GNATcheck Reference Manual
Predefined Rules

GNAT, The GNU Ada Compiler
GNAT Version 4.6
Configuration level: 150355
Date: 2009/10/06

AdaCore

Copyright © 2009, AdaCore

GNATCHECK is free software; you can redistribute it and/or modify it under
terms of the GNU General Public License as published by the Free Software
Foundation; either version 2, or (at your option) any later version. GNAT is
distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR
A PARTICULAR PURPOSE. See the GNU General Public License for more
details. You should have received a copy of the GNU General Public License
distributed with GNAT; see file COPYING. If not, write to the Free Software
Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.

About This Manual

About This Manual

The gnatcheck tool in GNAT can be used to enforce coding conventions by
analyzing Ada source programs with respect to a set of rules supplied at tool
invocation. This manual describes the complete set of predefined rules that
gnatcheck can take as input.

What This Guide Contains

This guide contains a description of each predefined gnatcheck rule, organized
into categories.

e Chapter 1 [Style-Related Rules], page 3, presents the rules related to gen-
eral programming style.

e Chapter 2 [Feature Usage Rules], page 17, presents rules that enforce usage
patterns for specific features.

e Chapter 3 [Metrics-Related Rules], page 23, presents rules that enforce
compliance with metric thresholds.

e Chapter 4 [SPARK Ada Rules], page 25, presents rules that enforce adher-
ence to the Ada subset handled by the SPARK tools.

e Appendix A [List of Rules], page 29, gives an alphabetized list of all prede-
fined rules, for ease of reference.

The name of each rule (the “rule identifier”) denotes the condition that is de-
tected and flagged by gnatcheck. The rule identifier is used as a parameter of
the ‘“+Rr’ or ‘-R’ switch to gnatcheck.

What You Should Know Before Reading This Guide

You should be familiar with the Ada language and with the usage of GNAT in
general and with the gnatcheck tool in particular; please refer to the GNAT
User’s Guide.

Chapter 1: Style-Related Rules

1 Style-Related Rules

The rules in this chapter may be used to enforce various feature usages consis-
tent with good software engineering, for example as described in Ada 95 Quality
and Style.

1.1 Tasking

The rules in this section may be used to enforce various feature usages related
to concurrency.

1.1.1 Multiple_Entries_In_Protected_Definitions

Flag each protected definition (i.e., each protected object/type declaration) that
defines more than one entry. Diagnostic messages are generated for all the
entry declarations except the first one. An entry family is counted as one entry.
Entries from the private part of the protected definition are also checked.

This rule has no parameters.

1.1.2 volatile_Objects_Without_Address_Clauses

Flag each volatile object that does not have an address clause.
The following check is made: if the pragma volatile is applied to a data
object or to its type, then an address clause must be supplied for this object.

This rule does not check the components of data objects, array components
that are volatile as a result of the pragma volatile_Components, or objects
that are volatile because they are atomic as a result of pragmas Atomic or
Atomic_Components.

Only variable declarations, and not constant declarations, are checked.

This rule has no parameters.

1.2 Object Orientation

The rules in this section may be used to enforce various feature usages related
to Object-Oriented Programming.

1.2.1 Deep_Inheritance_Hierarchies

Flags a tagged derived type declaration or an interface type declaration if its
depth (in its inheritance hierarchy) exceeds the value specified by the ‘N’ rule
parameter.

The inheritance depth of a tagged type or interface type is defined as 0 for a
type with no parent and no progenitor, and otherwise as 1 + max of the depths
of the immediate parent and immediate progenitors.

GNATcheck Reference Manual - Predefined Rules

This rule does not flag private extension declarations. In the case of a private
extension, the corresponding full declaration is checked.

This rule has the following (mandatory) parameter for the ‘+r’ option:
N Integer not less than -1 specifying the maximal allowed depth of

any inheritance hierarchy. If the rule parameter is set to -1, the rule
flags all the declarations of tagged and interface types.

1.2.2 Direct_Calls _To Primitives
Flags any non-dispatching call to a dispatching primitive operation, except for
two cases:
e the common idiom where a primitive subprogram for a tagged type directly
calls the same primitive subprogram of the type’s immediate ancestor;

e the type for that the called operation is a primitive operation is declared as
private non tagged type (with the full view tagged), and at the place of the
call the full declaration of the type is not visible;

This rule has no parameters.

1.2.3 Too_Many_Parents

Flags any type declaration, single task declaration or single protected dec-
laration that has more then ‘N’ parents, ‘N’ is a parameter of the rule. A
parent here is either a (sub)type denoted by the subtype mark from the par-
ent_subtype_indication (in case of a derived type declaration), or any of the
progenitors from the interface list, if any.

This rule has the following (mandatory) parameters for the ‘+Rr’ option:

N Positive integer specifying the maximal allowed number of parents.

1.2.4 visible_Components

Flags all the type declarations located in the visible part of a library package
or a library generic package that can declare a visible component. A type is
considered as declaring a visible component if it contains a record definition by
its own or as a part of a record extension. Type declaration is flagged even if it
contains a record definition that defines no components.

Declarations located in private parts of local (generic) packages are not
flagged. Declarations in private packages are not flagged.

This rule has no parameters.

1.3 Portability

The rules in this section may be used to enforce various feature usages that
support program portability.

Chapter 1: Style-Related Rules

1.3.1 Forbidden Attributes

Flag each use of the specified attributes. The attributes to be detected are
named in the rule’s parameters.

This rule has the following parameters:
e For the ‘“+Rr’ option

Attribute_Designator
Adds the specified attribute to the set of attributes to be detected
and sets the detection checks for all the specified attributes ON.
If Attribute_Designator does not denote any attribute defined
in the Ada standard or in Section “Implementation Defined At-
tributes” in GNAT Reference Manual, it is treated as the name
of unknown attribute.

GNAT All the GNAT-specific attributes are detected; this sets the de-
tection checks for all the specified attributes ON.
ALL All attributes are detected; this sets the rule ON.

e For the ‘-Rr’ option

Attribute_Designator
Removes the specified attribute from the set of attributes to be
detected without affecting detection checks for other attributes.
If Attribute_Designator does not correspond to any attribute de-
fined in the Ada standard or in Section “Implementation Defined
Attributes” in GNAT Reference Manual, this option is treated
as turning OFF detection of all unknown attributes.

GNAT Turn OFF detection of all GNAT-specific attributes

ALL Clear the list of the attributes to be detected and turn the rule
OFF.

Parameters are not case sensitive. If Attribute_Designator does not have the
syntax of an Ada identifier and therefore can not be considered as a (part of an)
attribute designator, a diagnostic message is generated and the corresponding
parameter is ignored. (If an attribute allows a static expression to be a part of
the attribute designator, this expression is ignored by this rule.)

When more then one parameter is given in the same rule option, the param-
eters must be separated by commas.

If more then one option for this rule is specified for the gnatcheck call, a new
option overrides the previous one(s).

The ‘4R’ option with no parameters turns the rule ON, with the set of at-
tributes to be detected defined by the previous rule options. (By default this set
is empty, so if the only option specified for the rule is ‘“+RForbidden_aAttributes’

GNATcheck Reference Manual - Predefined Rules

(with no parameter), then the rule is enabled, but it does not detect anything).
The ‘-r’ option with no parameter turns the rule OFF, but it does not affect the
set of attributes to be detected.

