ActiViz .NET  5.8.0
Public Member Functions | Static Public Member Functions | Public Attributes | Static Public Attributes | Protected Member Functions | Private Member Functions | Static Private Member Functions
Kitware.VTK.vtkDelaunay2D Class Reference

vtkDelaunay2D - create 2D Delaunay triangulation of input points More...

Inheritance diagram for Kitware.VTK.vtkDelaunay2D:
[legend]
Collaboration diagram for Kitware.VTK.vtkDelaunay2D:
[legend]

List of all members.

Public Member Functions

 vtkDelaunay2D (IntPtr rawCppThis, bool callDisposalMethod, bool strong)
 Automatically generated constructor - called from generated code. DO NOT call directly.
 vtkDelaunay2D ()
 Construct object with Alpha = 0.0; Tolerance = 0.001; Offset = 1.25; BoundingTriangulation turned off.
virtual void BoundingTriangulationOff ()
 Boolean controls whether bounding triangulation points (and associated triangles) are included in the output. (These are introduced as an initial triangulation to begin the triangulation process. This feature is nice for debugging output.)
virtual void BoundingTriangulationOn ()
 Boolean controls whether bounding triangulation points (and associated triangles) are included in the output. (These are introduced as an initial triangulation to begin the triangulation process. This feature is nice for debugging output.)
virtual double GetAlpha ()
 Specify alpha (or distance) value to control output of this filter. For a non-zero alpha value, only edges or triangles contained within a sphere centered at mesh vertices will be output. Otherwise, only triangles will be output.
virtual double GetAlphaMaxValue ()
 Specify alpha (or distance) value to control output of this filter. For a non-zero alpha value, only edges or triangles contained within a sphere centered at mesh vertices will be output. Otherwise, only triangles will be output.
virtual double GetAlphaMinValue ()
 Specify alpha (or distance) value to control output of this filter. For a non-zero alpha value, only edges or triangles contained within a sphere centered at mesh vertices will be output. Otherwise, only triangles will be output.
virtual int GetBoundingTriangulation ()
 Boolean controls whether bounding triangulation points (and associated triangles) are included in the output. (These are introduced as an initial triangulation to begin the triangulation process. This feature is nice for debugging output.)
virtual double GetOffset ()
 Specify a multiplier to control the size of the initial, bounding Delaunay triangulation.
virtual double GetOffsetMaxValue ()
 Specify a multiplier to control the size of the initial, bounding Delaunay triangulation.
virtual double GetOffsetMinValue ()
 Specify a multiplier to control the size of the initial, bounding Delaunay triangulation.
virtual int GetProjectionPlaneMode ()
 Define.
virtual int GetProjectionPlaneModeMaxValue ()
 Define.
virtual int GetProjectionPlaneModeMinValue ()
 Define.
vtkPolyData GetSource ()
 Get a pointer to the source object.
virtual double GetTolerance ()
 Specify a tolerance to control discarding of closely spaced points. This tolerance is specified as a fraction of the diagonal length of the bounding box of the points.
virtual double GetToleranceMaxValue ()
 Specify a tolerance to control discarding of closely spaced points. This tolerance is specified as a fraction of the diagonal length of the bounding box of the points.
virtual double GetToleranceMinValue ()
 Specify a tolerance to control discarding of closely spaced points. This tolerance is specified as a fraction of the diagonal length of the bounding box of the points.
virtual vtkAbstractTransform GetTransform ()
 Set / get the transform which is applied to points to generate a 2D problem. This maps a 3D dataset into a 2D dataset where triangulation can be done on the XY plane. The points are transformed and triangulated. The topology of triangulated points is used as the output topology. The output points are the original (untransformed) points. The transform can be any subclass of vtkAbstractTransform (thus it does not need to be a linear or invertible transform).
override int IsA (string type)
 Undocumented Block.
new vtkDelaunay2D NewInstance ()
 Undocumented Block.
virtual void SetAlpha (double _arg)
 Specify alpha (or distance) value to control output of this filter. For a non-zero alpha value, only edges or triangles contained within a sphere centered at mesh vertices will be output. Otherwise, only triangles will be output.
virtual void SetBoundingTriangulation (int _arg)
 Boolean controls whether bounding triangulation points (and associated triangles) are included in the output. (These are introduced as an initial triangulation to begin the triangulation process. This feature is nice for debugging output.)
virtual void SetOffset (double _arg)
 Specify a multiplier to control the size of the initial, bounding Delaunay triangulation.
virtual void SetProjectionPlaneMode (int _arg)
 Define.
void SetSource (vtkPolyData arg0)
 Specify the source object used to specify constrained edges and loops. (This is optional.) If set, and lines/polygons are defined, a constrained triangulation is created. The lines/polygons are assumed to reference points in the input point set (i.e. point ids are identical in the input and source). Old style. See SetSourceConnection.
void SetSourceConnection (vtkAlgorithmOutput algOutput)
 Specify the source object used to specify constrained edges and loops. (This is optional.) If set, and lines/polygons are defined, a constrained triangulation is created. The lines/polygons are assumed to reference points in the input point set (i.e. point ids are identical in the input and source). New style. This method is equivalent to SetInputConnection(1, algOutput).
virtual void SetTolerance (double _arg)
 Specify a tolerance to control discarding of closely spaced points. This tolerance is specified as a fraction of the diagonal length of the bounding box of the points.
virtual void SetTransform (vtkAbstractTransform arg0)
 Set / get the transform which is applied to points to generate a 2D problem. This maps a 3D dataset into a 2D dataset where triangulation can be done on the XY plane. The points are transformed and triangulated. The topology of triangulated points is used as the output topology. The output points are the original (untransformed) points. The transform can be any subclass of vtkAbstractTransform (thus it does not need to be a linear or invertible transform).

Static Public Member Functions

static new vtkDelaunay2D New ()
 Construct object with Alpha = 0.0; Tolerance = 0.001; Offset = 1.25; BoundingTriangulation turned off.
static new int IsTypeOf (string type)
 Undocumented Block.
static new vtkDelaunay2D SafeDownCast (vtkObjectBase o)
 Undocumented Block.

Public Attributes

new const string MRFullTypeName = "Kitware.VTK.vtkDelaunay2D"
 Automatically generated type registration mechanics.

Static Public Attributes

static new readonly string MRClassNameKey = "13vtkDelaunay2D"
 Automatically generated type registration mechanics.

Protected Member Functions

override void Dispose (bool disposing)
 Automatically generated protected Dispose method - called from public Dispose or the C# destructor. DO NOT call directly.

Private Member Functions

static internal IntPtr vtkDelaunay2D_New (ref uint mteStatus, ref uint mteIndex, ref uint rawRefCount)
static internal void vtkDelaunay2D_BoundingTriangulationOff_01 (HandleRef pThis)
static internal void vtkDelaunay2D_BoundingTriangulationOn_02 (HandleRef pThis)
static internal double vtkDelaunay2D_GetAlpha_03 (HandleRef pThis)
static internal double vtkDelaunay2D_GetAlphaMaxValue_04 (HandleRef pThis)
static internal double vtkDelaunay2D_GetAlphaMinValue_05 (HandleRef pThis)
static internal int vtkDelaunay2D_GetBoundingTriangulation_06 (HandleRef pThis)
static internal double vtkDelaunay2D_GetOffset_07 (HandleRef pThis)
static internal double vtkDelaunay2D_GetOffsetMaxValue_08 (HandleRef pThis)
static internal double vtkDelaunay2D_GetOffsetMinValue_09 (HandleRef pThis)
static internal int vtkDelaunay2D_GetProjectionPlaneMode_10 (HandleRef pThis)
static internal int vtkDelaunay2D_GetProjectionPlaneModeMaxValue_11 (HandleRef pThis)
static internal int vtkDelaunay2D_GetProjectionPlaneModeMinValue_12 (HandleRef pThis)
static internal IntPtr vtkDelaunay2D_GetSource_13 (HandleRef pThis, ref uint mteStatus, ref uint mteIndex, ref uint rawRefCount)
static internal double vtkDelaunay2D_GetTolerance_14 (HandleRef pThis)
static internal double vtkDelaunay2D_GetToleranceMaxValue_15 (HandleRef pThis)
static internal double vtkDelaunay2D_GetToleranceMinValue_16 (HandleRef pThis)
static internal IntPtr vtkDelaunay2D_GetTransform_17 (HandleRef pThis, ref uint mteStatus, ref uint mteIndex, ref uint rawRefCount)
static internal int vtkDelaunay2D_IsA_18 (HandleRef pThis, string type)
static internal int vtkDelaunay2D_IsTypeOf_19 (string type)
static internal IntPtr vtkDelaunay2D_NewInstance_21 (HandleRef pThis, ref uint mteStatus, ref uint mteIndex, ref uint rawRefCount)
static internal IntPtr vtkDelaunay2D_SafeDownCast_22 (HandleRef o, ref uint mteStatus, ref uint mteIndex, ref uint rawRefCount)
static internal void vtkDelaunay2D_SetAlpha_23 (HandleRef pThis, double _arg)
static internal void vtkDelaunay2D_SetBoundingTriangulation_24 (HandleRef pThis, int _arg)
static internal void vtkDelaunay2D_SetOffset_25 (HandleRef pThis, double _arg)
static internal void vtkDelaunay2D_SetProjectionPlaneMode_26 (HandleRef pThis, int _arg)
static internal void vtkDelaunay2D_SetSource_27 (HandleRef pThis, HandleRef arg0)
static internal void vtkDelaunay2D_SetSourceConnection_28 (HandleRef pThis, HandleRef algOutput)
static internal void vtkDelaunay2D_SetTolerance_29 (HandleRef pThis, double _arg)
static internal void vtkDelaunay2D_SetTransform_30 (HandleRef pThis, HandleRef arg0)

