Public Member Functions |
| RationalSolver (const Ring &r=Ring(), const RandomPrime &rp=RandomPrime(DEFAULT_PRIMESIZE)) |
| RationalSolver (const Prime &p, const Ring &r=Ring(), const RandomPrime &rp=RandomPrime(DEFAULT_PRIMESIZE)) |
template<class IMatrix , class Vector1 , class Vector2 > |
SolverReturnStatus | solve (Vector1 &num, Integer &den, const IMatrix &A, const Vector2 &b, const bool=false, const int maxPrimes=DEFAULT_MAXPRIMES, const SolverLevel level=SL_DEFAULT) const |
template<class IMatrix , class Vector1 , class Vector2 > |
SolverReturnStatus | solve (Vector1 &num, Integer &den, const IMatrix &A, const Vector2 &b, const int maxPrimes, const SolverLevel level=SL_DEFAULT) const |
template<class IMatrix , class Vector1 , class Vector2 > |
SolverReturnStatus | solveNonsingular (Vector1 &num, Integer &den, const IMatrix &A, const Vector2 &b, bool=false, int maxPrimes=DEFAULT_MAXPRIMES) const |
template<class IMatrix , class Vector1 , class Vector2 > |
SolverReturnStatus | solveSingular (Vector1 &num, Integer &den, const IMatrix &A, const Vector2 &b, int maxPrimes=DEFAULT_MAXPRIMES, const SolverLevel level=SL_DEFAULT) const |
template<class IMatrix , class Vector1 , class Vector2 > |
SolverReturnStatus | findRandomSolution (Vector1 &num, Integer &den, const IMatrix &A, const Vector2 &b, int maxPrimes=DEFAULT_MAXPRIMES, const SolverLevel level=SL_DEFAULT) const |
template<class IMatrix , class Vector1 , class Vector2 > |
SolverReturnStatus | monolithicSolve (Vector1 &num, Integer &den, const IMatrix &A, const Vector2 &b, bool makeMinDenomCert, bool randomSolution, int maxPrimes=DEFAULT_MAXPRIMES, const SolverLevel level=SL_DEFAULT) const |
template<class Ring, class Field, class RandomPrime>
class LinBox::RationalSolver< Ring, Field, RandomPrime, DixonTraits >
partial specialization of p-adic based solver with Dixon algorithm
See the following reference for details on this algorithm:
- John D. Dixon: Exact Solution of linear equations using p-adic expansions. Numerische Mathematik, volume 40, pages 137-141, 1982.
SolverReturnStatus monolithicSolve |
( |
Vector1 & |
num, |
|
|
Integer & |
den, |
|
|
const IMatrix & |
A, |
|
|
const Vector2 & |
b, |
|
|
bool |
makeMinDenomCert, |
|
|
bool |
randomSolution, |
|
|
int |
maxPrimes = DEFAULT_MAXPRIMES , |
|
|
const SolverLevel |
level = SL_DEFAULT |
|
) |
| const |
Big solving routine to perform random solving and certificate generation. Same arguments and return as findRandomSolution, except
- Parameters:
-
num,Vector | of numerators of the solution |
den,The | common denominator. 1/den * num is the rational solution of Ax = b. |
randomSolution,parameter | to determine whether to randomize or not (since solveSingular calls this function as well) |
makeMinDenomCert,determines | whether a partial certificate for the minimal denominator of a rational solution is made |
When (randomSolution == true && makeMinDenomCert == true), If (level == SL_MONTECARLO) this function has the same effect as calling findRandomSolution. If (level >= SL_LASVEGAS && return == SS_OK), lastCertifiedDenFactor contains a certified factor of the min-solution's denominator. If (level >= SL_CERTIFIED && return == SS_OK), lastZBNumer and lastCertificate are updated as well.