1.3.2 Forbidden_Pragmas

Flag each use of the specified pragmas. The pragmas to be detected are named
in the rule’s parameters.
This rule has the following parameters:

e For the ‘“+r’ option

Pragma_Name

Adds the specified pragma to the set of pragmas to be
checked and sets the checks for all the specified pragmas
ON. Pragma_Name is treated as a name of a pragma. If it
does not correspond to any pragma name defined in the Ada
standard or to the name of a GNAT-specific pragma defined in
Section “Implementation Defined Pragmas” in GNAT Reference
Manual, it is treated as the name of unknown pragma.

GNAT All the GNAT-specific pragmas are detected; this sets the checks
for all the specified pragmas ON.

ALL All pragmas are detected; this sets the rule ON.
e For the ‘-Rr’ option

Pragma_Name

Removes the specified pragma from the set of pragmas
to be checked without affecting checks for other pragmas.
Pragma_Name is treated as a name of a pragma. If it does
not correspond to any pragma defined in the Ada standard
or to any name defined in Section “Implementation Defined
Pragmas” in GNAT Reference Manual, this option is treated as
turning OFF detection of all unknown pragmas.

GNAT Turn OFF detection of all GNAT-specific pragmas

ALL Clear the list of the pragmas to be detected and turn the rule
OFF.

Parameters are not case sensitive. If Pragma_Name does not have the syntax
of an Ada identifier and therefore can not be considered as a pragma name, a
diagnostic message is generated and the corresponding parameter is ignored.
When more then one parameter is given in the same rule option, the param-
eters must be separated by a comma.
If more then one option for this rule is specified for the gnatcheck call, a new
option overrides the previous one(s).

Chapter 1: Style-Related Rules

The ‘+r’ option with no parameters turns the rule ON with the set of pragmas
to be detected defined by the previous rule options. (By default this set is empty,
so if the only option specified for the rule is ‘“+RForbidden_Pragmas’ (with no
parameter), then the rule is enabled, but it does not detect anything). The ‘-r’
option with no parameter turns the rule OFF, but it does not affect the set of
pragmas to be detected.

1.3.3 Implicit_SMALL_For_Fixed_Point_Types

Flag each fixed point type declaration that lacks an explicit representation
clause to define its ' smal1 value. Since ’ Small can be defined only for ordinary
fixed point types, decimal fixed point type declarations are not checked.

This rule has no parameters.

1.3.4 Predefined_Numeric_Types

Flag each explicit use of the name of any numeric type or subtype defined in
package Standard.

The rationale for this rule is to detect when the program may depend on
platform-specific characteristics of the implementation of the predefined nu-
meric types. Note that this rule is over-pessimistic; for example, a program
that uses string indexing likely needs a variable of type Integer. Another
example is the flagging of predefined numeric types with explicit constraints:

subtype My_Integer is Integer range Left .. Right;

Vy_Var : My_Integer;
This rule detects only numeric types and subtypes defined in standard. The
use of numeric types and subtypes defined in other predefined packages (such
as System.Any_Priority Or Ada.Text_IO. Count) is not ﬂagged

This rule has no parameters.

1.3.5 Separate_Numeric_Error_Handlers

Flags each exception handler that contains a choice for the predefined
Constraint_Error exception, but does not contain the choice for the predefined
Numeric_Error exception, or that contains the choice for Numeric_Error, but
does not contain the choice for Constraint_Error.

This rule has no parameters.

1.4 Program Structure

The rules in this section may be used to enforce feature usages related to pro-
gram structure.

GNATcheck Reference Manual - Predefined Rules

1.4.1 Deeply_Nested_Generics

Flags a generic declaration nested in another generic declaration if the nesting
level of the inner generic exceeds a value specified by the ‘N’ rule parameter.
The nesting level is the number of generic declarations that enclose the given
(generic) declaration. Formal packages are not flagged by this rule.

This rule has the following (mandatory) parameters for the ‘+r’ option:

N Positive integer specifying the maximal allowed nesting level for a
generic declaration.

1.4.2 Local_Packages

Flag all local packages declared in package and generic package specs. Local
packages in bodies are not flagged.

This rule has no parameters.

1.4.3 Non_Visible_Exceptions

Flag constructs leading to the possibility of propagating an exception out of the
scope in which the exception is declared. Two cases are detected:

e An exception declaration in a subprogram body, task body or block state-
ment is flagged if the body or statement does not contain a handler for that
exception or a handler with an others choice.

e A raise statement in an exception handler of a subprogram body, task body
or block statement is flagged if it (re)raises a locally declared exception. This
may occur under the following circumstances:

— it explicitly raises a locally declared exception, or

— it does not specify an exception name (i.e., it is simply raise;) and the
enclosing handler contains a locally declared exception in its exception
choices.

Renamings of local exceptions are not flagged.
This rule has no parameters.

1.4.4 Raising_External_Exceptions

Flag any raise statement, in a program unit declared in a library package
or in a generic library package, for an exception that is neither a predefined
exception nor an exception that is also declared (or renamed) in the visible part
of the package.

This rule has no parameters.

Chapter 1: Style-Related Rules

1.5 Programming Practice

The rules in this section may be used to enforce feature usages that relate to
program maintainability.

1.5.1 Anonymous_Arrays
Flag all anonymous array type definitions (by Ada semantics these can only
occur in object declarations).

This rule has no parameters.

1.5.2 Enumeration_Ranges_In_CASE_Statements

Flag each use of a range of enumeration literals as a choice in a case statement.
All forms for specifying a range (explicit ranges such as a .. B, subtype marks
and ’Range attributes) are flagged. An enumeration range is flagged even if
contains exactly one enumeration value or no values at all. A type derived from
an enumeration type is considered as an enumeration type.

This rule helps prevent maintenance problems arising from adding an enu-
meration value to a type and having it implicitly handled by an existing case
statement with an enumeration range that includes the new literal.

This rule has no parameters.

1.5.3 Exceptions_As_Control_Flow

Flag each place where an exception is explicitly raised and handled in the same
subprogram body. A raise statement in an exception handler, package body,
task body or entry body is not flagged.

The rule has no parameters.

1.5.4 Exits_From Conditional_Loops

Flag any exit statement if it transfers the control out of a for loop or a while
loop. This includes cases when the exit statement applies to a FOR or while
loop, and cases when it is enclosed in some for or while loop, but transfers the
control from some outer (unconditional) 100p statement.

The rule has no parameters.

1.5.5 EXIT_Statements_With_No_Loop_Name

Flag each exit statement that does not specify the name of the loop being
exited.

The rule has no parameters.

1.5.6 GOTO_Statements
Flag each occurrence of a goto statement.

GNATcheck Reference Manual - Predefined Rules

This rule has no parameters.

1.5.7 Improper_Returns

Flag each explicit return statement in procedures, and multiple return state-
ments in functions. Diagnostic messages are generated for all return state-
ments in a procedure (thus each procedure must be written so that it returns
implicitly at the end of its statement part), and for all return statements in
a function after the first one. This rule supports the stylistic convention that
each subprogram should have no more than one point of normal return.

This rule has no parameters.

