
HandleRef  outPd,
HandleRef  inCd,
int  cellId,
HandleRef  outCd,
int  insideOut 
) [private]
static internal void Kitware.VTK.vtkCell.vtkCell_Contour_03 ( HandleRef  pThis,
double  value,
HandleRef  cellScalars,
HandleRef  locator,
HandleRef  verts,
HandleRef  lines,
HandleRef  polys,
HandleRef  inPd,
HandleRef  outPd,
HandleRef  inCd,
int  cellId,
HandleRef  outCd 
) [private]
static internal void Kitware.VTK.vtkCell.vtkCell_DeepCopy_04 ( HandleRef  pThis,
HandleRef  c 
) [private]
static internal void Kitware.VTK.vtkCell.vtkCell_Derivatives_05 ( HandleRef  pThis,
int  subId,
IntPtr  pcoords,
IntPtr  values,
int  dim,
IntPtr  derivs 
) [private]
static internal void Kitware.VTK.vtkCell.vtkCell_EvaluateLocation_06 ( HandleRef  pThis,
ref int  subId,
IntPtr  pcoords,
IntPtr  x,
IntPtr  weights 
) [private]
static internal int Kitware.VTK.vtkCell.vtkCell_EvaluatePosition_07 ( HandleRef  pThis,
IntPtr  x,
IntPtr  closestPoint,
ref int  subId,
IntPtr  pcoords,
ref double  dist2,
IntPtr  weights 
) [private]
static internal void Kitware.VTK.vtkCell.vtkCell_GetBounds_08 ( HandleRef  pThis,
IntPtr  bounds 
) [private]
static internal IntPtr Kitware.VTK.vtkCell.vtkCell_GetBounds_09 ( HandleRef  pThis) [private]
static internal int Kitware.VTK.vtkCell.vtkCell_GetCellDimension_10 ( HandleRef  pThis) [private]
static internal int Kitware.VTK.vtkCell.vtkCell_GetCellType_11 ( HandleRef  pThis) [private]
static internal IntPtr Kitware.VTK.vtkCell.vtkCell_GetEdge_12 ( HandleRef  pThis,
int  edgeId,
ref uint  mteStatus,
ref uint  mteIndex,
ref uint  rawRefCount 
) [private]
static internal IntPtr Kitware.VTK.vtkCell.vtkCell_GetFace_13 ( HandleRef  pThis,
int  faceId,
ref uint  mteStatus,
ref uint  mteIndex,
ref uint  rawRefCount 
) [private]
static internal IntPtr Kitware.VTK.vtkCell.vtkCell_GetFaces_14 ( HandleRef  pThis) [private]
static internal double Kitware.VTK.vtkCell.vtkCell_GetLength2_15 ( HandleRef  pThis) [private]
static internal int Kitware.VTK.vtkCell.vtkCell_GetNumberOfEdges_16 ( HandleRef  pThis) [private]
static internal int Kitware.VTK.vtkCell.vtkCell_GetNumberOfFaces_17 ( HandleRef  pThis) [private]
static internal int Kitware.VTK.vtkCell.vtkCell_GetNumberOfPoints_18 ( HandleRef  pThis) [private]
static internal int Kitware.VTK.vtkCell.vtkCell_GetParametricCenter_19 ( HandleRef  pThis,
IntPtr  pcoords 
) [private]
static internal IntPtr Kitware.VTK.vtkCell.vtkCell_GetParametricCoords_20 ( HandleRef  pThis) [private]
static internal double Kitware.VTK.vtkCell.vtkCell_GetParametricDistance_21 ( HandleRef  pThis,
IntPtr  pcoords 
) [private]
static internal int Kitware.VTK.vtkCell.vtkCell_GetPointId_22 ( HandleRef  pThis,
int  ptId 
) [private]
static internal IntPtr Kitware.VTK.vtkCell.vtkCell_GetPointIds_23 ( HandleRef  pThis,
ref uint  mteStatus,
ref uint  mteIndex,
ref uint  rawRefCount 
) [private]
static internal IntPtr Kitware.VTK.vtkCell.vtkCell_GetPoints_24 ( HandleRef  pThis,
ref uint  mteStatus,
ref uint  mteIndex,
ref uint  rawRefCount 
) [private]
static internal void Kitware.VTK.vtkCell.vtkCell_Initialize_25 ( HandleRef  pThis,
int  npts,
IntPtr  pts,
HandleRef  p 
) [private]
static internal void Kitware.VTK.vtkCell.vtkCell_Initialize_26 ( HandleRef  pThis) [private]
static internal void Kitware.VTK.vtkCell.vtkCell_InterpolateDerivs_27 ( HandleRef  pThis,
IntPtr  pcoords,
IntPtr  derivs 
) [private]
static internal void Kitware.VTK.vtkCell.vtkCell_InterpolateFunctions_28 ( HandleRef  pThis,
IntPtr  pcoords,
IntPtr  weights 
) [private]
static internal int Kitware.VTK.vtkCell.vtkCell_IntersectWithLine_29 ( HandleRef  pThis,
IntPtr  p1,
IntPtr  p2,
double  tol,
ref double  t,
IntPtr  x,
IntPtr  pcoords,
ref int  subId 
) [private]
static internal int Kitware.VTK.vtkCell.vtkCell_IsA_30 ( HandleRef  pThis,
string  type 
) [private]
static internal int Kitware.VTK.vtkCell.vtkCell_IsExplicitCell_31 ( HandleRef  pThis) [private]
static internal int Kitware.VTK.vtkCell.vtkCell_IsLinear_32 ( HandleRef  pThis) [private]
static internal int Kitware.VTK.vtkCell.vtkCell_IsPrimaryCell_33 ( HandleRef  pThis) [private]
static internal int Kitware.VTK.vtkCell.vtkCell_IsTypeOf_34 ( string  type) [private]
static internal IntPtr Kitware.VTK.vtkCell.vtkCell_NewInstance_35 ( HandleRef  pThis,
ref uint  mteStatus,
ref uint  mteIndex,
ref uint  rawRefCount 
) [private]
static internal int Kitware.VTK.vtkCell.vtkCell_RequiresExplicitFaceRepresentation_36 ( HandleRef  pThis) [private]
static internal int Kitware.VTK.vtkCell.vtkCell_RequiresInitialization_37 ( HandleRef  pThis) [private]
static internal IntPtr Kitware.VTK.vtkCell.vtkCell_SafeDownCast_38 ( HandleRef  o,
ref uint  mteStatus,
ref uint  mteIndex,
ref uint  rawRefCount 
) [private]
static internal void Kitware.VTK.vtkCell.vtkCell_SetFaces_39 ( HandleRef  pThis,
IntPtr  arg0 
) [private]
static internal void Kitware.VTK.vtkCell.vtkCell_ShallowCopy_40 ( HandleRef  pThis,
HandleRef  c 
) [private]
static internal int Kitware.VTK.vtkCell.vtkCell_Triangulate_41 ( HandleRef  pThis,
int  index,
HandleRef  ptIds,
HandleRef  pts 
) [private]

Member Data Documentation

new readonly string Kitware.VTK.vtkCell.MRClassNameKey = "7vtkCell" [static]
new const string Kitware.VTK.vtkCell.MRFullTypeName = "Kitware.VTK.vtkCell"

The documentation for this class was generated from the following file: