D-ITG V. 2.7.0-Beta2 Manual*

Stefano Avallone, Alessio Botta,
Alberto Dainotti, Walter de Donato, and Antonio Pescapé
University of Napoli Federico II

October 25, 2013

*home page: http://www.grid.unina.it/software/ITG

Contents

1 ITGSend

1.1
1.2
1.3

SYNOPSIS .« v v o e e e e e e e e e e e e e
Descriptiono e e e e e e e e e
OPLIONS .« & v vt e e e e e e e e e e e e e e e e

2 ITGRecv

2.1
2.2
2.3

SYynopsis e e e
DesCription oL e e e e e
OPLIONS .« & v vt e e e e e e e e e e e e e e e e

3 ITGLog

3.1
3.2
3.3

SYnopsiso e e e e e
Description e e e e e e e e e e e e
OpLionNS . . . v o e e e e e e e e e e e

4 ITGDec

4.1
4.2
4.3
4.4

SYNOPSIS & v v v v e
Description e e e e e e e e e e e e e e e
Options o e e e e e e e e e
Compatibility with previous versions

5 ITGplot

5.1
5.2
5.3

Synopsis e
Descriptiono e e e e e e e e
OPLIONS .« & v v e et e e e e e e e e e e e e e
5.3.1 NotesforLinux users.o vuou...
5.3.2 Notesfor Windows users.o ...

6 ITGapi

6.1

Description o i e e e e e e e e e e e e e e e

7 Example

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8

Example 1 e
Example 2 e e e e
Example 3 e e e
Example4 e
Example 5 e
Example 6 e e
Example 7 e e e e e e e e
Example 8 e

Bibliography

17
17
17
19
21
24
28
29
30

32

1 ITGSend

1.1 Synopsis

In case of using a script file to generate multiple flows, type:

ITGSend (script file) [—1 [(logﬁle)ﬂ {—L [(log_server_addr)] [(protocol,type)]}
{—x [(receiver,logﬁleﬂ} [—X [(log_server_addr)] [(protocol,typeﬂ}

If you want to remotely control the sender, launch it in daemon mode:

ITGSend —-Q [—1 [(10gﬁle>ﬂ {—L [(log_server_addr)]| [(protocol,typem [—x
[(receiverjogﬁleﬂ} {—X [(log_server_addr)]| [(protocoLtype)H

Otherwise if you want to generate a single flow:

ITGSend | -m (msr_type)] [-a (destination_address)| [-rp (destination_port)]
[=sp (source_port)] [-i (network_interface)] [-T (protocol_type)]| [—f (TTL)]
[-b (DS byte)| [-rk (receiver_serial.iface)] [-sk (sender_serial_iface)| [-D |
[-P] [-s (seed)] [-t (duration)] [-d (gen_delay)]| [-p (payload_log_type)] [—j

(enable_idt_recovery)| {—l [<logﬁle>]} [—L [(log_server_addr)] [(protocol,type)”
| x [(receiverjogﬁleﬂ] {—X [(log_server_addr)] [(protocol,type)]} “—C (pkts_per_s)

‘ -U (min_pkts_per_s) (max_pkts_per_s) | -E (average_pkts_per_s) | -V (shape) (scale)

| =Y (shape) (scale) | -N (mean)(std_dev) | -O (average_pkts_per_s) | -G (shape)(scale)
| -B (onDistro) <offDistro)] [-¢ (pkt_size) | -u (min_pkt_size) (max_pkt_size) | —e
(average_pkt_size)]—v (shape)(scale)]—y (shape)(scale) \ -n (mean)(std_dev)

| —o (average_pktsize) | -g shape}(scale}]] | [Telnet | DNS | CSa | CSi |
Quake3 | VoIP [—x (codec_type)] [-h (protocol_type)] [-VAD ”

NOTE: launching ITGSend in background requires to redirect stdin to /dev/null

1.2 Description

Sender Component of the D-ITG Platform.

The script mode enables ITGSend to simultaneously generate several flows.
Each flow is managed by a single thread, with a separate thread acting as a
master and coordinating the other threads. To generate n flows, the script file
has to contain n lines, each of which is used to specify the characteristics of one
flow. Each line can contain all the options illustrated in Section 1.3, but those
regarding the logging process (-1, -L, —-X, —x). Such options can be specified at

the command line and refer to all the flows.

1.3 Options

Flow options:
—-m (msr_type)

—a (destination_address)
—1p (destination_port)
-sp (source_port)

-i (network_interface)

—T (protocol_type)

—f (TTL)

—b (DS byte)

-tk (receiver_serial iface)

—sk (sender _serial iface)
—s (seed)

-D

-P

—t (duration)

—d (gen_delay)

Set the type of meter. Two values are allowed: owdm
(one way delay meter) and rttm (round trip time me-
ter). Default is owdm. D-ITG does not provide any
sort of synchronization among senders and receivers.
In order to correctly measure packet One Way Delay
(OWD), the clocks of sender and receiver must be syn-
chronized by other means. Otherwise, we suggest to
use the Round Trip Time (RTT) meter;

Set the destination address. Default is localhost;

Set the destination port. Default is 8999;

Set the source port. If this option is not specified, the
source port is set by the operating system,;

Set the interface ITGSend has to bind to (only Linux
platforms).

