Debian Packaging Tutorial

Lucas Nussbaum
lucas@debian.org

version 0.2 - 2011-07-12

©

Debian Packaging Tutorial 1/55

About this tutorial

» Goal: tell you what you really need to know about Debian packaging
» Modify existing packages
» Create your own packages
» Interact with the Debian community
» Become a Debian power-user

» Covers the most important points, but is not complete
» You will need to read more documentation

» Most of the content also applies to Debian derivatives distributions
» That includes Ubuntu

©

Debian Packaging Tutorial 2/55

Outline

© Introduction

® Creating source packages

® Building and testing packages

@ Practical session 1: modifying the grep package
@® Advanced packaging topics

@ Maintaining packages in Debian

@ Conclusion

® Practical session 2: packaging GNUjump

© Practical session 3: packaging a Java library

©

Debian Packaging Tutorial 3/55

Outline

© Introduction

® Creating source packages

® Building and testing packages

@ Practical session 1: modifying the grep package
® Advanced packaging topics

® Maintaining packages in Debian

@ Conclusion

® Practical session 2: packaging GNUjump

© Practical session 3: packaging a Java library

©

Debian Packaging Tutorial 4/55

Debian

» GNU/Linux distribution

1st major distro developed “openly in the spirit of GNU”

v

Non-commercial, built collaboratively by over 1,000 volunteers

v

3 main features:

» Quality — culture of technical excellence
We release when it’s ready

v

» Freedom — devs and users bound by the Social Contract
Promoting the culture of Free Software since 1993

» Independence — no (single) company babysitting Debian
And open decision-making process (do-ocracy + democracy)

» Amateur in the best sense: done for the love of it

©

Debian Packaging Tutorial 5/55

Debian packages

v

.deb files (binary packages)

» A very powerful and convenient way to distribute software to users

v

One of the two most common packages format (with RPM)

Universal:

» 30,000 binary packages in Debian
— most of the available free software is packaged in Debian!

v

» For 12 ports (architectures), including 2 non-Linux (Hurd; KFreeBSD)
» Also used by 120 Debian derivatives distributions

©

Debian Packaging Tutorial 6/55

The Deb package format

» .deb file: an ar archive

$ ar tv wget_1.12-2.1_i386.deb

ru-r--r-- 0/0 4 Sep 5 15:43 2010 debian-binary
rw-r--r-- 0/0 2403 Sep 5 15:43 2010 control.tar.gz
rw-r--r-- 0/0 751613 Sep 5 15:43 2010 data.tar.gz

» debian-binary: version of the deb file format, "2.0\n"
» control.tar.gz: metadata about the package

control, md5sums, (pre|post)(rmlinst), triggers, shlibs, ...
» data.tar.gz: data files of the package

» You could create your .deb files manually
http://tldp.org/HOWTO0/html_single/Debian-Binary-Package-Building-HOWTO/

» But most people don’t do it that way

This tutorial: create Debian packages, the Debian way

©

Debian Packaging Tutorial 7155

http://tldp.org/HOWTO/html_single/Debian-Binary-Package-Building-HOWTO/

Tools you will need

» A Debian (or Ubuntu) system (with root access)

» Some packages:

» build-essential: has dependencies on the packages that will be
assumed to be available on the developers’ machine (no need to
specify them in the Build-Depends: control field of your package)

» includes a dependency on dpkg-dev, which contains basic
Debian-specific tools to create packages

» devscripts: contains many useful scripts for Debian maintainers
Many other tools will also be mentioned later, such as debhelper, cdbs, quilt,

pbuilder, sbuild, lintian, svn-buildpackage, git-buildpackage, ...
Install them when you need them.