Static Private Member Functions

static vtkDelaunay2D ()
 Automatically generated type registration mechanics.

Detailed Description

vtkDelaunay2D - create 2D Delaunay triangulation of input points

Description vtkDelaunay2D is a filter that constructs a 2D Delaunay triangulation from a list of input points. These points may be represented by any dataset of type vtkPointSet and subclasses. The output of the filter is a polygonal dataset. Usually the output is a triangle mesh, but if a non-zero alpha distance value is specified (called the "alpha" value), then only triangles, edges, and vertices lying within the alpha radius are output. In other words, non-zero alpha values may result in arbitrary combinations of triangles, lines, and vertices. (The notion of alpha value is derived from Edelsbrunner's work on "alpha shapes".) Also, it is possible to generate "constrained triangulations" using this filter. A constrained triangulation is one where edges and loops (i.e., polygons) can be defined and the triangulation will preserve them (read on for more information).

The 2D Delaunay triangulation is defined as the triangulation that satisfies the Delaunay criterion for n-dimensional simplexes (in this case n=2 and the simplexes are triangles). This criterion states that a circumsphere of each simplex in a triangulation contains only the n+1 defining points of the simplex. (See "The Visualization Toolkit" text for more information.) In two dimensions, this translates into an optimal triangulation. That is, the maximum interior angle of any triangle is less than or equal to that of any possible triangulation.

Delaunay triangulations are used to build topological structures from unorganized (or unstructured) points. The input to this filter is a list of points specified in 3D, even though the triangulation is 2D. Thus the triangulation is constructed in the x-y plane, and the z coordinate is ignored (although carried through to the output). If you desire to triangulate in a different plane, you can use the vtkTransformFilter to transform the points into and out of the x-y plane or you can specify a transform to the Delaunay2D directly. In the latter case, the input points are transformed, the transformed points are triangulated, and the output will use the triangulated topology for the original (non-transformed) points. This avoids transforming the data back as would be required when using the vtkTransformFilter method. Specifying a transform directly also allows any transform to be used: rigid, non-rigid, non-invertible, etc.

If an input transform is used, then alpha values are applied (for the most part) in the original data space. The exception is when BoundingTriangulation is on. In this case, alpha values are applied in the original data space unless a cell uses a bounding vertex.

The Delaunay triangulation can be numerically sensitive in some cases. To prevent problems, try to avoid injecting points that will result in triangles with bad aspect ratios (1000:1 or greater). In practice this means inserting points that are "widely dispersed", and enables smooth transition of triangle sizes throughout the mesh. (You may even want to add extra points to create a better point distribution.) If numerical problems are present, you will see a warning message to this effect at the end of the triangulation process.

To create constrained meshes, you must define an additional input. This input is an instance of vtkPolyData which contains lines, polylines, and/or polygons that define constrained edges and loops. Only the topology of (lines and polygons) from this second input are used. The topology is assumed to reference points in the input point set (the one to be triangulated). In other words, the lines and polygons use point ids from the first input point set. Lines and polylines found in the input will be mesh edges in the output. Polygons define a loop with inside and outside regions. The inside of the polygon is determined by using the right-hand-rule, i.e., looking down the z-axis a polygon should be ordered counter-clockwise. Holes in a polygon should be ordered clockwise. If you choose to create a constrained triangulation, the final mesh may not satisfy the Delaunay criterion. (Noted: the lines/polygon edges must not intersect when projected onto the 2D plane. It may not be possible to recover all edges due to not enough points in the triangulation, or poorly defined edges (coincident or excessively long). The form of the lines or polygons is a list of point ids that correspond to the input point ids used to generate the triangulation.)