Set the protocol type. Valid values are UDP, TCP, ICMP,
SCTP, DCCP. Default is UDP. If you choose ICMP you
must specify the type of message. Root privileges are
needed under Linux;

Set the time to live (TTL). The value is interpreted as
a decimal number, or as an hexadecimal number if the
prefix “0x” is used. The range is [0, 255];

Set the DS byte for QoS tests. The value is inter-
preted as a decimal number, or as an hexadecimal
number if the prefix “0x” is used. The range is
[0, 255]. Default is 0 (Note: this option is dis-
abled under Windows 2000 and XP, according to
the “Microsoft Knowledge Base Article - 248611”
http://support.microsoft.com/Default.aspx?scid=kb;EN-
US;q248611; under Linux, root privileges are needed
to set the DS byte to a value greater than 160);
Instructs the receiver to raise a signal on the specified
serial interface every time a packet is received. Typi-
cal values are COM1, COM2, etc. under Windows and
ttys0, ttys1, etc. under Linux;

Raises a signal on the specified serial interface every
time a packet is sent;

Set the seed for the random number generator. By de-
fault a random value is taken;

Disable Nagle Algorithm;

Enable high thread priority (only Windows platform);
Set the generation duration. It is expressed in millisec-
onds. Default is 10000 ms;

Set the generation delay. It is expressed in milliseconds.
Default is 0.

6

—p (payload_log_type)

—j (enable_idt_recovery)

Log options:
-1 [(logfile)]

—x [(receiver_logfile)]|
-L [(log_server_addr)]|

[(protocol_type)|

-X [(log_server_addr)|
[(protocol_type)]

Set the type of information sent in the payload of each
packet. Valid values are: 0 no information is sent in the
payload packet; 1 only the sequence numbers are sent
in the payload packet; 2 standard informations are sent
in the payload packet. Default value is 2.

Enable (1) or disable (0) the strategy used to guarantee
the mean bitrate. Default value is 0.

Generate the log file. If the meter type is OWDM
and this option is omitted, ITGSend does not gener-
ate the log file. If the meter type is RTTM and this
option is omitted, ITGSend generates a log file with
the default log file name. The default log file name is
/tmp/ITGSend.log under Linux and ITGSend.log under
Windows;

Generate the log file at the receiver side. The default
log file name is /tmp/ITGRecv.log under Linux and IT-
GRecv.log under Windows;

Remote log file. The first parameter is the log server IP
address (default is localhost); the second parameter is
the protocol used to rule the communication between
the sender and the log server. Valid values are UDP and
TCP (default is UDP). The log file name is specified by
the -1 option;

This option enables ITGRecv to remotely configure a log
server. The first parameter is the log server IP address
(default is localhost); the second parameter is the pro-
tocol used to rule the communication between the re-
ceiver and the log server. Valid values are UDP and TCP
(default is UDP). The log file name is specified by the —x
option;

Inter-departure time options:

—C (pkts_per_s) Constant inter-departure time (IDT)

-U (min_pkts_per_s) Uniformly distributed IDT

(max_pkts_per_s)

-E (average_pkts_per_s) Exponentially distributed IDT

-V (shape) (scale) Pareto distributed IDT

-Y (shape) (scale) Cauchy distributed IDT

—N (mean) (std_dev) Normal distributed IDT

-0 (average_pkts_per_s) Poisson distributed IDT

-G (shape) (scale) Gamma distributed IDT

-W (shape) (scale) Weibull distributed IDT

-B (onDistro) (params) Burst (aka on/off) IDT, the on and off periods can be
(offDistro) (params) random or constant, all the supported distributions can

be used for both the on and off periods. (NOTE: it must
be the last command line option). To enable this op-
tion D-ITG has to be compiled with “onoff” option en-
abled (i.e. make onoff=on).

NOTE: The IDT random variable provides the inter-departure time expressed
in milliseconds. For the sake of simplicity, in case of Constant, Uniform, Expo-
nential and Poisson variables, each parameter, say it x, is specified as a packet
rate value. It is then converted to a time interval value (z — %). If no option
is specified, a constant IDT with 1000 packets per second is assumed.

Packet size options:

—c (pkts_size) Constant payload size.

—-u (min_pkts_size) Uniformly distributed payload size
(max_pkts_size)

—e (average_pkts_size) Exponentially distributed payload size
-v (shape) (scale) Pareto distributed payload size

-y (shape) (scale) Cauchy distributed payload size

-n (mean) (std_dev) Normal distributed payload size

—o (average_pkts_size) Poisson distributed payload size

—g (shape) (scale) Gamma distributed payload size

-w (shape) (scale) Weibull distributed payload size

NOTE: If no option is specified, a constant payload size of 512 bytes is as-
sumed.

Transport Layer protocols:

TCP Generates traffic using Transmission Control Protocol.

UDP Generates traffic using User Datagram Protocol.

DCCP Generates traffic using the Datagram Congestion Control Protocol, a

message-oriented protocol like UDP with some new features. DCCP implements
not only congestion control and congestion control negotiation, but also reliable

connection setup, teardown, and feature negotiation. No options are required.

SCTP Generates traffic using the Stream Control Transmission Protocol. At
the moment no special features of this protocol have been implemented yet.
Soon multi-streaming can be managed. Two options are required: the first is an
identificator of the session whom it belongs to and the second is the max num-
ber of streams of the session. NOTE: All streams belonging to the same session
have to be specified with the same values for all the two options.

Application Layer protocols:

DNS Generate traffic with DNS traffic characteristics. No option is required.
NOTE: DNS traffic generation works with both UDP and TCP transport layer
protocols. Different settings will be ignored.

Telnet Generate traffic with Telnet traffic characteristics. No option is re-
quired. NOTE: Telnet traffic generation only works with TCP transport layer
protocol. Different settings will be ignored.

VoIP Generate traffic with VoIP traffic characteristics. NOTE: VoIP traffic
generation only works with UDP transport layer protocol. Different settings will
be ignored. VoIP options are:

—x (codec_type) Set the Codec type. VALUES:

G.711.1 for G.711 codec with 1 sample per pkt (de-
fault)

G.711.2 for G.711 codec with 2 samples per pkt
G.723.1 for G.723.1 codec

G.729.2 for G.729 codec with 2 samples per pkt
G.729.3 for G.729 codec with 3 samples per pkt

~h (protocol_type) Set the protocol type. VALUES:
RTP for Real Time Protocol (default)

CRTP for Real Time Protocol with header compres-
sion

-VAD Set the Voice Activity Detection (it is off by default).