©

Debian Packaging Tutorial 8/55

General packaging workflow

f—>| Debian mirror

| [web]| |upstream source

apt-get source

dget

R

3

dh_make

| source package |<- _____

where most of the
manual work is done

debuild (build and test with 1lintian)
or dpkg-buildpackage

| one or several binary packages |e ----.deb

upload (dpl% &stall (debi)

©

Debian Packaging Tutorial 9/55

Example: rebuilding dash

© Install packages needed to build dash, and devscripts
apt-get build-dep dash
apt-get install --no-install-recommends devscripts
® Create a working directory, and get in it:
mkdir /tmp/debian-tutorial ; cd /tmp/debian-tutorial

® Grab the dash source package
apt-get source dash

(This needs you to have deb-src lines in your /etc/apt/sources.list)

@ Build the package
cd dash—*
debuild -us -uc

@® Check that it worked
» There are some new .deb files in the parent directory

@ Look at the debian/ directory
» That's where the packaging work is done @

Debian Packaging Tutorial 10/55

Outline

© Introduction

® Creating source packages

® Building and testing packages

@ Practical session 1: modifying the grep package
® Advanced packaging topics

® Maintaining packages in Debian

@ Conclusion

® Practical session 2: packaging GNUjump

© Practical session 3: packaging a Java library

©

Debian Packaging Tutorial 11/55

Source package

» One source package can generate several binary packages
e.g the 1ibtar source generates the 1ibtar0 and 1ibtar-dev binary packages

» Two kinds of packages: (if unsure, use non-native)

» Native packages: normally for Debian specific software (dpkg, apt)
» Non-native packages: software developed outside Debian

» Main file: .dsc (meta-data)
» Other files depending on the version of the source format
» 1.0 — native: package version.tar.gz

» 1.0 — non-native:

» pkg_ver.orig.tar.gz : upstream source

» pkg debver.diff.gz : patch to add Debian-specific changes
» 3.0 (quilt):

» pkg_ver.orig.tar.gz : upstream source

» pkg debver.debian.tar.gz : tarball with the Debian changes

(See dpkg-source (1) for exact details) @

Debian Packaging Tutorial 12/55

Source package example (wget 1.12-2.1.dsc)

Format: 3.0 (quilt)

Source: wget

Binary: wget

Architecture: any

Version: 1.12-2.1

Maintainer: Noel Kothe <noel@debian.org>

Homepage: http://www.gnu.org/software/wget/

Standards -Version: 3.8.4

Build-Depends: debhelper (>> 5.0.0), gettext, texinfo,
libssl-dev (>= 0.9.8), dpatch, info2man

Checksums -Shal:

50d4ed2441e67[..]1ee0e94248 2464747 wget_1.12.orig.tar.gz
d4clc8bbe431d[..]1dd7cef3611 48308 wget_1.12-2.1.debian.tar.gz

Checksums -Sha256:

7578ed0974e12[..]1dcbab65b572 2464747 wget_1.12.orig.tar.gz
1e9b0c4c00eae[..]189c402ad78 48308 wget_1.12-2.1.debian.tar.gz

Files:
141461b9c04e4 [..]19d1f2abf83 2464747 wget_1.12.orig.tar.gz
€93123c934e3c[..]12£380278c2 48308 wget_l.12-2.1.debian.tar.<€§

Debian Packaging Tutorial 13/55

Retrieving an existing source package

» From the Debian archive:

» apt-get source package
» apt-get source package=version
» apt-get source package/release

(You need deb-src lines in sources.list)

» From the Internet:

» dget url-to.dsc

» dget http://snapshot.debian.org/archive/debian-archive/
20090802T004153Z/debian/dists/bo/main/source/web/
wget_1.4.4-6.dsc
(snapshot.d.o provides all packages from Debian since 2005)

» From the (declared) version control system:
» debcheckout package

» Once downloaded, extract with dpkg-source -x file.dsc (a

Debian Packaging Tutorial 14 /55

http://snapshot.debian.org/

Creating a basic source package

» Download the upstream source
(upstream source = the one from the software’s original developers)

» Rename to <source_package> <upstream version>.orig.tar.gz
(example: simgrid_3.6.orig.tar.gz)

» Untar it
» cd upstream source && dh_make (from the dh-make package)

» There are some alternatives to dh_make for specific sets of packages:
dh-make-perl, dh-make-php, ...

