001    // --- BEGIN LICENSE BLOCK ---
002    /* 
003     * Copyright (c) 2009, Mikio L. Braun
004     * All rights reserved.
005     * 
006     * Redistribution and use in source and binary forms, with or without
007     * modification, are permitted provided that the following conditions are
008     * met:
009     * 
010     *     * Redistributions of source code must retain the above copyright
011     *       notice, this list of conditions and the following disclaimer.
012     * 
013     *     * Redistributions in binary form must reproduce the above
014     *       copyright notice, this list of conditions and the following
015     *       disclaimer in the documentation and/or other materials provided
016     *       with the distribution.
017     * 
018     *     * Neither the name of the Technische Universit??t Berlin nor the
019     *       names of its contributors may be used to endorse or promote
020     *       products derived from this software without specific prior
021     *       written permission.
022     * 
023     * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
024     * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
025     * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
026     * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
027     * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
028     * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
029     * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
030     * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
031     * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
032     * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
033     * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
034     */
035    // --- END LICENSE BLOCK ---
036    
037    package org.jblas;
038    
039    /**
040     * Solving linear equations.
041     */
042    public class Solve {
043            /* Solves the linear equation A*X = B. */
044            public static DoubleMatrix solve(DoubleMatrix A, DoubleMatrix B) {
045                    A.assertSquare();
046                    DoubleMatrix X = B.dup();
047                    int[] ipiv = new int[B.rows];
048                    SimpleBlas.gesv(A.dup(), ipiv, X);
049                    return X;
050            }
051    
052            /* Solves the linear equation A*X = B for symmetric A. */
053            public static DoubleMatrix solveSymmetric(DoubleMatrix A, DoubleMatrix B) {
054                    A.assertSquare();
055                    DoubleMatrix X = B.dup();
056                    int[] ipiv = new int[B.rows];
057                    SimpleBlas.sysv('U', A.dup(), ipiv, X);
058                    return X;
059            }
060    
061            
062            /* Solves the linear equation A*X = B for symmetric and positive definite A. */
063            public static DoubleMatrix solvePositive(DoubleMatrix A, DoubleMatrix B) {
064                    A.assertSquare();
065                    DoubleMatrix X = B.dup();
066                    SimpleBlas.posv('U', A.dup(), X);
067                    return X;
068            }
069    
070    //BEGIN
071      // The code below has been automatically generated.
072      // DO NOT EDIT!
073            /* Solves the linear equation A*X = B. */
074            public static FloatMatrix solve(FloatMatrix A, FloatMatrix B) {
075                    A.assertSquare();
076                    FloatMatrix X = B.dup();
077                    int[] ipiv = new int[B.rows];
078                    SimpleBlas.gesv(A.dup(), ipiv, X);
079                    return X;
080            }
081    
082            /* Solves the linear equation A*X = B for symmetric A. */
083            public static FloatMatrix solveSymmetric(FloatMatrix A, FloatMatrix B) {
084                    A.assertSquare();
085                    FloatMatrix X = B.dup();
086                    int[] ipiv = new int[B.rows];
087                    SimpleBlas.sysv('U', A.dup(), ipiv, X);
088                    return X;
089            }
090    
091            
092            /* Solves the linear equation A*X = B for symmetric and positive definite A. */
093            public static FloatMatrix solvePositive(FloatMatrix A, FloatMatrix B) {
094                    A.assertSquare();
095                    FloatMatrix X = B.dup();
096                    SimpleBlas.posv('U', A.dup(), X);
097                    return X;
098            }
099    
100    //END
101    }