Table Of Contents

Previous topic

neurospin.neuro.slices_ploter

Next topic

neurospin.registration.registration

This Page

neurospin.neuro.statistical_test

Module: neurospin.neuro.statistical_test

Functions

nipy.neurospin.neuro.statistical_test.bonferroni(p, n)
nipy.neurospin.neuro.statistical_test.cluster_stats(zimg, mask, height_th, height_control='fpr', cluster_th=0, null_zmax='bonferroni', null_smax=None, null_s=None)

Return a list of clusters, each cluster being represented by a dictionary. Clusters are sorted by descending size order. Within each cluster, local maxima are sorted by descending depth order.

Input consist of the following:
zimg – z-score image mask – mask image height_th – cluster forming threshold height_control – false positive control meaning of cluster forming threshold: ‘fpr’|’fdr’|’fwer’ size_th – cluster size threshold null_zmax – voxel-level familywise error correction method: ‘bonferroni’|’rft’|array null_smax – cluster-level familywise error correction method: None|‘rft’|array null_s – cluster-level calibration method: None|‘rft’|array
nipy.neurospin.neuro.statistical_test.mask_intersection(masks)
Compute mask intersection
nipy.neurospin.neuro.statistical_test.onesample_test(data_images, vardata_images, mask_images, stat_id, comparisons=False, cluster_forming_th=0.01, cluster_th=0)
nipy.neurospin.neuro.statistical_test.prepare_arrays(data_images, vardata_images, mask_images)
nipy.neurospin.neuro.statistical_test.simulated_pvalue(t, simu_t)
nipy.neurospin.neuro.statistical_test.z_threshold(height_th, height_control)