» debian/ directory created, with a lot of files in it

©

Debian Packaging Tutorial 15/55

Files in debian/

All the packaging work should be made by modifying files in debian/

» Main files:

>

>

>

| 4

control — meta-data about the package (dependencies, etc)
rules — specifies how to build the package

copyright — copyright information for the package
changelog — history of the Debian package

» Other files:

| 3

>

>

compat

watch

dh_install* targets

*.dirs, *.docs, *.manpages, ...
maintainer scripts
*.postinst, *.prerm, . ..

» source/format
» patches/ — if you need to modify the upstream sources

» Several files use a format based on RFC 822 (mail headers) @

Debian Packaging Tutorial 16/55

debian/changelog

>

>

>

>

>

Lists the Debian packaging changes
Gives the current version of the package
1.2.1.1-5

—_—
Upstream Debian
version revision

Edited manually or with dch

Special format to automatically close Debian or Ubuntu bugs
Debian: Closes: #595268; Ubuntu: LP: #616929

Installed as /usr/share/doc/package /changelog.Debian.gz

mpich2 (1.2.1.1-5) unstable; urgency=low

*

Use /usr/bin/python instead of /usr/bin/python2.5. Allow
to drop dependency on python2.5. Closes: #595268

Make /usr/bin/mpdroot setuid. This is the default after
the installation of mpich2 from source, too. LP: #616929
+ Add corresponding lintian override.

Lucas Nussbaum <lucas@debian.org> Wed, 15 Sep 2010 18:13:44 +@O

Debian Packaging Tutorial 17/55

debian/control

» Package metadata
» For the source package itself
» For each binary package built from this source

» Package name, section, priority, maintainer, uploaders,
build-dependencies, dependencies, description, homepage, . ..

» Documentation: Debian Policy chapter 5
http://www.debian.org/doc/debian-policy/ch-controlfields.html

Source: wget

Section: web

Priority: important

Maintainer: Noel Kothe <noel@debian.org>

Build-Depends: debhelper (>> 5.0.0), gettext, texinfo,
libssl-dev (>= 0.9.8), dpatch, info2man

Standards -Version: 3.8.4

Homepage: http://www.gnu.org/software/wget/

Package: wget

Architecture: any

Depends: ${shlibs:Depends}, ${misc:Depends}

Description: retrieves files from the web (F)
Wget is a network utility to retrieve files from the Web

Debian Packaging Tutorial 18/55

http://www.debian.org/doc/debian-policy/ch-controlfields.html

Architecture: all or any

Two kinds of binary packages:

» Packages with different contents on each Debian architecture
» Example: C program
» Architecture: any in debian/control

» Or, if it only works on a subset of architectures:
Architecture: amd64 1386 ia64 hurd-i386

» buildd.debian.org: builds all the other architectures for you on upload
» Named package _version_architecture.deb

» Packages with the same content on all architectures

» Example: Perl library
» Architecture: allin debian/control
» Named package _version_all.deb

A source package can generate a mix of Architecture: any and
Architecture: all binary packages @

Debian Packaging Tutorial 19/55

debian/rules

Makefile

v

v

Interface used to build Debian packages

v

Documented in Debian Policy, chapter 4.8
http://wuw.debian.org/doc/debian-policy/ch-source.html#s-debianrules

» Five required targets:
» build: should perform all the configuration and compilation

» binary, binary-arch, binary-indep: build the binary packages
» dpkg-buildpackage Will call binary to build all the packages, or
binary-arch to build only the Architecture: any packages

» clean: clean up the source directory

©

Debian Packaging Tutorial 20/55

Packaging helpers — debhelper

» You could write shell code in debian/rules directly
» See the adduser package for example