1.5.8 Non_Short_Circuit_Operators

Flag all calls to predefined and and or operators for any boolean type. Calls
to user-defined and and or and to operators defined by renaming declarations
are not flagged. Calls to predefined and and or operators for modular types or
boolean array types are not flagged.

This rule has no parameters.

1.5.9 OTHERS_In_Aggregates

Flag each use of an others choice in extension aggregates. In record and
array aggregates, an others choice is flagged unless it is used to refer to all
components, or to all but one component.

If, in case of a named array aggregate, there are two associations, one with
an others choice and another with a discrete range, the ot hers choice is flagged
even if the discrete range specifies exactly one component; for example, (1..1
=> 0, others=>1).

This rule has no parameters.

1.5.10 OTHERS_In_ CASE_Statements

Flag any use of an others choice in a case statement.
This rule has no parameters.

1.56.11 OTHERS_In_Exception_Handlers

Flag any use of an others choice in an exception handler.
This rule has no parameters.

1.56.12 Overly_Nested_Control_Structures

Flag each control structure whose nesting level exceeds the value provided in
the rule parameter.

The control structures checked are the following:

10

Chapter 1: Style-Related Rules

e if statement

e case statement

e loop statement

e Selective accept statement

e Timed entry call statement

e Conditional entry call

e Asynchronous select statement

The rule has the following parameter for the ‘+r’ option:

N Positive integer specifying the maximal control structure nesting
level that is not flagged

If the parameter for the ‘+RrR’ option is not specified or if it is not a positive integer,
‘+R’ option is ignored.

If more then one option is specified for the gnatcheck call, the later option
and new parameter override the previous one(s).

1.5.13 pPositional Actuals For Defaulted_Generic_
Parameters

Flag each generic actual parameter corresponding to a generic formal parameter
with a default initialization, if positional notation is used.

This rule has no parameters.

1.5.14 pPositional Actuals For Defaulted Parameters

Flag each actual parameter to a subprogram or entry call where the corre-
sponding formal parameter has a default expression, if positional notation is
used.

This rule has no parameters.

1.5.15 Positional_Components

Flag each array, record and extension aggregate that includes positional nota-
tion.

This rule has no parameters.

1.5.16 Positional Generic_Parameters

Flag each positional actual generic parameter except for the case when the
generic unit being instantiated has exactly one generic formal parameter.

This rule has no parameters.

11

GNATcheck Reference Manual - Predefined Rules

1.5.17 pPositional Parameters
Flag each positional parameter notation in a subprogram or entry call, except
for the following:

e Parameters of calls to of prefix or infix operators are not flagged

e If the called subprogram or entry has only one formal parameter, the pa-
rameter of the call is not flagged;

e If a subprogram call uses the Object.Operation notation, then
— the first parameter (that is, Object) is not flagged,;
— if the called subprogram has only two parameters, the second parame-
ter of the call is not flagged;

This rule has no parameters.

1.5.18 Recursive_Subprograms

Flags specs (and bodies that act as specs) of recursive subprograms. A
subprogram is considered as recursive in a given context if there exists a chain of
direct calls starting from the body of, and ending at this subprogram within this
context. A context is provided by the set of Ada sources specified as arguments
of a given gnatcheck call. Neither dispatching calls nor calls through access-to-
subprograms are considered as direct calls by this rule.

Generic subprograms and subprograms detected in generic units are not
flagged. Recursive subprograms in expanded generic instantiations are flagged.

This rule has no parameters.

1.5.19 Unconditional Exits

Flag unconditional exit statements.
This rule has no parameters.

1.5.20 Unnamed_Blocks_And_Loops

Flag each unnamed block statement and loop statement.
The rule has no parameters.

1.5.21 USE_PACKAGE_Clauses

Flag all use clauses for packages; use type clauses are not flagged.
This rule has no parameters.

1.6 Readability

The rules described in this section may be used to enforce feature usages that
contribute towards readability.

12

Chapter 1: Style-Related Rules

1.6.1 Misnamed_Controlling_Parameters

Flags a declaration of a dispatching operation, if the first parameter is not a
controlling one and its name is not This (the check for parameter name is not
case-sensitive). Declarations of dispatching functions with controlling result
and no controlling parameter are never flagged.

A subprogram body declaration, subprogram renaming declaration or sub-
program body stub is flagged only if it is not a completion of a prior subprogram
declaration.

This rule has no parameters.

1.6.2 Misnamed_Identifiers

Flag the declaration of each identifier that does not have a suffix corresponding
to the kind of entity being declared. The following declarations are checked:

e type declarations

e subtype declarations

e constant declarations (but not number declarations)

e package renaming declarations (but not generic package renaming decla-

rations)

This rule may have parameters. When used without parameters, the rule
enforces the following checks:

e type-defining names end with _T, unless the type is an access type, in which
case the suffix must be _a

e constant names end with _c
e names defining package renamings end with _r

Defining identifiers from incomplete type declarations are never flagged.

For a private type declaration (including private extensions), the defining
identifier from the private type declaration is checked against the type suffix
(even if the corresponding full declaration is an access type declaration), and the
defining identifier from the corresponding full type declaration is not checked.

For a deferred constant, the defining name in the corresponding full constant
declaration is not checked.

Defining names of formal types are not checked.
The rule may have the following parameters:
e For the ‘“+R’ option:

Default Sets the default listed above for all the names to be checked.

Type_Suffix=string
Specifies the suffix for a type name.

13

GNATcheck Reference Manual - Predefined Rules

14

Access_Suffix=string

Specifies the suffix for an access type name. If this param-
eter is set, it overrides for access types the suffix set by the
Type_suffix parameter. For access types, string may have the
following format: suffix1(suffix2). That means that an access
type name should have the suffix1 suffix except for the case
when the designated type is also an access type, in this case the
type name should have the suffixI & suffix2 suffix.

Class_Access_Suffix=string
Specifies the suffix for the name of an access type that points to
some class-wide type. If this parameter is set, it overrides for
such access types the suffix set by the Type_suffix or Access_
Suffix parameter.

Class_Subtype_Suffix=string
Specifies the suffix for the name of a subtype that denotes a
class-wide type.

Constant_Suffix=string
Specifies the suffix for a constant name.

Renaming_Suffix=string
Specifies the suffix for a package renaming name.

For the ‘-Rr’ option:

All_Suffixes
Remove all the suffixes specified for the identifier suffix checks,
whether by default or as specified by other rule parameters. All
the checks for this rule are disabled as a result.

Type_Suffix
Removes the suffix specified for types. This disables checks
for types but does not disable any other checks for this rule
(including the check for access type names if Access_suffix is
set).

Access_Suffix
Removes the suffix specified for access types. This disables
checks for access type names but does not disable any other
checks for this rule. If Type_suffix is set, access type names
are checked as ordinary type names.

Class_Access_Suffix
Removes the suffix specified for access types pointing to class-
wide type. This disables specific checks for names of access
types pointing to class-wide types but does not disable any other

Chapter 1: Style-Related Rules

checks for this rule. If Type_suffix is set, access type names
are checked as ordinary type names. If Access_suffix is set,
these access types are checked as any other access type name.

Class_Subtype_Suffix=string
Removes the suffix specified for subtype names. This disables
checks for subtype names but does not disable any other checks
for this rule.

Constant_Suffix
Removes the suffix specified for constants. This disables checks
for constant names but does not disable any other checks for
this rule.