If an input transform is used, constraints are defined in the "transformed" space. So when the right hand rule is used for a polygon constraint, that operation is applied using the transformed points. Since the input transform can be any transformation (rigid or non-rigid), care must be taken in constructing constraints when an input transform is used.


Constructor & Destructor Documentation

static Kitware.VTK.vtkDelaunay2D.vtkDelaunay2D ( ) [static, private]

Automatically generated type registration mechanics.

Kitware.VTK.vtkDelaunay2D.vtkDelaunay2D ( IntPtr  rawCppThis,
bool  callDisposalMethod,
bool  strong 
)

Automatically generated constructor - called from generated code. DO NOT call directly.

Construct object with Alpha = 0.0; Tolerance = 0.001; Offset = 1.25; BoundingTriangulation turned off.


Member Function Documentation

Boolean controls whether bounding triangulation points (and associated triangles) are included in the output. (These are introduced as an initial triangulation to begin the triangulation process. This feature is nice for debugging output.)

Boolean controls whether bounding triangulation points (and associated triangles) are included in the output. (These are introduced as an initial triangulation to begin the triangulation process. This feature is nice for debugging output.)

override void Kitware.VTK.vtkDelaunay2D.Dispose ( bool  disposing) [protected]

Automatically generated protected Dispose method - called from public Dispose or the C# destructor. DO NOT call directly.

Reimplemented from Kitware.VTK.vtkPolyDataAlgorithm.

virtual double Kitware.VTK.vtkDelaunay2D.GetAlpha ( ) [virtual]

Specify alpha (or distance) value to control output of this filter. For a non-zero alpha value, only edges or triangles contained within a sphere centered at mesh vertices will be output. Otherwise, only triangles will be output.

virtual double Kitware.VTK.vtkDelaunay2D.GetAlphaMaxValue ( ) [virtual]

Specify alpha (or distance) value to control output of this filter. For a non-zero alpha value, only edges or triangles contained within a sphere centered at mesh vertices will be output. Otherwise, only triangles will be output.

virtual double Kitware.VTK.vtkDelaunay2D.GetAlphaMinValue ( ) [virtual]

Specify alpha (or distance) value to control output of this filter. For a non-zero alpha value, only edges or triangles contained within a sphere centered at mesh vertices will be output. Otherwise, only triangles will be output.

Boolean controls whether bounding triangulation points (and associated triangles) are included in the output. (These are introduced as an initial triangulation to begin the triangulation process. This feature is nice for debugging output.)

virtual double Kitware.VTK.vtkDelaunay2D.GetOffset ( ) [virtual]

Specify a multiplier to control the size of the initial, bounding Delaunay triangulation.

virtual double Kitware.VTK.vtkDelaunay2D.GetOffsetMaxValue ( ) [virtual]

Specify a multiplier to control the size of the initial, bounding Delaunay triangulation.

virtual double Kitware.VTK.vtkDelaunay2D.GetOffsetMinValue ( ) [virtual]

Specify a multiplier to control the size of the initial, bounding Delaunay triangulation.

Define.

Define.

Define.

Get a pointer to the source object.

Here is the call graph for this function:

virtual double Kitware.VTK.vtkDelaunay2D.GetTolerance ( ) [virtual]

Specify a tolerance to control discarding of closely spaced points. This tolerance is specified as a fraction of the diagonal length of the bounding box of the points.

virtual double Kitware.VTK.vtkDelaunay2D.GetToleranceMaxValue ( ) [virtual]

Specify a tolerance to control discarding of closely spaced points. This tolerance is specified as a fraction of the diagonal length of the bounding box of the points.

virtual double Kitware.VTK.vtkDelaunay2D.GetToleranceMinValue ( ) [virtual]

Specify a tolerance to control discarding of closely spaced points. This tolerance is specified as a fraction of the diagonal length of the bounding box of the points.

Set / get the transform which is applied to points to generate a 2D problem. This maps a 3D dataset into a 2D dataset where triangulation can be done on the XY plane. The points are transformed and triangulated. The topology of triangulated points is used as the output topology. The output points are the original (untransformed) points. The transform can be any subclass of vtkAbstractTransform (thus it does not need to be a linear or invertible transform).