» Better practice (used by most packages): use a Packaging helper
» Most popular one: debhelper (used by 98% of packages)

» Goals:
» Factor the common tasks in standard tools used by all packages
» Fix some packaging bugs once for all packages

dh_installdirs, dh_installchangelogs, dh_installdocs, dh_installexamples, dh_install,
dh_installdebconf, dh_installinit, dh_link, dh_strip, dh_compress, dh_fixperms, dh_perl,
dh_makeshlibs, dh_installdeb, dh_shlibdeps, dh_gencontrol, dh_-md5sums, dh_builddeb, ...

» Called from debian/rules
» Configurable using command parameters or files in debian/

package.docs, package.examples, package.install, package.manpages, ...
» Third-party helpers for sets of packages: python-support, dh_ocaml, ...
» Gotcha: debian/compat: Debhelper compatibility version (use "7”) @

Debian Packaging Tutorial 21/55

debian/rules using debhelper (1/2)

#!/usr/bin/make -f

Uncomment this to turn on verbose mode.

#export

build:

clean:

install:

DH_VERBOSE=1

$ (MAKE)
#docbook-to-man debian/packagename.sgml > packagename.1l

dh_testdir

dh_testroot

rm -f build-stamp configure-stamp
$ (MAKE) clean

dh_clean

build
dh_testdir
dh_testroot
dh_clean -k
dh_installdirs
Add here commands to install the package into debian/package
$ (MAKE) DESTDIR=$(CURDIR)/debian/packagename install (?S

Debian Packaging Tutorial 22/55

debian/rules using debhelper (2/2)

Build architecture-independent files here.
binary-indep: build install

Build architecture-dependent files here.
binary-arch: build install

binary:
. PHONY :

dh_testdir
dh_testroot
dh_installchangelogs
dh_installdocs
dh_installexamples
dh_install
dh_installman
dh_link

dh_strip
dh_compress
dh_fixperms
dh_installdeb
dh_shlibdeps
dh_gencontrol
dh_md5sums
dh_builddeb

binary-indep binary-arch
build clean binary-indep binary-arch binary

©

install configure

Debian Packaging Tutorial

23 /55

CDBS

» With debhelper, still a lot of redundancy between packages

» Second-level helpers that factor common functionality
» E.g building with . /configure && make && make install or CMake

» CDBS:
Introduced in 2005, based on advanced GNU make magic
Documentation: /usr/share/doc/cdbs/
Support for Perl, Python, Ruby, GNOME, KDE, Java, Haskell, ...
But some people hate it:

» Sometimes difficult to customize package builds:

"twisty maze of makefiles and environment variables”
» Slower than plain debhelper (many useless calls to dh_x)

v

v vy

#!/usr/bin/make -f
include /usr/share/cdbs/1/rules/debhelper.mk
include /usr/share/cdbs/1/class/autotools.mk

add an action after the build
build/mypackage::
/bin/bash debian/scripts/foo.sh (Z

Debian Packaging Tutorial 24/55

Dh (aka Debhelper 7, or dh7)

» Introduced in 2008 as a CDBS killer
» dh command that calls dh_*

v

Simple debian/rules, listing only overrides

v

Easier to customize than CDBS

Doc: manpages (debhelper(7), dh(1)) + slides from DebConf9 talk
http://kitenet.net/~joey/talks/debhelper/debhelper-slides.pdf

v

#!/usr/bin/make -f
%
dh $e

override_dh_auto_configure:
dh_auto_configure -- --with-kitchen-sink

override_dh_auto_build:
make world

©

Debian Packaging Tutorial 25/55

http://kitenet.net/~joey/talks/debhelper/debhelper-slides.pdf

Classic debhelper vs CDBS vs dh

» Mind shares:

Classic debhelper: 40%

CDBS: 23%

» Which one should | learn?