Renaming_Suffix
Removes the suffix specified for package renamings. This dis-
ables checks for package renamings but does not disable any
other checks for this rule.

If more than one parameter is used, parameters must be separated by commas.

If more than one option is specified for the gnatcheck invocation, a new
option overrides the previous one(s).

The ‘“+RMisnamed_TIdentifiers’ option (with no parameter) enables checks
for all the name suffixes specified by previous options used for this rule.

The ‘-RMisnamed_Identifiers’ option (with no parameter) disables all the
checks but keeps all the suffixes specified by previous options used for this rule.

The string value must be a valid suffix for an Ada identifier (after trimming
all the leading and trailing space characters, if any). Parameters are not case
sensitive, except the string part.

If any error is detected in a rule parameter, the parameter is ignored. In
such a case the options that are set for the rule are not specified.

1.6.3 Name_Clashes

Check that certain names are not used as defining identifiers. To activate
this rule, you need to supply a reference to the dictionary file(s) as a rule
parameter(s) (more then one dictionary file can be specified). If no dictionary file
is set, this rule will not cause anything to be flagged. Only defining occurrences,
not references, are checked. The check is not case-sensitive.

This rule is enabled by default, but without setting any corresponding dic-
tionary file(s); thus the default effect is to do no checks.

A dictionary file is a plain text file. The maximum line length for this file
is 1024 characters. If the line is longer then this limit, extra characters are
ignored.

15

GNATcheck Reference Manual - Predefined Rules

Each line can be either an empty line, a comment line, or a line containing
a list of identifiers separated by space or HT characters. A comment is an
Ada-style comment (from -- to end-of-line). Identifiers must follow the Ada
syntax for identifiers. A line containing one or more identifiers may end with a
comment.

1.6.4 Uncommented_BEGIN_In_Package_Bodies

Flags each package body with declarations and a statement part that does
not include a trailing comment on the line containing the begin keyword; this
trailing comment needs to specify the package name and nothing else. The
begin is not flagged if the package body does not contain any declarations.

If the begin keyword is placed on the same line as the last declaration or
the first statement, it is flagged independently of whether the line contains a
trailing comment. The diagnostic message is attached to the line containing
the first statement.

This rule has no parameters.

1.7 Source Code Presentation

This section is a placeholder; there are currently no rules in this category.

16

Chapter 2: Feature Usage Rules

2 Feature Usage Rules

The rules in this chapter can be used to enforce specific usage patterns for a
variety of language features.

2.1 Abstract_Type_Declarations

Flag all declarations of abstract types. For an abstract private type, both the
private and full type declarations are flagged.

This rule has no parameters.

2.2 Anonymous_Subtypes

Flag all uses of anonymous subtypes (except cases when subtype indication is
a part of a record component definition, and this subtype indication depends on
a discriminant). A use of an anonymous subtype is any instance of a subtype
indication with a constraint, other than one that occurs immediately within a
subtype declaration. Any use of a range other than as a constraint used imme-
diately within a subtype declaration is considered as an anonymous subtype.

An effect of this rule is that for loops such as the following are flagged (since
1..Nis formally a “range”):
for T in 1 .. N loop

end loop;
Declaring an explicit subtype solves the problem:
subtype S is Integer range 1..N;
for I in S loop
end loop;
This rule has no parameters.

2.3 Blocks

Flag each block statement.
This rule has no parameters.

2.4 Complex_Inlined_ Subprograms

Flags a subprogram (or generic subprogram) if pragma Inline is applied to the
subprogram and at least one of the following conditions is met:
e it contains at least one complex declaration such as a subprogram body,
package, task, protected declaration, or a generic instantiation (except in-
stantiation of Ada.Unchecked_Conversion);

17

GNATcheck Reference Manual - Predefined Rules

e it contains at least one complex statement such as a loop, a case or a if
statement, or a short circuit control form;

e the number of statements exceeds a value specified by the ‘N’ rule parame-
ter;

This rule has the following (mandatory) parameter for the ‘+r’ option:

N Positive integer specifying the maximum allowed total number of
statements in the subprogram body.

2.5 Controlled Type_Declarations

Flag all declarations of controlled types. A declaration of a private type is
flagged if its full declaration declares a controlled type. A declaration of a
derived type is flagged if its ancestor type is controlled. Subtype declarations
are not checked. A declaration of a type that itself is not a descendant of a type
declared in Ada.Finalization but has a controlled component is not checked.

This rule has no parameters.

2.6 Declarations_In Blocks

Flag all block statements containing local declarations. A declare block with
an empty declarative_part or with a declarative part containing only pragmas
and/or use clauses is not flagged.

This rule has no parameters.

2.7 Deeply Nested_ Inlining

Flags a subprogram (or generic subprogram) if pragma Inline has been applied
to the subprogram but the subprogram calls to another inlined subprogram that
results in nested inlining with nesting depth exceeding the value specified by
the ‘N’ rule parameter.

This rule requires the global analysis of all the compilation units that are
gnatcheck arguments; such analysis may affect the tool’s performance.

This rule has the following (mandatory) parameter for the ‘+r’ option:

N Positive integer specifying the maximal allowed level of nested in-
lining.

2.8 Default Parameters

Flag all default expressions in parameters specifications. All parameter speci-
fications are checked: in subprograms (including formal, generic and protected
subprograms) and in task and protected entries (including accept statements
and entry bodies).

18

Chapter 2: Feature Usage Rules

This rule has no parameters.

2.9 Discriminated Records

Flag all declarations of record types with discriminants. Only the declarations
of record and record extension types are checked. Incomplete, formal, private,
derived and private extension type declarations are not checked. Task and
protected type declarations also are not checked.

This rule has no parameters.

2.10 Explicit_Full Discrete_Ranges

Flag each discrete range that has the form A’ First .. A’ Last.
This rule has no parameters.

2.11 Float_Equality_ Checks

Flag all calls to the predefined equality operations for floating-point types. Both
“=” and “/=" operations are checked. User-defined equality operations are not
flagged, nor are “=” and “/=" operations for fixed-point types.

This rule has no parameters.

2.12 Function_Style_Procedures

Flag each procedure that can be rewritten as a function. A procedure can be
converted into a function if it has exactly one parameter of mode out and no
parameters of mode in out. Procedure declarations, formal procedure declara-
tions, and generic procedure declarations are always checked. Procedure bodies
and body stubs are flagged only if they do not have corresponding separate dec-
larations. Procedure renamings and procedure instantiations are not flagged.

If a procedure can be rewritten as a function, but its out parameter is of a
limited type, it is not flagged.

Protected procedures are not flagged. Null procedures also are not flagged.
This rule has no parameters.

2.13 Generics_In_Subprograms

Flag each declaration of a generic unit in a subprogram. Generic declarations
in the bodies of generic subprograms are also flagged. A generic unit nested
in another generic unit is not flagged. If a generic unit is declared in a local
package that is declared in a subprogram body, the generic unit is flagged.

This rule has no parameters.

19

GNATcheck Reference Manual - Predefined Rules

2.14 Implicit_IN Mode_Parameters

Flag each occurrence of a formal parameter with an implicit in mode. Note that
access parameters, although they technically behave like in parameters, are
not flagged.

This rule has no parameters.