CSa Generate traffic with Counter Strike traffic characteristics related the
active phase of the game. No option is required. NOTE: CSa traffic generation
only works with UDP Transport Layer protocol. Different settings will be ig-
nored [1].

CSi Generate traffic with Counter Strike traffic characteristics related the
inactive phase of the game. No option is required. NOTE: CSi traffic genera-
tion only works with UDP Transport Layer protocol. Different settings will be
ignored [1].

Quake3 Generate traffic with Quake III Arena traffic characteristics. No op-
tion is required. NOTE: Quake traffic generation only works with UDP Transport
Layer protocol. Different settings will be ignored [2].

NOTE: If you specify an application layer protocol then you cannot specify
any inter-departure time or packet size option. The other options illustrated
above are allowed. If you want to specify an application layer protocol you
must indicate it after every other option.

2 ITGRecv
2.1 Synopsis
ITGRecv | -i [(network interface)]| | -1 [(logfile)] | [-L [(log server addr)]
[(protocol_type)]]

NOTE: launching ITGRecv in background requires to redirect stdin to /dev/null

2.2 Description

Receiver Component of the D-ITG Platform.
It can simultaneously receive flows from different senders.

10

2.3 Options

—i [(network_inteface)]

-1 [(logfile)]

-L [(log_server_addr)|
[(protocol_type)]

3 ITGLog

3.1 Synopsis
ITGLog

Set the interface ITGRecv has to bind to (only Linux
platforms).

Generate the log file. If the -1 option is specified at the
receiver side and the —x option at the sender side (with
different log file names), then the last option is ignored.
If the -1 option is not specified, each sender may specify
a different log file name by means of the —x option;
The first parameter is the log server IP address (default
is localhost); the second parameter is the protocol used
to rule the communication between the receiver and the
log server. Two values are allowed: UDP and TCP (de-
fault is UDP). If the -L option is specified at the receiver
side and the —X option at the sender side, then the last
option is ignored. If the —L option is not specified, each
sender may specify a different log server by means of
the —X option.

NOTE: launching ITGLog in background requires to redirect stdin to /dev/null

3.2 Description

Log Server of the D-ITG Platform.
ITGLog receives log information from the ITGSend sender and the ITGRecv
receiver. ITGLog listens on ports dynamically allocated in the range [9003-

10003].

3.3 Options

No option available.

4 ITGDec
4.1 Synopsis

ITGDec [<logﬁle> [-v|-i] [-t] [-s] [-] (textlog file)] [-0 (octave_log file)]
| -d (delay_interval size)| [-j (jitter_interval size)| [-b (bitrate_interval size)]

11

[-p (packetloss_interval size)| [-f (max_flow num)| [-P | [-I]} | [-h|-
—help |

4.2 Description

The ITGDec decoder is the utility to analyze the results of the experiments con-
ducted by using the D-ITG generation platform. ITGDec parses the log files
generated by ITGSend and ITGRecv and calculates the average values of bi-
trate, delay and jitter either on the whole duration of the experiment or on
variable-sized time intervals. You can analyze the binary log file only on the
operating system used to create that file. You can use another operating system
if the log file is in text format. The Total time of the experiment is calculated as
the difference between receiving time of last and first packet.

The displayed Jitter is an average value. It is calculated according to Figure 4.2.

Source Destination
S, \
S, ‘_\. & D;=(R-8)-(R;,=S;)
s, & D, =(R R)-(§-5,)
\ flp;l
\ Ry Avglitter = -
_\‘\" =

S

\Ri

Figure 1: Jitter formula

The displayed Delay is calculated as the average of differences between re-
ceiving and sending times of packets. D-ITG does not provide any sort of syn-
chronization among senders and receivers. In order to correctly measure packet
One Way Delay (OWD) the clocks of sender and receiver must be synchronized
by other means. Depending on the requested resolution, NTP or GPS can be
used. In the case of synchronization issues we suggest to use the Round Trip
Time (RTT) meter.

The displayed Delay standard deviation (o) is calculated according to equation
1:

- }Vg(di_df &)

where N is the number of packets considered, d; is the delay of packet i, and d
is the average delay of packets.

12

4.3 Options

-V

-

—s (personal string)

-1 (text_log_file)
-o (octave_log_file)

—f (flow_info)

—d (delay_interval size)

Print average and total results on screen in standard vi-
sualization format.

Print average and total results on screen in a differ-
ent format in which each field is separated by “*”
charachter.

The log file in input is considered to be in text format.
If not specified the log file in input is considered to be
in binary format.

The log file in input is split in N files where N
is the number of flows detected in the log file.
The names of the split files are in following for-
mat: “sender ip address”-“receiver ip address”-“flow
number”.(personal string).dat . If not provided, the De-
fault value for (personal string) is “log”.

Produce an output log file in text format with name
(text_log file) .

Generate a log file named “octave_log_file” that can be
imported in Octave/Matlab.

If (flow_info) is a number, only the flows with flow num-
ber less or equal to (flow_info) will be considered. If
(flow_info) = t all packets will be considered as belong-
ing to the same flow.

Every (delay_interval size) milliseconds the average of
transmission time of packets is calculated and printed
in a file called “delay.dat”. The structure of this file is
as follows: a first column with time reference is present
and is followed by different columns containing results
calculated for each flow. A final column with aggre-
gate result is also printed. In the first row “sender
ip address”-“receiver ip address”-“flow number” is also
printed in the columns related to single flows results.
This is the reference for single flows information.

13

-b
(bitrate_interval size)

-j (jitter_interval size)

P
(packet loss_interval size)

-1

4.4 Compatibility with

Every (bitrate_interval size) milliseconds the average
of instantaneous bit rate of packets is calculated and
printed in a file called “bitrate.dat”. The structure of
this file is as follows: a first column with time reference
is present and is followed by different columns contain-
ing results calculated for each flow. A final column with
aggregate result is also printed. In the first row “sender
ip address”-“receiver ip address”-“flow number” is also
printed in the columns related to single flows results.
This is the reference for single flows information.

Every (jitter_interval size) milliseconds the average of
instantaneous jitter of packets is calculated and printed
in a file called “jitter.dat”. The structure of this file is
as follows: a first column with time reference is present
and is followed by different columns containing results
calculated for each flow. A final column with aggre-
gate result is also printed. In the first row “sender
ip address”-“receiver ip address”-“flow number” is also
printed in the columns related to single flows results.
This is the reference for single flows information.

Every (packet_loss_interval size) milliseconds the aver-
age packet loss is calculated and printed in a file called
“packetloss.dat”. The structure of this file is as fol-
lows: a first column with time reference is present and
is followed by different columns containing results cal-
culated for each flow. A final column with aggregate re-
sult is also printed. In the first row “sender ip address”-
“receiver ip address”-“flow number” is also printed in
the columns related to single flows results. This is the
reference for single flows information.

Print on screen the size of each packet.

Print on screen the inter departure time between each
packet.

previous versions

Version 2.4 of ITGDec is still capable of processing log files of D-ITG previous
versions. To have a version of ITGDec that is compatible with 2.3 version (or
previous) log files it is necessary to compile the source file (ITGDecod.cpp) by
using a pre-compiler option. This option is V23 and it has to be passed to the
compiler with the directive -D.
Therefore, to compile ITGDec to support this feature it is necessary to modify
the Makefile present in the src directory and to add the -DV23 option. Alter-
natively it is possible to compile ITGDec alone, using the following syntax on
the command line: “g++ ITGDecod.cpp -DV23 -Im -o ITGDec”.

14

5 ITGplot

5.1 Synopsis
octave ITGplot (input file) [(flow_set)]

5.2 Description

ITGplot is an Octave (http://www.octave.org) script that enables to draw plots
starting from the data contained in delay.dat, bitrate.dat, jitter.dat or packet-
loss.dat (see Section 4.3). The plot is saved (in the EPS format) in a file having
the same name as the input file and the .eps extension. It is possible to save the
plots in other formats by changing the graphicformat string in ITGplot. The
available formats are those provided by gnuplot (run gnuplot and type ‘set term’
to see the list of the available terminal types). It is also possible to give a title
to the plot by setting the environment variable DITG_PLOT_TITLE.

5.3 Options
(input file) The file containing the data to be plotted. It may be one
of the .dat files produced by ITGDec;
(flow_set) The subset of flows to be plotted, expressed in the Oc-

tave notation. Thus, 2:4 causes the second, the third
and the fourth flows to be plotted, while “[1 3 5]”
causes the first, the third and the fifth flows to be plot-
ted (remember: double quotes are needed to enclose
values containing blanks). If not specified, all the flows
are plotted.

5.3.1 Notes for Linux users

It is possible to make ITGplot an executable Octave program by exploiting the
‘#!” script mechanism. Follow these steps:

1. make ITGplot an executable file (chmod +x ITGplot)
2. locate your Octave interpreter (which octave)

3. write such location in the first line of ITGplot (e.g. #! /usr/bin/octave
-qf)

Then, you can directly execute ITGplot instead of passing it as argument to oc-
tave (e.g. ./ITGplot bitrate.dat 1:4).

If you want to set a title for the plot, you can use the env command:

env DITG_PLOT_TITLE="A wonderful plot" ITGplot bitrate.dat "[1 4 6]"

15

5.3.2 Notes for Windows users

First, since ITGplot uses gnuplot to draw plots it is necessary to specify the
path to the gnuplot executable (pgnuplot.exe), which should be “C:\Program
Files\GNU Octave version\bin”. The path Octave will search for programs to
run can be specified in three different ways:

1. using the --exec-path command line option:
octave --exec-path "C:\Program Files\GNU Octave wversion\bin" ITGplot
bitrate.dat

2. setting the OCTAVE_EXEC_PATH environment variable:
set OCTAVE_EXEC_PATH="C:\Program Files\GNU Octave version\bin"

3. defining the EXEC_PATH variable in the startup file (“C:\Program Files\GNU
Octave version\opt\octave\share\octave\site\m\startup\octaverc”):
EXEC_PATH="“C:\\Program Files\\GNU Octave version\ \bin”

Clearly, if the method described either in 2 or 3 is used there is no need to use
the --exec-path command line option.
If you want to set a title for the plot, you can type:
set DITG_PLOT_TITLE="A wonderful plot"
before executing ITGplot.

6 ITGapi

6.1 Description

ITGapi is a C++ API that enables to remotely control traffic generation. For
this purpose, after having launched ITGSend in daemon mode (ITGSend -Q)
on one or more traffic source nodes, it is possible to use the following function
to remotely coordinate the traffic generation from different sender:

int DITGsend (char *sender, char *message);

sender is the IP address of ITGSend and message is the string you would type
at command line (except the name of the ITGSend executable file). Returns O
in case of success, -1 otherwise. ITGSend, when used in daemon mode, sends
messages back to the application that issued the generation of the traffic flow.
Two types of messages are used, one to acknowledge the start of the generation
process and the other to signal its end. The manager application is able to catch
those messages by using the function:

int catchManagerMsg(char **senderIP, char **msg);
the return value is -1 in case no message arrived (the function is non block-

ing), 1 to indicate the start of the flow and 2 to indicate the end of the flow;
senderIP is a pointer to a string containing the IP address of the sender that sent

16

the message and msg is a pointer to a string containing the command that the
sender received.