Here is the call graph for this function:

override int Kitware.VTK.vtkDelaunay2D.IsA ( string  type) [virtual]

Undocumented Block.

Reimplemented from Kitware.VTK.vtkPolyDataAlgorithm.

static new int Kitware.VTK.vtkDelaunay2D.IsTypeOf ( string  type) [static]

Undocumented Block.

Reimplemented from Kitware.VTK.vtkPolyDataAlgorithm.

Construct object with Alpha = 0.0; Tolerance = 0.001; Offset = 1.25; BoundingTriangulation turned off.

Reimplemented from Kitware.VTK.vtkPolyDataAlgorithm.

Undocumented Block.

Reimplemented from Kitware.VTK.vtkPolyDataAlgorithm.

Undocumented Block.

Reimplemented from Kitware.VTK.vtkPolyDataAlgorithm.

Here is the call graph for this function:

virtual void Kitware.VTK.vtkDelaunay2D.SetAlpha ( double  _arg) [virtual]

Specify alpha (or distance) value to control output of this filter. For a non-zero alpha value, only edges or triangles contained within a sphere centered at mesh vertices will be output. Otherwise, only triangles will be output.

virtual void Kitware.VTK.vtkDelaunay2D.SetBoundingTriangulation ( int  _arg) [virtual]

Boolean controls whether bounding triangulation points (and associated triangles) are included in the output. (These are introduced as an initial triangulation to begin the triangulation process. This feature is nice for debugging output.)

virtual void Kitware.VTK.vtkDelaunay2D.SetOffset ( double  _arg) [virtual]

Specify a multiplier to control the size of the initial, bounding Delaunay triangulation.

virtual void Kitware.VTK.vtkDelaunay2D.SetProjectionPlaneMode ( int  _arg) [virtual]

Define.

Specify the source object used to specify constrained edges and loops. (This is optional.) If set, and lines/polygons are defined, a constrained triangulation is created. The lines/polygons are assumed to reference points in the input point set (i.e. point ids are identical in the input and source). Old style. See SetSourceConnection.

Specify the source object used to specify constrained edges and loops. (This is optional.) If set, and lines/polygons are defined, a constrained triangulation is created. The lines/polygons are assumed to reference points in the input point set (i.e. point ids are identical in the input and source). New style. This method is equivalent to SetInputConnection(1, algOutput).

virtual void Kitware.VTK.vtkDelaunay2D.SetTolerance ( double  _arg) [virtual]

Specify a tolerance to control discarding of closely spaced points. This tolerance is specified as a fraction of the diagonal length of the bounding box of the points.

Set / get the transform which is applied to points to generate a 2D problem. This maps a 3D dataset into a 2D dataset where triangulation can be done on the XY plane. The points are transformed and triangulated. The topology of triangulated points is used as the output topology. The output points are the original (untransformed) points. The transform can be any subclass of vtkAbstractTransform (thus it does not need to be a linear or invertible transform).