2.15 Improperly Located Instantiations
Flag all generic instantiations in library-level package specs (including library
generic packages) and in all subprogram bodies.

Instantiations in task and entry bodies are not flagged. Instantiations in the
bodies of protected subprograms are flagged.

This rule has no parameters.

2.16 Library_ Level Subprograms
Flag all library-level subprograms (including generic subprogram instantia-
tions).

This rule has no parameters.

2.17 Non_Qualified Aggregates

Flag each non-qualified aggregate. A non-qualified aggregate is an aggregate
that is not the expression of a qualified expression. A string literal is not
considered an aggregate, but an array aggregate of a string type is considered
as a normal aggregate. Aggregates of anonymous array types are not flagged.

This rule has no parameters.

2.18 Numeric Literals
Flag each use of a numeric literal in an index expression, and in any circum-
stance except for the following:

e aliteral occurring in the initialization expression for a constant declaration
or a named number declaration, or

e an integer literal that is less than or equal to a value specified by the ‘N’
rule parameter.

This rule may have the following parameters for the ‘+rR’ option:

N N is an integer literal used as the maximal value that is not flagged
(i.e., integer literals not exceeding this value are allowed)

ALL All integer literals are flagged

20

Chapter 2: Feature Usage Rules

If no parameters are set, the maximum unflagged value is 1.

The last specified check limit (or the fact that there is no limit at all) is used
when multiple ‘+R’ options appear.

The ‘-r’ option for this rule has no parameters. It disables the rule but retains
the last specified maximum unflagged value. If the ‘“+R’ option subsequently
appears, this value is used as the threshold for the check.

2.19 Parameters Out Of Order
Flag each subprogram and entry declaration whose formal parameters are not
ordered according to the following scheme:

e in and access parameters first, then in out parameters, and then out
parameters;

e for in mode, parameters with default initialization expressions occur last
Only the first violation of the described order is flagged.
The following constructs are checked:
e subprogram declarations (including null procedures);
e generic subprogram declarations;
e formal subprogram declarations;
e entry declarations;
e subprogram bodies and subprogram body stubs that do not have separate
specifications
Subprogram renamings are not checked.
This rule has no parameters.

2.20 Raising Predefined_ Exceptions

Flag each raise statement that raises a predefined exception (i.e., one of the ex-
ceptions Constraint_Error, Numeric_Error, Program_Error, Storage_FError,
or Tasking_Error).

This rule has no parameters.

2.21 Unassigned OUT_ Parameters

Flags procedures’ out parameters that are not assigned, and identifies the
contexts in which the assignments are missing.

An out parameter is flagged in the statements in the procedure body’s han-
dled sequence of statements (before the procedure body’s exception part, if
any) if this sequence of statements contains no assignments to the parameter.

21

GNATcheck Reference Manual - Predefined Rules

An out parameter is flagged in an exception handler in the exception part
of the procedure body’s handled sequence of statements if the handler contains
neither assignment to the parameter nor a raise statement.

Bodies of generic procedures are also considered.
The following are treated as assignments to an out parameter:
e an assignment statement, with the parameter or some component as the
target;
e passing the parameter (or one of its components) as an out or in out pa-
rameter.

This rule does not have any parameters.

2.22 Unconstrained Array Returns

Flag each function returning an unconstrained array. Function declarations,
function bodies (and body stubs) having no separate specifications, and generic
function instantiations are checked. Function calls and function renamings are
not checked.

Generic function declarations, and function declarations in generic packages
are not checked, instead this rule checks the results of generic instantiations
(that is, expanded specification and expanded body corresponding to an instan-
tiation).

This rule has no parameters.

22

Chapter 3: Metrics-Related Rules

3 Metrics-Related Rules

The rules in this chapter can be used to enforce compliance with specific code
metrics, by checking that the metrics computed for a program lie within user-
specifiable bounds. Depending on the metric, there may be a lower bound, an
upper bound, or both. A construct is flagged if the value of the metric exceeds
the upper bound or is less than the lower bound.

The name of any metrics rule consists of the prefix Metrics_ followed by
the name of the corresponding metric: Essential_Complexity, Cyclomatic_
Complexity, or LSLOC. (The “LSLOC” acronym stands for “Logical Source Lines
Of Code”.) The meaning and the computed values of the metrics are the same
as in gnatmetric.

For the ‘“+Rr’ option, each metrics rule has a numeric parameter specifying the
bound (integer or real, depending on a metric). The ‘-RrR’ option for the metrics
rules does not have a parameter.

Example: the rule
+RMetrics_Cyclomatic_Complexity : 7
means that all bodies with cyclomatic complexity exceeding 7 will be flagged.

To turn OFF the check for cyclomatic complexity metric, use the following

option:
-RMetrics_Cyclomatic_Complexity

3.1 Metrics_Essential_ Complexity

The Metrics_Essential_Complexity rule takes a positive integer as upper
bound. A construct exceeding this limit will be flagged.

3.2 Metrics_Cyclomatic_Complexity

The Metrics_Cyclomatic_Complexity rule takes a positive integer as upper
bound. A construct exceeding this limit will be flagged.

3.3 Metrics_ LSLOC

The Metrics_LsLoC rule takes a positive integer as upper bound. A compilation
unit exceeding this limit will be flagged.

23

Chapter 4: SPARK Ada Rules

4 SPARK Ada Rules

The rules in this chapter can be used to enforce compliance with the Ada subset
allowed by the SPARK tools.

4.1 Boolean_Relational_ Operators

» W __»” o« » K_”
2

Flag each call to a predefined relational operator (“<”, “>”, “<=", “>=" “=” and
“/=") for the predefined Boolean type. (This rule is useful in enforcing the SPARK
language restrictions.)

Calls to predefined relational operators of any type derived from
Standard.Boolean are not detected. Calls to user-defined functions with
these designators, and uses of operators that are renamings of the predefined
relational operators for standard.Boolean, are likewise not detected.

This rule has no parameters.

4.2 Expanded_Loop_Exit_Names

Flag all expanded loop names in exit statements.
This rule has no parameters.

4.3 Non_SPARK Attributes

The SPARK language defines the following subset of Ada 95 attribute desig-
nators as those that can be used in SPARK programs. The use of any other
attribute is flagged.

® ’'Adjacent
e 'Aft

® ’'Base

® ’'Ceiling

e ’'Component_Size
® ’'Compose

e ’'Copy_Sign
e ’'Delta

® ’'Denorm

e ’'Digits

e ’'Exponent
e 'First

e 'Floor

e 'Fore

25

GNATcheck Reference Manual - Predefined Rules

"Fraction

"Last
"Leading_Part
"Length
"Machine
"Machine_FEmax
"Machine_Emin
"Machine_Mantissa
"Machine_Overflows
"Machine_Radix
"Machine_Rounds
"Max

"Min

"Model
"Model_Emin
"Model_Epsilon
"Model_Mantissa
"Model_Small
"Modulus

"Pos

"Pred

"Range
"Remainder
"Rounding
"Safe_First
"Safe_Last
"Scaling
"Signed_Zeros
"Size

"Small

"Succ
"Truncation
"Unbiased_Rounding
"Val

'Valid

This rule has no parameters.

26

Chapter 4: SPARK Ada Rules

4.4 Non_Tagged Derived Types

Flag all derived type declarations that do not have a record extension part.
This rule has no parameters.

4.5 Outer_Loop_ Exits

Flag each exit statement containing a loop name that is not the name of the
immediately enclosing 1oop statement.

This rule has no parameters.

4.6 Overloaded Operators

Flag each function declaration that overloads an operator symbol. A function
body is checked only if the body does not have a separate spec. Formal functions

are also checked. For a renaming declaration, only renaming-as-declaration is
checked

This rule has no parameters.

4,7 Slices

Flag all uses of array slicing
This rule has no parameters.

4.8 Universal Ranges

Flag discrete ranges that are a part of an index constraint, constrained array
definition, or for-loop parameter specification, and whose bounds are both of
type universal_integer. Ranges that have at least one bound of a specific type
(such as 1 .. N, where N is a variable or an expression of non-universal type)
are not flagged.

This rule has no parameters.

27

Appendix A: List of Rules

Appendix A List of Rules

This Appendix contains an alphabetized list of all the predefined GNATcheck
rules.

Abstract_Type_Declarations

See Section 2.1 [Abstract_Type_Declarations], page 17.

Anonymous_Arrays

See Section 1.5.1 [Anonymous_Arrays], page 9.

Anonymous_Subtypes
See Section 2.2 [Anonymous_Subtypes], page 17.

Blocks
See Section 2.3 [Blocks], page 17.

Boolean_Relational_Operators

See Section 4.1 [Boolean_Relational_Operators], page 25.

Complex_Inlined_Subprograms

See Section 2.4 [Complex_Inlined_Subprograms], page 17.

Controlled_Type_Declarations

See Section 2.5 [Controlled_Type_Declarations], page 18.

Declarations_In_Blocks

See Section 2.6 [Declarations_In_Blocks], page 18.

Deep_Inheritance_Hierarchies

See Section 1.2.1 [Deep_Inheritance_Hierarchies], page 3.

Deeply_Nested_Generics

See Section 1.4.1 [Deeply_Nested_Generics], page 8.
Deeply_Nested_Inlining

See Section 2.7 [Deeply_Nested_Inlining], page 18.

Default_Parameters

See Section 2.8 [Default_Parameters], page 18.

Direct_Calls_To_Primitives

See Section 1.2.2 [Direct_Calls_To_Primitives], page 4.

Discriminated_Records

See Section 2.9 [Discriminated_Records], page 19.

Enumeration_Ranges_In_CASE_Statements

See Section 1.5.2 [Enumeration_Ranges_In_CASE_Statements], page 9.

Exceptions_As_Control_Flow

See Section 1.5.3 [Exceptions_As_Control_Flow], page 9.

Exits_From_Conditional_Loops

See Section 1.5.4 [Exits_From_Conditional_Loops], page 9.

29

GNATcheck Reference Manual - Predefined Rules

e EXIT_Statements_With_No_Loop_Name
See Section 1.5.5 [EXIT_Statements_With_No_Loop_Name], page 9.

® Expanded_Loop_Exit_Names
See Section 4.2 [Expanded_Loop_Exit_Names], page 25.
e Explicit_Full Discrete_Ranges
See Section 2.10 [Explicit_Full_Discrete_Ranges], page 19.

e Float_Equality_Checks
See Section 2.11 [Float_Equality_Checks], page 19.

e Forbidden_Attributes
See Section 1.3.1 [Forbidden_Attributes], page 5.

® Forbidden_Pragmas

See Section 1.3.2 [Forbidden_Pragmas], page 6.

® Function_Style_Procedures

See Section 2.12 [Function_Style_Procedures], page 19.

® Generics_In_Subprograms

See Section 2.13 [Generics_In_Subprograms], page 19.

® GOTO_Statements
See Section 1.5.6 [GOTO_Statements], page 9.

e Tmplicit_IN_Mode_Parameters

See Section 2.14 [Implicit_IN_Mode_Parameters], page 20.

e Tmplicit_SMALL_For_Fixed_Point_Types
See Section 1.3.3 [Implicit_SMALL_For_Fixed_Point_Types], page 7.

e Improperly Located_Instantiations

See Section 2.15 [Improperly_Located_Instantiations], page 20.

® Improper_Returns

See Section 1.5.7 [Improper_Returns], page 10.

e Library_Level_Subprograms

See Section 2.16 [Library_Level_Subprograms], page 20.

® Local_Packages

See Section 1.4.2 [Local_Packages], page 8.

® Metrics_Cyclomatic_Complexity

See Section 3.2 [Metrics_Cyclomatic_Complexityl, page 23.

® Metrics_Essential Complexity

See Section 3.1 [Metrics_Essential_Complexityl, page 23.

® Metrics_LSLOC
See Section 3.3 [Metrics_LSLOC], page 23.

e Misnamed_Controlling Parameters

See Section 1.6.1 [Misnamed_Controlling_Parameters], page 13.

30

Appendix A: List of Rules

Misnamed_TIdentifiers
See Section 1.6.2 [Misnamed_Identifiers], page 13.

Multiple_Entries_In Protected Definitions

See Section 1.1.1 [Multiple_Entries_In_Protected_Definitions], page 3.

Name_Clashes

See Section 1.6.3 [Name_Clashes], page 15.
Non_Qualified_Aggregates

See Section 2.17 [Non_Qualified_Aggregates], page 20.
Non_Short_Circuit_Operators

See Section 1.5.8 [Non_Short_Circuit_Operators], page 10.
Non_SPARK_Attributes

See Section 4.3 [Non_SPARK_Attributes], page 25.
Non_Tagged_Derived_Types

See Section 4.4 [Non_Tagged_Derived_Types], page 27.
Non_Visible_Exceptions

See Section 1.4.3 [Non_Visible_Exceptions], page 8.
Numeric_Literals

See Section 2.18 [Numeric_Literals], page 20.
OTHERS_In_Aggregates

See Section 1.5.9 [OTHERS_In_Aggregates], page 10.
OTHERS_In_CASE_Statements

See Section 1.5.10 [OTHERS_In_CASE_Statements], page 10.
OTHERS_In_Exception_Handlers

See Section 1.5.11 [OTHERS_In_Exception_Handlers], page 10.
Outer_Loop_Exits

See Section 4.5 [Outer_Loop_Exits], page 27.
Overloaded_Operators

See Section 4.6 [Overloaded_Operators], page 27.

Overly_Nested_Control_Structures

See Section 1.5.12 [Overly_Nested_Control_Structures], page 10.

Parameters_Out_Of_Order

See Section 2.19 [Parameters_Out_Of_Order], page 21.

Positional_Actuals_For_Defaulted_Generic_Parameters

See Section 1.5.13 [Positional _Actuals_For_Defaulted_Generic_Parameters],
page 11.

Positional_ Actuals_For_Defaulted_ Parameters

See Section 1.5.14 [Positional_Actuals_For_Defaulted_Parameters],
page 11.

31

GNATcheck Reference Manual - Predefined Rules

e Positional_Components

See Section 1.5.15 [Positional_Components], page 11.

® Positional_Generic_Parameters
See Section 1.5.16 [Positional_Generic_Parameters], page 11.

® Positional_Parameters

See Section 1.5.17 [Positional_Parameters], page 12.

e Predefined_Numeric_Types

See Section 1.3.4 [Predefined_Numeric_Types], page 7.

® Raising External_Exceptions

See Section 1.4.4 [Raising_External _Exceptions], page 8.

® Raising Predefined_Exceptions

See Section 2.20 [Raising_Predefined_Exceptions], page 21.

® Separate_Numeric_Error_Handlers

See Section 1.3.5 [Separate_Numeric_Error_Handlers], page 7.

e Slices

See Section 4.7 [Slices], page 27.

® Too_Many_Parents

See Section 1.2.3 [Too_Many_Parents], page 4.

® Unassigned OUT_Parameters

See Section 2.21 [Unassigned_OUT_Parameters], page 21.

e Uncommented BEGIN_In_Package_Bodies

See Section 1.6.4 [Uncommented BEGIN_In_Package_Bodies], page 16.

® Recursive_Subprograms

See Section 1.5.18 [Recursive_Subprograms], page 12.

® Unconditional_ Exits

See Section 1.5.19 [Unconditional _Exits], page 12.

® Unconstrained_Array_Returns

See Section 2.22 [Unconstrained_Array_Returns], page 22.

e Universal_Ranges

See Section 4.8 [Universal_Ranges], page 27.

® Unnamed_Blocks_And_Loops

See Section 1.5.20 [Unnamed_Blocks_And_Loops], page 12.

e USE_PACKAGE_Clauses
See Section 1.5.21 [USE_PACKAGE_Clauses], page 12.

® Visible_Components

See Section 1.2.4 [Visible_Components], page 4.

® Volatile_Objects_Without_Address_Clauses
See Section 1.1.2 [Volatile_Objects_Without_Address_Clauses], page 3.

32

Index

Index

A

Abstract_Type_Declarations............. 17
Anonymous_Arrays............o 9
Anonymous_Subtypes 17

B

BloCKS ..ot 17
Boolean_Relational_Operators........... 25

C

Complex_Inlined_Subprograms............ 17
Controlled_Type_Declarations........... 18

D

Declarations_In_Blocks.................. 18
Deep_Inheritance_Hierarchies............ 3
Deeply_Nested_Generics................... 8
Deeply_Nested_Inlining.................. 18
Default_Parameters...................... 18
Direct_Calls_To_Primitives.............. 4
Discriminated_Records................... 19

E

Enumeration_Ranges_In_CASE_Statements

....................................... 9
Exceptions_As_Control_Flow.............. 9
EXIT_Statements_With_No_Loop_Name...... 9
Exits_From_Conditional_Loops............ 9
Expanded_Loop_Exit_Names 25
Explicit_Full_Discrete_Ranges.......... 19
F
Feature usage related rules 17
Float_Equality_Checks................... 19
Forbidden_Attributes..................... 5
Forbidden_Pragmas 6
Function_Style_Procedures.............. 19

G

Generics_In_Subprograms 19
GOTO_Statements........................... 9

I

Implicit_IN_Mode_Parameters............ 20
Implicit_SMALL_For_Fixed_Point_Types... 7
Improper_Returns 10
Improperly_Located_Instantiations..... 20

L

Library_Level_Subprograms.............. 20
Local_Packages..............cooiiininnnnn.. 8

M

Metrics-related rules.................... ... 23
Metrics_Cyclomatic_Complexity.......... 23
Metrics_Essential_Complexity........... 23
Metrics_LSLOC............................ 23
Misnamed_Controlling_ Parameters....... 13
Misnamed_Identifiers.................... 13
Multiple_Entries_In_Protected_
Definitions........... ...t 3

N

Name_Clashesooiiinnnoo.nn 15
Non_Qualified_Aggregates 20
Non_Short_Circuit_Operators............ 10
Non_SPARK_Attributes.................... 25
Non_Tagged_Derived_Types 27
Non_Visible_Exceptions rule.............. 8
Numeric_Literals 20

(0

Object-Orientation related rules............ 3
OTHERS _In_Aggregates.................... 10
OTHERS_In_CASE_Statements.............. 10
OTHERS_In_Exception_Handlers........... 10
Outer_Loop_Exitsoooiiiiin. 27

33

GNATcheck Reference Manual - Predefined Rules

Overloaded_Operators.................... 27
Overly_Nested_Control_Structures...... 10

P

Parameters_Qut_0Of _Order 21
Portability-related rules 4
Positional_Actuals_For_Defaulted_
Generic_Parameters.................. 11
Positional_Actuals_For_Defaulted_
Parametersrule...................... 11
Positional_Components................... 11
Positional_Generic_Parameters.......... 11
Positional_Parameters................... 12
Predefined_Numeric_Types 7
Program Structure related rules............. 7
Programming Practice related rules......... 9
R
Raising_External _Exceptions............. 8
Raising_Predefined_Exceptions.......... 21
Readability-related rules................... 12
Recursive_Subprograms rule.............. 12

34

S

Separate_Numeric_Error_Handlers........ 7
Slices .ttt 27
Source code presentation related rules 16
SPARK Ada related rules 25
Style-related rules o 3

T

Tasking-related rules 3
Too_Many_Parents............c.oouveeennnnn 4

U

Unassigned_OUT_Parameters.............. 21
Uncommented_BEGIN_In_Package_Bodies... 16
Unconditional Exitsrule................ 12
Unconstrained_Array_Returns............ 22
Universal_Ranges rule.................... 27
Unnamed_Blocks_And_Loops 12
USE_PACKAGE _Clausescoovuveunnn.. 12

\'%

Visible_Components 4
Volatile_Objects_Without_Address_Clauses
....................................... 3

Table of Contents

About This Manual....................................... 1
What This Guide Contains ..., 1
What You Should Know Before Reading This Guide....................... 1

1 Style-RelatedRules 3
1.1 Tasking. ... 3

1.1.1 \code Multiple_Entries_In_Protected_Definitions 3
1.1.2 \code Volatile_Objects_Without_Address_Clauses............... 3
1.2 Object Orientation, 3
1.2.1 \code Deep_Inheritance_Hierarchies............................ 3
1.2.2 \code Direct_Calls_To_Primitives 4
1.2.3 \code Too_Many Parents................. iiiiiii... 4
1.2.4 \code Visible_Components, 4
1.3 Portability........ ..o 4
1.3.1 \code Forbidden_Attributes.............., 5
1.3.2 \code Forbidden_Pragmas....................................... 6
1.3.3 \code Implicit SMALL_For_Fixed_Point_Types................. 7
1.3.4 \code Predefined_Numeric_Types................c..o.ooiiiii.. 7
1.3.5 \code Separate_Numeric_Error_Handlers....................... 7
1.4 Program Structurecoiiiiiiii i 7
1.4.1 \code Deeply_Nested_Generics..................cooiviiiiii .. 8
1.4.2 \code Local Packagesc i, 8
1.4.3 \code Non_Visible_Exceptions................................... 8
1.4.4 \code Raising_External Exceptions............................. 8
1.5 Programming Practice 9
1.5.1 \code ANOnymoOuS_ATITaysouuiinimniaeaeaiaieaeanan. 9
1.5.2 \code Enumeration_Ranges_In_CASE_Statements.............. 9
1.5.3 \code Exceptions_As_Control_Flow.............................. 9
1.5.4 \code Exits_From_Conditional _Loops........................... 9
1.5.5 \code EXIT_Statements_With_No_Loop_Name.................. 9
1.5.6 \code GOTO_Statements................ccciiiiiiiiiiiiian .. 9
1.5.7 \code Improper_Returns.................... 10
1.5.8 \code Non_Short_Circuit_Operators 10
1.5.9 \code OTHERS_In_Aggregates 10
1.5.10 \code OTHERS_In_CASE_Statements........................ 10
1.5.11 \code OTHERS_In_Exception_Handlers...................... 10
1.5.12 \code Overly_Nested_Control_Structures..................... 10
1.5.13 \code Positional_Actuals_For_Defaulted_Generic_Parameters
... 11

GNATcheck Reference Manual - Predefined Rules

ii

1.5.14 \code Positional_Actuals_For_Defaulted_Parameters......... 11
1.5.15 \code Positional_ Components................................. 11
1.5.16 \code Positional_Generic_Parameters 11
1.5.17 \code Positional Parameters.................................. 12
1.5.18 \code Recursive_Subprograms................................ 12
1.5.19 \code Unconditional Exits.................................... 12
1.5.20 \code Unnamed_Blocks_And_Loops........................... 12
1.5.21 \code USE_PACKAGE_Clauses................cooiiiiiiio. .. 12
1.6 Readability......... ... 12
1.6.1 \code Misnamed_Controlling_Parameters 13
1.6.2 \code Misnamed_Identifiers 13
1.6.3 \code Name_Clashes.................. 15
1.6.4 \code Uncommented BEGIN_In_Package Bodies.............. 16
1.7 Source Code Presentation............., 16
Feature UsageRules 17
2.1 \code Abstract_Type_Declarations.................................. 17
2.2 \code Anonymous_Subtypes 17
2.3 Ncode BlocKks 17
2.4 \code Complex_Inlined_Subprograms............................... 17
2.5 \code Controlled_Type_Declarations................................ 18
2.6 \code Declarations_In_Blocks........................... 18
2.7 \code Deeply_Nested_Inlining 18
2.8 \code Default_Parameters 18
2.9 \code Discriminated_Records 19
2.10 \code Explicit_Full_Discrete_Ranges 19
2.11 \code Float_Equality_Checks..........................iiiia.. 19
2.12 \code Function_Style_Procedures.................................. 19
2.13 \code Generics_In_Subprograms.................... 19
2.14 \code Implicit_ZIN_Mode_Parameters 20
2.15 \code Improperly_Located_Instantiations 20
2.16 \code Library_Level_Subprograms 20
2.17 \code Non_Qualified_Aggregates 20
2.18 \code Numeric_Literals................ i 20
2.19 \code Parameters_ Out_Of Order 21
2.20 \code Raising_Predefined_Exceptions 21
2.21 \code Unassigned_OUT_Parameters............................... 21
2.22 \code Unconstrained_Array_Returns.............................. 22
Metrics-Related Rules 23
3.1 \code Metrics_Essential Complexity................................ 23
3.2 \code Metrics_Cyclomatic_Complexity 23
3.3 \code Metrics_ LSLOC 23

4 SPARKAdaRules......... 25

4.1 \code Boolean_Relational Operators................................ 25
4.2 \code Expanded_Loop_Exit Names................................. 25
4.3 \code Non_SPARK_Attributes 25
4.4 \code Non_Tagged Derived_Types.............cccooiiiiiiiii.. 27
4.5 \code Outer_Loop_Exits........... 27
4.6 \code Overloaded_Operators................cooviiiiiiiiiiiiiann.. 27
4.7 NCode SlICES . ..ottt 27
4.8 \code Universal Ranges 27
Appendix A ListofRules............................. 29
Index...... 33

iii

	About This Manual
	What This Guide Contains
	What You Should Know Before Reading This Guide

	Style-Related Rules
	Tasking
	\code {Multiple_Entries_In_Protected_Definitions}
	\code {Volatile_Objects_Without_Address_Clauses}

	Object Orientation
	\code {Deep_Inheritance_Hierarchies}
	\code {Direct_Calls_To_Primitives}
	\code {Too_Many_Parents}
	\code {Visible_Components}

	Portability
	\code {Forbidden_Attributes}
	\code {Forbidden_Pragmas}
	\code {Implicit_SMALL_For_Fixed_Point_Types}
	\code {Predefined_Numeric_Types}
	\code {Separate_Numeric_Error_Handlers}

	Program Structure
	\code {Deeply_Nested_Generics}
	\code {Local_Packages}
	\code {Non_Visible_Exceptions}
	\code {Raising_External_Exceptions}

	Programming Practice
	\code {Anonymous_Arrays}
	\code {Enumeration_Ranges_In_CASE_Statements}
	\code {Exceptions_As_Control_Flow}
	\code {Exits_From_Conditional_Loops}
	\code {EXIT_Statements_With_No_Loop_Name}
	\code {GOTO_Statements}
	\code {Improper_Returns}
	\code {Non_Short_Circuit_Operators}
	\code {OTHERS_In_Aggregates}
	\code {OTHERS_In_CASE_Statements}
	\code {OTHERS_In_Exception_Handlers}
	\code {Overly_Nested_Control_Structures}
	\code {Positional_Actuals_For_Defaulted_Generic_Parameters}
	\code {Positional_Actuals_For_Defaulted_Parameters}
	\code {Positional_Components}
	\code {Positional_Generic_Parameters}
	\code {Positional_Parameters}
	\code {Recursive_Subprograms}
	\code {Unconditional_Exits}
	\code {Unnamed_Blocks_And_Loops}
	\code {USE_PACKAGE_Clauses}

	Readability
	\code {Misnamed_Controlling_Parameters}
	\code {Misnamed_Identifiers}
	\code {Name_Clashes}
	\code {Uncommented_BEGIN_In_Package_Bodies}

	Source Code Presentation

	Feature Usage Rules
	\code {Abstract_Type_Declarations}
	\code {Anonymous_Subtypes}
	\code {Blocks}
	\code {Complex_Inlined_Subprograms}
	\code {Controlled_Type_Declarations}
	\code {Declarations_In_Blocks}
	\code {Deeply_Nested_Inlining}
	\code {Default_Parameters}
	\code {Discriminated_Records}
	\code {Explicit_Full_Discrete_Ranges}
	\code {Float_Equality_Checks}
	\code {Function_Style_Procedures}
	\code {Generics_In_Subprograms}
	\code {Implicit_IN_Mode_Parameters}
	\code {Improperly_Located_Instantiations}
	\code {Library_Level_Subprograms}
	\code {Non_Qualified_Aggregates}
	\code {Numeric_Literals}
	\code {Parameters_Out_Of_Order}
	\code {Raising_Predefined_Exceptions}
	\code {Unassigned_OUT_Parameters}
	\code {Unconstrained_Array_Returns}

	Metrics-Related Rules
	\code {Metrics_Essential_Complexity}
	\code {Metrics_Cyclomatic_Complexity}
	\code {Metrics_LSLOC}

	SPARK Ada Rules
	\code {Boolean_Relational_Operators}
	\code {Expanded_Loop_Exit_Names}
	\code {Non_SPARK_Attributes}
	\code {Non_Tagged_Derived_Types}
	\code {Outer_Loop_Exits}
	\code {Overloaded_Operators}
	\code {Slices}
	\code {Universal_Ranges}

	List of Rules
	Index