These prototypes are declared in ITGapi.h ITGManager.cpp is an example of
application to remotely control the generation of traffic. To compile it, compile
first ITGapi.cpp:

g+ + ITGManager.cpp ITGapi.o -o ITGManager

7 Example

7.1 Example 1

Single UDP flow with costant inter-departure time between packets and costant
packets size

1.start the receiver on the destination host (say it B):
./ITGRecv

2.start the sender on the source host (say it A):
./ITGSend -a B -sp 9400 -rp 9500 -C 100 -c 500 -t 20000
-xX recv_log file

The resulting flow from A to B has the following
charateristic:

the sender port is 9400

the destination port is 9500

100 packets per second are sent (with constant
inter-departure time between packets)

the size of each packet is equal to 500 bytes

the duration of the generation experiment is 20 seconds
(20000 milliseconds)

at receiver side ITGRecv creates log file recv_log file

7.2 Example 2

Single TCP flow with costant inter-departure time between packets and uni-
formly distributed packet size between 500 and 1000 bytes with local sender/receiver
log

1. start receiver on the destination host (10.0.0.3)
[donato@catarella tmp]$./ITGRecv -1 recv_log file

2. start the sender on the source host [donato@otto
donato]$./ITGSend -a 10.0.0.3 -rp 9501 -C 1000 -u
500 1000 -1 send_log_file

3. close the ITGRecv by pressing Ctrl-C

17

4. decode the receiver log file on the destination
host: [donato@catarella tmpl$./ITGDec
recv_log_file
Flow number: 1
From 10.0.0.4:34771
To 10.0.0.3:9501
Total time = 10.001837 s
Total packets = 10000
Minimum delay = 3633.445701 s
Maximum delay = 3633.464808 s
Average delay = 3633.449749 s
Average jitter = 0.000706 s
Delay standard deviation = 0.001364 s
Bytes received = 7498028
Average bitrate = 5997.320692 Kbit/s
Average packet rate = 999.816334 pkt/s
Packets dropped = 0 (0 %)

sokskokokokkskokokokkkkokk TOTAL RESULTS skokskokokokokokskokoskkokskokok ok
Number of flows = 1

Total time = 10.001837 s

Total packets = 10000

Minimum delay = 3633.445701 s

Maximum delay = 3633.464808 s

Average delay = 3633.449749 s

Average jitter = 0.000706 s

Delay standard deviation = 0.036939 s
Bytes received = 7498028

Average bitrate = 5997.320692 Kbit/s
Average packet rate = 999.816334 pkt/s
Packets dropped = 0 (0 %)

Error lines =0

5. decode the sender log file on the source host:
[donato@otto donatol]$./ITGDec send_log file
Flow number: 1
From 10.0.0.4:34771
To 10.0.0.3:9501
Total time = 9.999002 s
Total packets = 10000
Minimum delay = 0.000000 s
Maximum delay = 0.000000 s

18

Average delay = 0.000000 s

Average jitter = 0.000000 s

Delay standard deviation = 0.000000 s
Bytes received = 7498028

Average bitrate = 5999.021102 Kbit/s
Average packet rate = 1000.099810 pkt/s
Packets dropped = 0 (0 %)

sokokokokkokkkkkkkkk TOTAL RESULTS skokskskskskskskskokokokokokkk kK

Number of flows = 1
Total time = 9.999002 s

Total packets = 10000

Minimum delay = 0.000000 s
Maximum delay = 0.000000 s
Average delay = 0.000000 s

Average jitter = 0.000000 s

Delay standard deviation = 0.000000 s
Bytes received = 7498028

Average bitrate = 5999.021102 Kbit/s
Average packet rate = 1000.099810 pkt/s
Packets dropped = 0 (0 %)

Error lines = 0

7.3 Example 3

Single TCP flow with costant inter-departure time between packets and uni-
formly distributed packet size between 500 and 1000 bytes with remote sender/receiver
log

1. start the log server on the log host:
[donato@catarella tmpl$ ITGLog

2. start the receiver on the destination host:
[donato@catarella tmp] ITGRecv

3. start the sender on the source host: [donato@otto
donato]$ ITGSend -a 10.0.0.3 -rp 9501 -C 1000 -u 500
1000 -1 send_-log_file -L 10.0.0.3 UDP -X 10.0.0.3
UDP -x recv_log file

4. close the receiver by pressing Ctrl-C

5. close the log server by pressing Ctrl-C

6. decode the receiver log file on the log host:
[donato@catarella tmp]$ ITGDec recv_log file

19

Flow number: 1

From 10.0.0.4:34772

To 10.0.0.3:9501

Total time = 9.993970 s

Total packets = 9997

Minimum delay = 3633.432089 s
Maximum delay = 3633.504881 s

Average delay = 3633.436616 s

Average jitter = 0.000795 s

Delay standard deviation = 0.004083 s
Bytes received = 7495843

Average bitrate = 6000.292576 Kbit/s
Average packet rate = 1000.303183 pkt/s
Packets dropped = 2 (0 %)

soxskookokokskskokokkkskokk TOTAL RESULTS skokskskokokkokskoskoskkokskokok ok ok
Number of flows =1

Total time = 9.993970 s

Total packets = 9997

Minimum delay = 3633.432089 s

Maximum delay = 3633.504881 s

Average delay = 3633.436616 s

Average jitter = 0.000795 s

Delay standard deviation = 0.063898 s
Bytes received = 7495843

Average bitrate = 6000.292576 Kbit/s
Average packet rate = 1000.303183 pkt/s
Packets dropped = 2 (0 %)

Error lines = 0

. decode the sender log file on the log host:
[donato@otto donato]$ ITGDec send_log file
Flow number: 1