static internal void Kitware.VTK.vtkDelaunay2D.vtkDelaunay2D_BoundingTriangulationOff_01 ( HandleRef  pThis) [private]
static internal void Kitware.VTK.vtkDelaunay2D.vtkDelaunay2D_BoundingTriangulationOn_02 ( HandleRef  pThis) [private]
static internal double Kitware.VTK.vtkDelaunay2D.vtkDelaunay2D_GetAlpha_03 ( HandleRef  pThis) [private]
static internal double Kitware.VTK.vtkDelaunay2D.vtkDelaunay2D_GetAlphaMaxValue_04 ( HandleRef  pThis) [private]
static internal double Kitware.VTK.vtkDelaunay2D.vtkDelaunay2D_GetAlphaMinValue_05 ( HandleRef  pThis) [private]
static internal int Kitware.VTK.vtkDelaunay2D.vtkDelaunay2D_GetBoundingTriangulation_06 ( HandleRef  pThis) [private]
static internal double Kitware.VTK.vtkDelaunay2D.vtkDelaunay2D_GetOffset_07 ( HandleRef  pThis) [private]
static internal double Kitware.VTK.vtkDelaunay2D.vtkDelaunay2D_GetOffsetMaxValue_08 ( HandleRef  pThis) [private]
static internal double Kitware.VTK.vtkDelaunay2D.vtkDelaunay2D_GetOffsetMinValue_09 ( HandleRef  pThis) [private]
static internal int Kitware.VTK.vtkDelaunay2D.vtkDelaunay2D_GetProjectionPlaneMode_10 ( HandleRef  pThis) [private]
static internal int Kitware.VTK.vtkDelaunay2D.vtkDelaunay2D_GetProjectionPlaneModeMaxValue_11 ( HandleRef  pThis) [private]
static internal int Kitware.VTK.vtkDelaunay2D.vtkDelaunay2D_GetProjectionPlaneModeMinValue_12 ( HandleRef  pThis) [private]
static internal IntPtr Kitware.VTK.vtkDelaunay2D.vtkDelaunay2D_GetSource_13 ( HandleRef  pThis,
ref uint  mteStatus,
ref uint  mteIndex,
ref uint  rawRefCount 
) [private]
static internal double Kitware.VTK.vtkDelaunay2D.vtkDelaunay2D_GetTolerance_14 ( HandleRef  pThis) [private]
static internal double Kitware.VTK.vtkDelaunay2D.vtkDelaunay2D_GetToleranceMaxValue_15 ( HandleRef  pThis) [private]
static internal double Kitware.VTK.vtkDelaunay2D.vtkDelaunay2D_GetToleranceMinValue_16 ( HandleRef  pThis) [private]
static internal IntPtr Kitware.VTK.vtkDelaunay2D.vtkDelaunay2D_GetTransform_17 ( HandleRef  pThis,
ref uint  mteStatus,
ref uint  mteIndex,
ref uint  rawRefCount 
) [private]
static internal int Kitware.VTK.vtkDelaunay2D.vtkDelaunay2D_IsA_18 ( HandleRef  pThis,
string  type 
) [private]
static internal int Kitware.VTK.vtkDelaunay2D.vtkDelaunay2D_IsTypeOf_19 ( string  type) [private]
static internal IntPtr Kitware.VTK.vtkDelaunay2D.vtkDelaunay2D_New ( ref uint  mteStatus,
ref uint  mteIndex,
ref uint  rawRefCount 
) [private]
static internal IntPtr Kitware.VTK.vtkDelaunay2D.vtkDelaunay2D_NewInstance_21 ( HandleRef  pThis,
ref uint  mteStatus,
ref uint  mteIndex,
ref uint  rawRefCount 
) [private]
static internal IntPtr Kitware.VTK.vtkDelaunay2D.vtkDelaunay2D_SafeDownCast_22 ( HandleRef  o,
ref uint  mteStatus,
ref uint  mteIndex,
ref uint  rawRefCount 
) [private]
static internal void Kitware.VTK.vtkDelaunay2D.vtkDelaunay2D_SetAlpha_23 ( HandleRef  pThis,
double  _arg 
) [private]
static internal void Kitware.VTK.vtkDelaunay2D.vtkDelaunay2D_SetBoundingTriangulation_24 ( HandleRef  pThis,
int  _arg 
) [private]
static internal void Kitware.VTK.vtkDelaunay2D.vtkDelaunay2D_SetOffset_25 ( HandleRef  pThis,
double  _arg 
) [private]
static internal void Kitware.VTK.vtkDelaunay2D.vtkDelaunay2D_SetProjectionPlaneMode_26 ( HandleRef  pThis,
int  _arg 
) [private]
static internal void Kitware.VTK.vtkDelaunay2D.vtkDelaunay2D_SetSource_27 ( HandleRef  pThis,
HandleRef  arg0 
) [private]
static internal void Kitware.VTK.vtkDelaunay2D.vtkDelaunay2D_SetSourceConnection_28 ( HandleRef  pThis,
HandleRef  algOutput 
) [private]
static internal void Kitware.VTK.vtkDelaunay2D.vtkDelaunay2D_SetTolerance_29 ( HandleRef  pThis,
double  _arg 
) [private]
static internal void Kitware.VTK.vtkDelaunay2D.vtkDelaunay2D_SetTransform_30 ( HandleRef  pThis,
HandleRef  arg0 
) [private]

Member Data Documentation

new readonly string Kitware.VTK.vtkDelaunay2D.MRClassNameKey = "13vtkDelaunay2D" [static]

Automatically generated type registration mechanics.

Reimplemented from Kitware.VTK.vtkPolyDataAlgorithm.

new const string Kitware.VTK.vtkDelaunay2D.MRFullTypeName = "Kitware.VTK.vtkDelaunay2D"

Automatically generated type registration mechanics.

Reimplemented from Kitware.VTK.vtkPolyDataAlgorithm.


The documentation for this class was generated from the following file: