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About this tutorial

» Goal: tell you what you really need to know about Debian packaging
» Modify existing packages
» Create your own packages
» Interact with the Debian community
» Become a Debian power-user

» Covers the most important points, but is not complete
» You will need to read more documentation

» Most of the content also applies to Debian derivatives distributions
» That includes Ubuntu

©
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Debian

» GNU/Linux distribution

1st major distro developed “openly in the spirit of GNU”

v

Non-commercial, built collaboratively by over 1,000 volunteers

v

3 main features:

» Quality — culture of technical excellence
We release when it’s ready

v

» Freedom — devs and users bound by the Social Contract
Promoting the culture of Free Software since 1993

» Independence — no (single) company babysitting Debian
And open decision-making process (do-ocracy + democracy)

» Amateur in the best sense: done for the love of it

©
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Debian packages

v

.deb files (binary packages)

» A very powerful and convenient way to distribute software to users

v

One of the two most common packages format (with RPM)

Universal:

» 30,000 binary packages in Debian
— most of the available free software is packaged in Debian!

v

» For 12 ports (architectures), including 2 non-Linux (Hurd; KFreeBSD)
» Also used by 120 Debian derivatives distributions

©
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The Deb package format

» .deb file: an ar archive

$ ar tv wget_1.12-2.1_i386.deb

ru-r--r-- 0/0 4 Sep 5 15:43 2010 debian-binary
rw-r--r-- 0/0 2403 Sep 5 15:43 2010 control.tar.gz
rw-r--r-- 0/0 751613 Sep 5 15:43 2010 data.tar.gz

» debian-binary: version of the deb file format, "2.0\n"
» control.tar.gz: metadata about the package

control, md5sums, (pre|post)(rmlinst), triggers, shlibs, ...
» data.tar.gz: data files of the package

» You could create your .deb files manually
http://tldp.org/HOWTO0/html_single/Debian-Binary-Package-Building-HOWTO/

» But most people don’t do it that way

This tutorial: create Debian packages, the Debian way

©
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Tools you will need

» A Debian (or Ubuntu) system (with root access)

» Some packages:

» build-essential: has dependencies on the packages that will be
assumed to be available on the developers’ machine (no need to
specify them in the Build-Depends: control field of your package)

» includes a dependency on dpkg-dev, which contains basic
Debian-specific tools to create packages

» devscripts: contains many useful scripts for Debian maintainers
Many other tools will also be mentioned later, such as debhelper, cdbs, quilt,

pbuilder, sbuild, lintian, svn-buildpackage, git-buildpackage, ...
Install them when you need them.

©
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General packaging workflow

f—>| Debian mirror

| [web]| |upstream source

apt-get source

dget

R

3

dh_make

| source package |<- _____

where most of the
manual work is done

debuild (build and test with 1lintian)
or dpkg-buildpackage

| one or several binary packages |e ----.deb

upload (dpl% &stall (debi)

©

Debian Packaging Tutorial 9/55



Example: rebuilding dash

© Install packages needed to build dash, and devscripts
apt-get build-dep dash
apt-get install --no-install-recommends devscripts
® Create a working directory, and get in it:
mkdir /tmp/debian-tutorial ; cd /tmp/debian-tutorial

® Grab the dash source package
apt-get source dash

(This needs you to have deb-src lines in your /etc/apt/sources.list)

@ Build the package
cd dash—*
debuild -us -uc

@® Check that it worked
» There are some new .deb files in the parent directory

@ Look at the debian/ directory
» That's where the packaging work is done @
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Source package

» One source package can generate several binary packages
e.g the 1ibtar source generates the 1ibtar0 and 1ibtar-dev binary packages

» Two kinds of packages: (if unsure, use non-native)

» Native packages: normally for Debian specific software (dpkg, apt)
» Non-native packages: software developed outside Debian

» Main file: .dsc (meta-data)
» Other files depending on the version of the source format
» 1.0 — native: package version.tar.gz

» 1.0 — non-native:

» pkg_ver.orig.tar.gz : upstream source

» pkg debver.diff.gz : patch to add Debian-specific changes
» 3.0 (quilt):

» pkg_ver.orig.tar.gz : upstream source

» pkg debver.debian.tar.gz : tarball with the Debian changes

(See dpkg-source (1) for exact details) @
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Source package example (wget 1.12-2.1.dsc)

Format: 3.0 (quilt)

Source: wget

Binary: wget

Architecture: any

Version: 1.12-2.1

Maintainer: Noel Kothe <noel@debian.org>

Homepage: http://www.gnu.org/software/wget/

Standards -Version: 3.8.4

Build-Depends: debhelper (>> 5.0.0), gettext, texinfo,
libssl-dev (>= 0.9.8), dpatch, info2man

Checksums -Shal:

50d4ed2441e67[..]1ee0e94248 2464747 wget_1.12.orig.tar.gz
d4clc8bbe431d[..]1dd7cef3611 48308 wget_1.12-2.1.debian.tar.gz

Checksums -Sha256:

7578ed0974e12[..]1dcbab65b572 2464747 wget_1.12.orig.tar.gz
1e9b0c4c00eae[..]189c402ad78 48308 wget_1.12-2.1.debian.tar.gz

Files:
141461b9c04e4 [..]19d1f2abf83 2464747 wget_1.12.orig.tar.gz
€93123c934e3c[..]12£380278c2 48308 wget_l.12-2.1.debian.tar.<€§
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Retrieving an existing source package

» From the Debian archive:

» apt-get source package
» apt-get source package=version
» apt-get source package/release

(You need deb-src lines in sources.list)

» From the Internet:

» dget url-to.dsc

» dget http://snapshot.debian.org/archive/debian-archive/
20090802T004153Z/debian/dists/bo/main/source/web/
wget_1.4.4-6.dsc
(snapshot.d.o provides all packages from Debian since 2005)

» From the (declared) version control system:
» debcheckout package

» Once downloaded, extract with dpkg-source -x file.dsc (a
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Creating a basic source package

» Download the upstream source
(upstream source = the one from the software’s original developers)

» Rename to <source_package> <upstream version>.orig.tar.gz
(example: simgrid_3.6.orig.tar.gz)

» Untar it
» cd upstream source && dh_make (from the dh-make package)

» There are some alternatives to dh_make for specific sets of packages:
dh-make-perl, dh-make-php, ...

» debian/ directory created, with a lot of files in it

©
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Files in debian/

All the packaging work should be made by modifying files in debian/

» Main files:

>

>

>

| 4

control — meta-data about the package (dependencies, etc)
rules — specifies how to build the package

copyright — copyright information for the package
changelog — history of the Debian package

» Other files:

| 3

>

>

compat

watch

dh_install* targets

*.dirs, *.docs, *.manpages, ...
maintainer scripts
*.postinst, *.prerm, . ..

» source/format
» patches/ — if you need to modify the upstream sources

» Several files use a format based on RFC 822 (mail headers) @
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debian/changelog

>

>

>

>

>

Lists the Debian packaging changes
Gives the current version of the package
1.2.1.1-5

—_—
Upstream Debian
version revision

Edited manually or with dch

Special format to automatically close Debian or Ubuntu bugs
Debian: Closes: #595268; Ubuntu: LP: #616929

Installed as /usr/share/doc/package /changelog.Debian.gz

mpich2 (1.2.1.1-5) unstable; urgency=low

*

Use /usr/bin/python instead of /usr/bin/python2.5. Allow
to drop dependency on python2.5. Closes: #595268

Make /usr/bin/mpdroot setuid. This is the default after
the installation of mpich2 from source, too. LP: #616929
+ Add corresponding lintian override.

Lucas Nussbaum <lucas@debian.org> Wed, 15 Sep 2010 18:13:44 +@O
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debian/control

» Package metadata
» For the source package itself
» For each binary package built from this source

» Package name, section, priority, maintainer, uploaders,
build-dependencies, dependencies, description, homepage, . ..

» Documentation: Debian Policy chapter 5
http://www.debian.org/doc/debian-policy/ch-controlfields.html

Source: wget

Section: web

Priority: important

Maintainer: Noel Kothe <noel@debian.org>

Build-Depends: debhelper (>> 5.0.0), gettext, texinfo,
libssl-dev (>= 0.9.8), dpatch, info2man

Standards -Version: 3.8.4

Homepage: http://www.gnu.org/software/wget/

Package: wget

Architecture: any

Depends: ${shlibs:Depends}, ${misc:Depends}

Description: retrieves files from the web (F)
Wget is a network utility to retrieve files from the Web
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Architecture: all or any

Two kinds of binary packages:

» Packages with different contents on each Debian architecture
» Example: C program
» Architecture: any in debian/control

» Or, if it only works on a subset of architectures:
Architecture: amd64 1386 ia64 hurd-i386

» buildd.debian.org: builds all the other architectures for you on upload
» Named package _version_architecture.deb

» Packages with the same content on all architectures

» Example: Perl library
» Architecture: allin debian/control
» Named package _version_all.deb

A source package can generate a mix of Architecture: any and
Architecture: all binary packages @
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debian/rules

Makefile

v

v

Interface used to build Debian packages

v

Documented in Debian Policy, chapter 4.8
http://wuw.debian.org/doc/debian-policy/ch-source.html#s-debianrules

» Five required targets:
» build: should perform all the configuration and compilation

» binary, binary-arch, binary-indep: build the binary packages
» dpkg-buildpackage Will call binary to build all the packages, or
binary-arch to build only the Architecture: any packages

» clean: clean up the source directory

©
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Packaging helpers — debhelper

» You could write shell code in debian/rules directly
» See the adduser package for example

» Better practice (used by most packages): use a Packaging helper
» Most popular one: debhelper (used by 98% of packages)

» Goals:
» Factor the common tasks in standard tools used by all packages
» Fix some packaging bugs once for all packages

dh_installdirs, dh_installchangelogs, dh_installdocs, dh_installexamples, dh_install,
dh_installdebconf, dh_installinit, dh_link, dh_strip, dh_compress, dh_fixperms, dh_perl,
dh_makeshlibs, dh_installdeb, dh_shlibdeps, dh_gencontrol, dh_-md5sums, dh_builddeb, ...

» Called from debian/rules
» Configurable using command parameters or files in debian/

package.docs, package.examples, package.install, package.manpages, ...
» Third-party helpers for sets of packages: python-support, dh_ocaml, ...
» Gotcha: debian/compat: Debhelper compatibility version (use "7”) @
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debian/rules using debhelper (1/2)

#!/usr/bin/make -f

# Uncomment this to turn on verbose mode.

#export

build:

clean:

install:

DH_VERBOSE=1

$ (MAKE)
#docbook-to-man debian/packagename.sgml > packagename.1l

dh_testdir

dh_testroot

rm -f build-stamp configure-stamp
$ (MAKE) clean

dh_clean

build
dh_testdir
dh_testroot
dh_clean -k
dh_installdirs
# Add here commands to install the package into debian/package
$ (MAKE) DESTDIR=$(CURDIR)/debian/packagename install (?S
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debian/rules using debhelper (2/2)

# Build architecture-independent files here.
binary-indep: build install

# Build architecture-dependent files here.
binary-arch: build install

binary:
. PHONY :

dh_testdir
dh_testroot
dh_installchangelogs
dh_installdocs
dh_installexamples
dh_install
dh_installman
dh_link

dh_strip
dh_compress
dh_fixperms
dh_installdeb
dh_shlibdeps
dh_gencontrol
dh_md5sums
dh_builddeb

binary-indep binary-arch
build clean binary-indep binary-arch binary

©

install configure

Debian Packaging Tutorial

23 /55



CDBS

» With debhelper, still a lot of redundancy between packages

» Second-level helpers that factor common functionality
» E.g building with . /configure && make && make install or CMake

» CDBS:
Introduced in 2005, based on advanced GNU make magic
Documentation: /usr/share/doc/cdbs/
Support for Perl, Python, Ruby, GNOME, KDE, Java, Haskell, ...
But some people hate it:

» Sometimes difficult to customize package builds:

"twisty maze of makefiles and environment variables”
» Slower than plain debhelper (many useless calls to dh_x)

v

v vy

#!/usr/bin/make -f
include /usr/share/cdbs/1/rules/debhelper.mk
include /usr/share/cdbs/1/class/autotools.mk

# add an action after the build
build/mypackage::
/bin/bash debian/scripts/foo.sh (Z

Debian Packaging Tutorial 24/55



Dh (aka Debhelper 7, or dh7)

» Introduced in 2008 as a CDBS killer
» dh command that calls dh_*

v

Simple debian/rules, listing only overrides

v

Easier to customize than CDBS

Doc: manpages (debhelper(7), dh(1)) + slides from DebConf9 talk
http://kitenet.net/~joey/talks/debhelper/debhelper-slides.pdf

v

#!/usr/bin/make -f
%
dh $e

override_dh_auto_configure:
dh_auto_configure -- --with-kitchen-sink

override_dh_auto_build:
make world

©
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Classic debhelper vs CDBS vs dh

» Mind shares:

Classic debhelper: 40%

CDBS: 23%

» Which one should | learn?

» Probably a bit of all of them
» You need to know debhelper to use dh and CDBS
» You might have to modify CDBS packages

» Which one should | use for a new package?
» dh (only solution with an increasing mind share)

Market share (%)

60

40

20

dh: 36%

_____

debhelper
dh
CDBS

|
11/2009

| |
05/2010  12/2010

Time

|
06/2011
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Building packages

» apt-get build-dep mypackage
Installs the build-dependencies (for a package in the archive)

v

debuild: build, test with 1intian, sign with GPG

v

Also possible to call dpkg-buildpackage directly
» Usually with dpkg-buildpackage -us -uc

v

It is better to build packages in a clean & minimal environment
» pbuilder — helper to build packages in a chroot
Good documentation: https://wiki.ubuntu.com/PbuilderHowto
(optimization: cowbuilder ccache distcc)

» schroot and sbuild: used on the Debian build daemons
(not as simple as pbuilder, but allows LVM snapshots
see: https://help.ubuntu.com/community/SbuildLVMHowto )

v

Generate .deb files and a . changes file
» .changes: describes what was built; used to upload the package @
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Installing and testing packages

» Install the package locally: debi (will use . changes to know what to install)
» List the content of the package: debc ../mypackage<TAB>.changes

» Compare the package with a previous version:
debdiff ../mypackage_1_*.changes ../mypackage_2_.changes
or to compare the sources:
debdiff ../mypackage_1_*.dsc ../mypackage_2_x.dsc

» Check the package with 1intian (static analyzer):
lintian ../mypackage<TAB>.changes
lintian -i: gives more information about the errors

» Upload the package to Debian (dput) (needs configuration)

» Manage a private Debian archive with reprepro
Documentation: http://mirrorer.alioth.debian.org/

©
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Practical session 1: modifying the grep package

© Gotohttp://ftp.debian.org/debian/pool/main/g/grep/ and
download version 2.6.3-3 of the package

® Look at the files in debian/.

» How many binary packages are generated by this source package?
» Which packaging helper does this package use?

@® Build the package

@ We are now going to modify the package. Add a changelog entry and
increase the version number.

® Now disable perl-regexp support (it is a . /configure option)
0@ Rebuild the package

@ Compare the original and the new package with debdiff

@ Install the newly built package

©® Cry if you messed up ;)

©
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debian/copyright

» Copyright and license information for the source and the packaging
» Traditionally written as a text file
» New machine-readable format: http://dep.debian.net/deps/dep5/

Format: <VERSIONED_FORMAT_URL >
Upstream-Name: X Solitaire
Source: ftp://ftp.example.com/pub/games

Files: *

Copyright: Copyright 1998 John Doe <jdoe@example.com>
License: GPL-2+

This program is free software; you can redistribute it

.1
On Debian systems, the full text of the GNU General Public
License version 2 can be found in the file

‘/usr/share/common-licenses/GPL-27.

Files: debian/*
Copyright: Copyright 1998 Jane Smith <jsmith@example.net>

License:
[LICENSE TEXT] (:
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Modifying the upstream source

Often needed:
» Fix bugs or add customizations that are specific to Debian

» Backport fixes from a newer upstream release

Several methods to do it:
» Modifying the files directly
» Simple
» But no way to track and document the changes
» Using patch systems
» Eases contributing your changes to upstream
» Helps sharing the fixes with derivatives

» Gives more exposure to the changes
http://patch-tracker.debian.org/

©
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Patch systems

v

Principle: changes are stored as patches in debian/patches/

v

Applied and unapplied during build

v

Past: several implementations — simple-patchsys (cdbs), dpatch, quilt
» Each supports two debian/rules targets:

» debian/rules patch: apply all patches
» debian/rules unpatch: de-apply all patches

» More documentation: http://wiki.debian.org/debian/patches

v

New source package format with built-in patch system: 3.0 (quilt)
» Recommended solution

» You need to learn quilt
http://pkg-perl.alioth.debian.org/howto/quilt.html

©
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Documentation of patches

» Standard headers at the beginning of the patch

» Documented in DEP-3 - Patch Tagging Guidelines
http://dep.debian.net/deps/dep3/

» All patches are published on http://patch-tracker.debian.org/

Description: Fix widget frobnication speeds

Frobnicating widgets too quickly tended to cause explosions.
Forwarded: http://lists.example.com/2010/03/1234.html

Author: John Doe <johndoe-guest@users.alioth.debian.org>
Applied-Upstream: 1.2, http://bzr.foo.com/frobnicator/revision/123
Last-Update: 2010-03-29

--- a/src/widgets.c

+++ b/src/widgets.c
@@ -101,9 +101,6 @@ struct {

©
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Doing things during installation and removal

» Decompressing the package is sometimes not enough
Create/remove system users, start/stop services, manage alternatives

v

» Done in maintainer scripts
preinst, postinst, prerm, postrm

» Snippets for common actions can be generated by debhelper

Documentation:

» Debian Policy Manual, chapter 6
http://www.debian.org/doc/debian-policy/ch-maintainerscripts.html

A\

» Debian Developer’s Reference, chapter 6.4

http://www.debian.org/doc/developers-reference/best-pkging-practices.html

> http://people.debian.org/~srivasta/MaintainerScripts.html

» Prompting the user
» Must be done with debconf

» Documentation: debconf-devel(7) (debconf-doc package) @
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Monitoring upstream versions

» Specify where to look in debian/watch (See uscan(1))

version=3

http://tmrc.mit.edu/mirror/twisted/Twisted/(\d\.\d)/ \
Twisted-([\d\.I*)\.tar\.bz2

» Debian infrastructure that makes use of debian/watch:
Debian External Health Status
http://dehs.alioth.debian.org/

» Maintainer warned by emails sent to the Package Tracking System
http://packages.qa.debian.org/

» uscan: run a manual check

» uupdate: try to update your package to the latest upstream version

©
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Packaging with a VCS (SVN, Git, etc.)

» Several tools to help manage branches and tags for your packaging work:
svn-buildpackage, git-buildpackage

» Example: git-buildpackage
» upstream branch to track upstream with upstream/version tags
» master branch tracks the Debian package
» debian/version tags for each upload
» pristine-tar branch to be able to rebuild the upstream tarball

» Vcs—x* fields in debian/control to locate the repository
» http://wiki.debian.org/Alioth/Git
» http://wiki.debian.org/Alioth/Svn

Vcs-Browser: http://git.debian.org/?p=devscripts/devscripts.git
Vcs-Git: git://git.debian.org/devscripts/devscripts.git

Vcs-Browser: http://svn.debian.org/viewsvn/pkg-perl/trunk/libwww-perl/
Vcs-Svn: svn://svn.debian.org/pkg-perl/trunk/libwww-perl

» VCS-agnostic interface: debcheckout, debcommit, debrelease
» debcheckout grep — checks out the source package from Git @
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Several ways to contribute to Debian

» Worst way to contribute:

@ Package your own application
® Get it into Debian
® Disappear

» Better ways to contribute:
» Get involved in packaging teams

» Many teams that focus on set of packages, and need help
» List available at http://wiki.debian.org/Teams
» An excellent way to learn from more experienced contributors

» Adopt existing unmaintained packages (orphaned packages)

» Bring new software to Debian

» Only if it's interesting/useful enough, please
» Are there alternatives already packaged in Debian?

©
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Adopting orphaned packages

» Many unmaintained packages in Debian

» Full list + process: http://www.debian.org/devel/wnpp/
» Installed on your machine: wnpp-alert

» Different states:
» Orphaned: the package is unmaintained
Feel free to adopt it

» RFA: Request For Adopter
Maintainer looking for adopter, but continues work in the meantime
Feel free to adopt it. A mail to the current maintainer is polite

» ITA: Intent To Adopt
Someone intends to adopt the package
You could propose your help!

» RFH: Request For Help
The maintainer is looking for help

» Some unmaintained packages not detected — not orphaned yet

» When in doubt, ask debian-qa@lists.debian.org @
Or #debian-qa On irc.debian.org
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Getting your package in Debian

» You do not need any official status to get your package into Debian
© Prepare a source package

® Find a Debian Developer that will sponsor your package

» Official status (when you are already experienced):

» Debian Maintainer (DM):
Permission to upload your own packages
See http://wiki.debian.org/DebianMaintainer

» Debian Developer (DD):
Debian project members; can vote and upload any package

©
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Where to find help?