From 10.0.0.4:34772

To 10.0.0.3:9501

Total time = 9.999001 s

Total packets = 10000

Minimum delay = 0.000000 s
Maximum delay = 0.000000 s
Average delay = 0.000000 s

Average jitter = 0.000000 s
Delay standard deviation = 0.000000 s

20

Bytes received = 7498028

Average bitrate = 5999.021702 Kbit/s
Average packet rate = 1000.099910 pkt/s
Packets dropped = 0 (0 %)

soxskookokokskokokokkkkk TOTAL RESULTS skokskskskokokokokskokoskkokskokosk ok
Number of flows =1

Total time = 9.999001 s

Total packets = 10000

Minimum delay = 0.000000 s

Maximum delay = 0.000000 s

Average delay = 0.000000 s

Average jitter = 0.000000 s

Delay standard deviation = 0.000000 s
Bytes received = 7498028

Average bitrate = 5999.021702 Kbit/s
Average packet rate = 1000.099910 pkt/s
Packets dropped = 0 (0%)

Error lines = 0

7.4 Example 4

If you want to simultaneously generate more than one flow, you have to prepare
a script file like those shown in the following examples. Three UDP flows with
different constant bit rate and remote log:

1. start the log server on the log host: [donato@otto
tmp]$ ITGLog

2. start the receiver on the destination host:
[donato@catarella tmp] ITGRecv

3. create the script file: [donato@otto donatol$ cat
script_file
-a 10.0.0.3 -rp 10001 -C 1000 -c 512 -T UDP
-a 10.0.0.3 -rp 10002 -C 2000 -c 512 -T UDP
-a 10.0.0.3 -rp 10003 -C 3000 -c 512 -T UDP

4. start the sender: [donato@otto donato]$ ITGSend
script_file -1 send_log file -L 10.0.0.4 UDP -X
10.0.0.4 UDP -x recv_log file

5. close the receiver by pressing Ctrl-C:
6. close the log server by pressing Ctrl-C:

7. decode the receiver log file on the log host:
[donato@otto donato]$ ITGDec recv_log file

Flow number: 3

21

From 10.0.0.4:34775

To 10.0.0.3:10003

Total time = 10.016555 s

Total packets = 6098

Minimum delay = 3633.409810 s
Maximum delay = 3634.259565 s

Average delay = 3633.507249 s

Average jitter = 0.002100 s

Delay standard deviation = 0.156419 s
Bytes received = 3122176

Average bitrate = 2493.612624 Kbit/s
Average packet rate = 608.792145 pkt/s
Packets dropped = 22216 (78

Flow number: 1

From 10.0.0.4:34773

To 10.0.0.3:10001

Total time = 9.638360 s

Total packets = 2269

Minimum delay = 3633.402899 s
Maximum delay = 3634.260524 s

Average delay = 3633.461365 s

Average jitter = 0.003114 s

Delay standard deviation = 0.135945 s
Bytes received = 1161728

Average bitrate = 964.253670 Kbit/s
Average packet rate = 235.413494 pkt/s
Packets dropped = 4274 (65 %)

Flow number: 2

From 10.0.0.4:34774

To 10.0.0.3:10002

Total time = 10.000351 s

Total packets = 3136

Minimum delay = 3633.407982 s
Maximum delay = 3634.455203 s
Average delay = 3633.514464 s
Average jitter = 0.002740 s

Delay standard deviation = 0.221725 s
Bytes received = 1605632

Average bitrate = 1284.460515 Kbit/s

22

Average packet rate = 313.588993 pkt/s
Packets dropped = 16864 (84 %)
soksokokokkskokokokkkkkk TOTAL RESULTS skokskokokokokskokokoskkokskokok ok ok
Number of flows = 3

Total time = 10.038005 s

Total packets 11503

Minimum delay = 3633.402899 s

Maximum delay = 3634.455203 s

Average delay = 3633.500165 s

Average jitter = 0.003291 s

Delay standard deviation = 0.417552 s
Bytes received = 5889536

Average bitrate = 4693.790051 Kbit/s
Average packet rate = 1145.944837 pkt/s
Packets dropped = 43354 (79 %)

Error lines = 0

. decode the sender log file on the log host:
[donato@otto donato]$ ITGDec send_log file
Flow number: 3

From 10.0.0.4:34775

To 10.0.0.3:10003

Total time = 9.997255 s

Total packets = 28480

Minimum delay = 0.000000 s
Maximum delay = 0.000000 s
Average delay = 0.000000 s

Average jitter = 0.000000 s

Delay standard deviation = 0.000000 s
Bytes received = 14581760

Average bitrate = 11668.611034 Kbit/s
Average packet rate = 2848.781991 pkt/s
Packets dropped = 0 (0 %)

Flow number: 1

From 10.0.0.4:34773

To 10.0.0.3:10001

Total time = 9.603001 s
Total packets = 9604
Minimum delay = 0.000000 s
Maximum delay = 0.000000 s

23

Average delay = 0.000000 s

Average jitter = 0.000000 s

Delay standard deviation = 0.000000 s
Bytes received = 4917248

Average bitrate = 4096.426107 Kbit/s
Average packet rate = 1000.104030 pkt/s
Packets dropped = 0 (0 %)

Flow number: 2

From 10.0.0.4:34774

To 10.0.0.3:10002

Total time = 9.999501 s

Total packets = 20000

Minimum delay = 0.000000 s

Maximum delay = 0.000000 s

Average delay = 0.000000 s

Average jitter = 0.000000 s

Delay standard deviation = 0.000000 s
Bytes received = 10240000

Average bitrate = 8192.408801 Kbit/s
Average packet rate = 2000.099805 pkt/s
Packets dropped = 0 (0 %)

sokkkkokkkkdokkkkk TOTAL RESULTS skokskskkskokskkkokkk ¥ okkk
Number of flows = 3

Total time = 10.013192 s

Total packets = 58084

Minimum delay = 0.000000 s
Maximum delay = 0.000000 s
Average delay = 0.000000 s

Average jitter = 0.000000 s

Delay standard deviation = 0.000000 s
Bytes received = 29739008

Average bitrate = 23759.862390 Kbit/s
Average packet rate = 5800.747654 pkt/s
Packets dropped = 0 (0 %)

Error lines =0

7.5 Example 5

VoIP, Telnet and DNS flows towards two distinct destinations

1. start the receiver on the first destination host:

24

[donato@catarella donatol$ ITGRecv -1 recvl_ log file

. start the receiver on the second destination host:

[donato@otto donato]$ ITGRecv -1 recv2_log_file

. create the script file [donato@otto donato]$ cat
script_file

-a 10.0.0.3 -rp 10001 VoIP -x G.711.2 -h RTP -VAD
-a 10.0.0.4 -rp 10002 Telnet

-a 10.0.0.4 -rp 10003 DNS

. start the sender on the source host: [donato@otto

donato]$ ITGSend script_file -1 sender_log file
. close the first receiver by pressing Ctrl-C
. close the second receiver by pressing Ctrl-C

. decode the sender log file: [donato@otto donato]$
ITGDec sender_log file

Flow number: 2

From 10.0.0.4:33029

To 10.0.0.4:10002

Total time = 9.998991 s

Total packets = 1139

Minimum delay = 0.000000 s
Maximum delay = 0.000000 s
Average delay = 0.000000 s

Average jitter = 0.000000 s

Delay standard deviation = 0.000000 s
Bytes received = 2482

Average bitrate = 1.985800 Kbit/s
Average packet rate = 113.911494 pkt/s
Packets dropped = 0 (0 %)

Flow number: 1
From 10.0.0.4:34776
To 10.0.0.3:10001

Total time = 9.980002 s

Total packets = 500
Minimum delay = 0.000000 s
Maximum delay = 0.000000 s

Average delay = 0.000000 s

Average jitter = 0.000000 s

Delay standard deviation = 0.000000 s
Bytes received = 56000

25

Average bitrate = 44.889771 Kbit/s
Average packet rate = 50.100190 pkt/s
Packets dropped = 0 (0 %)

Flow number: 3

From 10.0.0.4:34775

To 10.0.0.4:10003

Total time = 8.928575 s

Total packets = 6

Minimum delay = 0.000000 s

Maximum delay = 0.000000 s

Average delay = 0.000000 s

Average jitter = 0.000000 s

Delay standard deviation = 0.000000 s
Bytes received = 1507

Average bitrate = 1.350271 Kbit/s
Average packet rate = 0.672000 pkt/s
Packets dropped = 0 (0 %)

sxsrookokokskokokokkkskokk TOTAL RESULTS skokskskokokokokskokoskokokskokok ok ok
Number of flows = 3

Total time = 10.027982 s

Total packets = 1645

Minimum delay = 0.000000 s

Maximum delay = 0.000000 s

Average delay = 0.000000 s

Average jitter = 0.000000 s

Delay standard deviation = 0.000000 s
Bytes received = 59989

Average bitrate = 47.857286 Kbit/s
Average packet rate = 164.040981 pkt/s
Packets dropped = 0 (0 %)

Error lines = 0

. decode the first receiver log file:
[donato@catarella src]$ ITGDec recvl_log file
Flow number: 1

From 10.0.0.4:34776

To 10.0.0.3:10001

Total time = 9.980004 s

Total packets = 500

26

Minimum delay = 3633.375466 s
Maximum delay = 3633.384447 s

Average delay = 3633.376101 s

Average jitter = 0.000138 s

Delay standard deviation = 0.000259 s
Bytes received = 56000

Average bitrate = 44.889762 Kbit/s
Average packet rate = 50.100180 pkt/s
Packets dropped = 0 (0 %)

soxsrookokokskkokokkkkk TOTAL RESULTS skokskskoskokokokskskokoskkokskok ok ok
Number of flows = 1

Total time = 9.980004 s

Total packets = 500

Minimum delay = 3633.375466 s
Maximum delay = 3633.384447 s

Average delay = 3633.376101 s

Average jitter = 0.000138 s

Delay standard deviation = 0.016080 s
Bytes received = 56000

Average bitrate = 44.889762 Kbit/s
Average packet rate = 50.100180 pkt/s
Packets dropped = 0 (0 %)

Error lines = 0

. decode the second receiver log file: [donato®@otto
donato]$ ITGDec recv2_log file

Flow number: 2

From 10.0.0.4:33029

To 10.0.0.4:10002

Total time = 9.998989 s

Total packets = 1139

Minimum delay = 0.000019 s
Maximum delay = 0.000934 s
Average delay = 0.000034 s

Average jitter = 0.000014 s

Delay standard deviation = 0.000056 s
Bytes received = 2482

Average bitrate = 1.985801 Kbit/s
Average packet rate = 113.911516 pkt/s
Packets dropped = 0 (0 %)

Flow number: 3

27

From 10.0.0.4:34775

To 10.0.0.4:10003

Total time = 8.928556 s

Total packets = 6

Minimum delay = 0.000023 s

Maximum delay = 0.000042 s

Average delay = 0.000028 s

Average jitter = 0.000005 s

Delay standard deviation = 0.000006 s
Bytes received = 1507

Average bitrate = 1.350274 Kbit/s
Average packet rate = 0.672001 pkt/s
Packets dropped = 0 (0 %)

sokskokokokkskkokokkkkkk TOTAL RESULTS skokskskokokokokskokoskkokskokok ook
Number of flows = 2

Total time = 10.023268 s

Total packets = 1145

Minimum delay = 0.000019 s

Maximum delay = 0.000934 s

Average delay = 0.000034 s

Average jitter = 0.000014 s

Delay standard deviation = 0.007472 s
Bytes received = 3989

Average bitrate = 3.183792 Kbit/s
Average packet rate = 114.234200 pkt/s
Packets dropped = 0 (0 %)

Error lines = 0

7.6 Example 6

Single SCTP flow, with association Id 3 and max outband stream 1, with costant
inter-departure time between packets and costant packet size with local sender
log