Help you will need:
» Advice and answers to your questions, code reviews
» Sponsorship for your uploads, once your package is ready

You can get help from:
» Other members of a packaging team

» They know the specifics of your package
» You can become a member of the team

» The Debian Mentors group (if your package doesn't fit in a team)
» http://wiki.debian.org/DebianMentorsFaq
» Mailing list: debian-mentors@lists.debian.org
(also a good way to learn by accident)
» |IRC: #debian-mentors On irc.debian.org
» http://mentors.debian.net/

©
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Official documentation

>

Debian Developers’ Corner
http://www.debian.org/devel/
Links to many resources about Debian development

Debian New Maintainers’ Guide
http://www.debian.org/doc/maint-guide/
An introduction to Debian packaging, but could use an update

Debian Developer’s Reference
http://www.debian.org/doc/developers-reference/
Mostly about Debian procedures, but also some best packaging practices (part 6)

Debian Policy
http://www.debian.org/doc/debian-policy/

» All the requirements that every package must satisfy
» Specific policies for Perl, Java, Python, ...

Ubuntu Packaging Guide
https://wiki.ubuntu.com/PackagingGuide (?)
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Debian dashboards for maintainers

» Source package centric: Package Tracking System (PTS)
http://packages.qa.debian.org/dpkg

» Maintainer/team centric: Developer’s Packages Overview (DDPO)
http://qa.debian.org/developer.php?login=
pkg-ruby-extras-maintainers@lists.alioth.debian.org

©
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More interested in Ubuntu?

» Ubuntu mainly manages the divergence with Debian

» No real focus on specific packages
Instead, collaboration with Debian teams

» Usually recommend uploading new packages to Debian first
https://wiki.ubuntu.com/UbuntuDevelopment/NewPackages

» Possibly a better plan:
» Get involved in a Debian team and act as a bridge with Ubuntu
» Help reduce divergence, triage bugs in Launchpad

» Many Debian tools can help:

» Ubuntu column on the Developer’s packages overview
» Ubuntu box on the Package Tracking System
» Receive launchpad bugmail via the PTS

©
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Outline

© Introduction

® Creating source packages

® Building and testing packages

@ Practical session 1: modifying the grep package
® Advanced packaging topics

® Maintaining packages in Debian

@ Conclusion

® Practical session 2: packaging GNUjump

© Practical session 3: packaging a Java library

©

Debian Packaging Tutorial 48 /55



Conclusion

» You now have a full overview of Debian packaging
» But you will need to read more documentation

» Best practices have evolved over the years
» If not sure, use the dh packaging helper, and the 3.0 (quilt) format

» Things that were not covered in this tutorial:
» UCF — manage user changes to configuration files when upgrading
» dpkg triggers — group similar maintainer scripts actions together
» Debian development organization:
» Bug Tracking System (BTS)
» Suites: stable, testing, unstable, experimental, security,

*-updates, backports, ...
» Debian Blends — subsets of Debian targeting specific groups

Feedback: lucas@debian.org @
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Legal stuff

Copyright ©2011 Lucas Nussbaum — lucas@debian.org

This document is free software: you can redistribute it and/or modify it under either
(at your option):

» The terms of the GNU General Public License as published by the Free Software
Foundation, either version 3 of the License, or (at your option) any later version.
http://wuw.gnu.org/licenses/gpl.html

» The terms of the Creative Commons Attribution-ShareAlike 3.0 Unported License.
http://creativecommons.org/licenses/by-sa/3.0/

©
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Latest version & source code

» Latest version:
http://git.debian.org/?p=collab-maint/packaging-tutorial.git;a=blob_plain;f=
packaging-tutorial.pdf;hb=refs/heads/pdf

» Contribute:
» git clone
git://git.debian.org/collab-maint/packaging-tutorial.git

» apt-get source packaging-tutorial

> http://git.debian.org/?p=collab-maint/packaging-tutorial.git

» Feedback: lucas@debian.org
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Practical session 2: packaging GNUjump

© Download GNUjump 1.0.6 from
http://ftp.gnu.org/gnu/gnujump/1.0.6/gnujump-1.0.6.tar.gz

® Create a Debian package for it

» Install build-dependencies so that you can build the package
» Get a basic working package
» Finish filling debian/control and other files

® Enjoy
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Practical session 3: packaging a Java library

© Take a quick look at some documentation about Java packaging:

>

>

>

http://wiki.debian.org/Java
http://wiki.debian.org/Java/Packaging
http://www.debian.org/doc/packaging-manuals/java-policy/
http://pkg-java.alioth.debian.org/docs/tutorial.html

Paper and slides from a Debconf10 talk about javahelper:
http://pkg-java.alioth.debian.org/docs/debconf10-javahelper-paper.pdf

http://pkg-java.alioth.debian.org/docs/debconf10-javahelper-slides.pdf

® Download IRClib from http://moepii.sourceforge.net/

® Package it

©
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