1. start receiver on the destination host
(143.225.229.135): [ercolino@localhost bin]$
./ITGRecv

2. start the sender on the source host:
[ercolino@localhost bin]$./ITGSend -a
143.225.229.135 -m RTTM -T SCTP 3 1 -rp 9030 -1
send_log_file

3. close the ITGRecv by pressing Ctrl-C

28

4. decode the sender log file on the source host:
[ercolino@localhost bin]$./ITGDec send_-log file

Flow number: 1

From 143.225.229.135:32772

To 143.225.229.135:9030

Total time = 9.998896 s

Total packets = 10000

Minimum delay = 0.000000 s

Maximum delay = 0.000000 s

Average delay = 0.000000 s

Average jitter = 0.000000 s

Delay standard deviation = 0.000000 s
Bytes received = 5120000

Average bitrate = 4096.452248 Kbit/s
Average packet rate = 1000.110412 pkt/s
Packets dropped = 0 (0.00 %)

sokkkkokkkkkokkkkkkx TOTAL RESULTS sokskskskskokskkskokkkkokkxk
Number of flows = 1

Total time = 9.998896 s

Total packets = 10000

Minimum delay = 0.000000 s
Maximum delay = 0.000000 s
Average delay = 0.000000 s

Average jitter = 0.000000 s

Delay standard deviation = 0.000000 s
Bytes received = 5120000

Average bitrate = 4096.452248 Kbit/s
Average packet rate = 1000.110412 pkt/s
Packets dropped = 0 (0.00 %)

Error lines = 0

7.7 Example 7

Single DCCP flow with costant inter-departure time between packets and costant
packet size with local sender log

1. start receiver on the destination host
(143.225.229.135): [ercolino@localhost bin]$
./ITGRecv

2. start the sender on the source host:
[ercolino@localhost bin]$./ITGSend -a

29

143.225.229.135 -m RTTM -T DCCP -rp 9030 -1
send_log_file

3. close the ITGRecv by pressing Ctrl-C

4. decode the sender log file on the source host:
[ercolino@localhost bin]$./ITGDec send_log file

Flow number: 1

From 143.225.229.135:47426

To 143.225.229.135:9030

Total time = 9.998912 s

Total packets = 10000

Minimum delay = 0.000000 s

Maximum delay = 0.000000 s

Average delay = 0.000000 s

Average jitter = 0.000000 s

Delay standard deviation = 0.000000 s
Bytes received = 5120000

Average bitrate = 4096.445693 Kbit/s
Average packet rate = 1000.108812 pkt/s
Packets dropped = 0 (0.00 %)

$okkkdokkkkkokkkkkk TOTAL RESULTS sokskskskskokskk skokokk %ok ok k ok
Number of flows =1

Total time = 9.998912 s

Total packets = 10000

Minimum delay = 0.000000 s
Maximum delay = 0.000000 s
Average delay = 0.000000 s

Average jitter = 0.000000 s

Delay standard deviation = 0.000000 s
Bytes received = 5120000

Average bitrate = 4096.445693 Kbit/s
Average packet rate = 1000.108812 pkt/s
Packets dropped = 0 (0.00 %)

Error lines = 0

7.8 Example 8

Single UDP flow with on/off inter-departure time between packets (the on and
off period durations are random variables, the former is an exponential with
average 100 while the latter is a Weibull with shape 10 and scale 100) and
costant packet size, and with local sender log

30

. start receiver on the destination host

(143.225.229.220): alessio®@hostl: /d-itg/bin$
./ITGRecv

. start the sender on the source host:

alessio®@host2: /d-itg/bin$./ITGSend -a
143.225.229.220 -T UDP -1 send_log file -B E 100 W
10 100

3. close the ITGRecv by pressing Ctrl-C

. decode the sender log file on the source host:
alessio®@host2: /d-itg/bin$./ITGDec send_log_file

Flow number: 1

From 143.225.229.220:47973 To 143.225.229.135:8999
Total time = 9.998912 s

Total packets = 8720

Minimum delay = 0.000000 s

Maximum delay = 0.000000 s

Average delay = 0.000000 s

Average jitter = 0.000000 s

Delay standard deviation = 0.000000 s
Bytes received = 4464640

Average bitrate = 3571.853445 Kbit/s
Average packet rate = 872.034533 pkt/s
Packets dropped = 0 (0.00 %)

skokskokkkokkokkdkokkokkk TOTAL RESULTS okskoskokskokok sk skokok ok k sk k
Number of flows = 1
Total time = 9.998912 s

Total packets = 8720

Minimum delay = 0.000000 s
Maximum delay = 0.000000 s
Average delay = 0.000000 s

Average jitter = 0.000000 s

Delay standard deviation = 0.000000 s
Bytes received = 4464640

Average bitrate = 3571.853445 Kbit/s
Average packet rate = 872.034533 pkt/s
Packets dropped = 0 (0.00 %)

Error lines = 0

31

References

[1]1 A. Dainotti, A. Botta, A. Pescapé, G. Ventre, ”Searching for Invariants in
Network Games Traffic” , Poster at ACM Co-Next 2006 Student Workshop.
2-pages abstract published in Co-Next ’06 Proceedings .

[2] T. Lang, P. Branch, G. J. Armitage: A synthetic traffic model for Quake3.
Advances in Computer Entertainment Technology 2004: 233-238

32

	ITGSend
	Synopsis
	Description
	Options

	ITGRecv
	Synopsis
	Description
	Options

	ITGLog
	Synopsis
	Description
	Options

	ITGDec
	Synopsis
	Description
	Options
	Compatibility with previous versions

	ITGplot
	Synopsis
	Description
	Options
	Notes for Linux users
	Notes for Windows users

	ITGapi
	Description

	Example
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6
	Example 7
	Example 8

	Bibliography