» Probably a bit of all of them
» You need to know debhelper to use dh and CDBS
» You might have to modify CDBS packages

» Which one should | use for a new package?
» dh (only solution with an increasing mind share)

Market share (%)

60

40

20

dh: 36%

debhelper
dh
CDBS

|
11/2009

| |
05/2010 12/2010

Time

|
06/2011

©

Debian Packaging Tutorial 26/55

Outline

© Introduction

® Creating source packages

® Building and testing packages

@ Practical session 1: modifying the grep package
® Advanced packaging topics

@ Maintaining packages in Debian

@ Conclusion

® Practical session 2: packaging GNUjump

© Practical session 3: packaging a Java library

©

Debian Packaging Tutorial 27155

Building packages

» apt-get build-dep mypackage
Installs the build-dependencies (for a package in the archive)

v

debuild: build, test with 1intian, sign with GPG

v

Also possible to call dpkg-buildpackage directly
» Usually with dpkg-buildpackage -us -uc

v

It is better to build packages in a clean & minimal environment
» pbuilder — helper to build packages in a chroot
Good documentation: https://wiki.ubuntu.com/PbuilderHowto
(optimization: cowbuilder ccache distcc)

» schroot and sbuild: used on the Debian build daemons
(not as simple as pbuilder, but allows LVM snapshots
see: https://help.ubuntu.com/community/SbuildLVMHowto)

v

Generate .deb files and a . changes file
» .changes: describes what was built; used to upload the package @

Debian Packaging Tutorial 28/55

https://wiki.ubuntu.com/PbuilderHowto
https://help.ubuntu.com/community/SbuildLVMHowto

Installing and testing packages

» Install the package locally: debi (will use . changes to know what to install)
» List the content of the package: debc ../mypackage<TAB>.changes

» Compare the package with a previous version:
debdiff ../mypackage_1_*.changes ../mypackage_2_.changes
or to compare the sources:
debdiff ../mypackage_1_*.dsc ../mypackage_2_x.dsc

» Check the package with 1intian (static analyzer):
lintian ../mypackage<TAB>.changes
lintian -i: gives more information about the errors

» Upload the package to Debian (dput) (needs configuration)

» Manage a private Debian archive with reprepro
Documentation: http://mirrorer.alioth.debian.org/

©

Debian Packaging Tutorial 29/55

http://mirrorer.alioth.debian.org/

Outline

© Introduction

® Creating source packages

® Building and testing packages

@ Practical session 1: modifying the grep package
® Advanced packaging topics

® Maintaining packages in Debian

@ Conclusion

® Practical session 2: packaging GNUjump

© Practical session 3: packaging a Java library

©

Debian Packaging Tutorial 30/55

Practical session 1: modifying the grep package

© Gotohttp://ftp.debian.org/debian/pool/main/g/grep/ and
download version 2.6.3-3 of the package

® Look at the files in debian/.

» How many binary packages are generated by this source package?
» Which packaging helper does this package use?

@® Build the package

@ We are now going to modify the package. Add a changelog entry and
increase the version number.

® Now disable perl-regexp support (it is a . /configure option)
0@ Rebuild the package

@ Compare the original and the new package with debdiff

@ Install the newly built package

©® Cry if you messed up ;)

©

Debian Packaging Tutorial 31/55

http://ftp.debian.org/debian/pool/main/g/grep/

Outline

© Introduction

® Creating source packages

® Building and testing packages

@ Practical session 1: modifying the grep package
@ Advanced packaging topics

@ Maintaining packages in Debian

@ Conclusion

® Practical session 2: packaging GNUjump

© Practical session 3: packaging a Java library

©

Debian Packaging Tutorial 32/55

debian/copyright

» Copyright and license information for the source and the packaging
» Traditionally written as a text file
» New machine-readable format: http://dep.debian.net/deps/dep5/

Format: <VERSIONED_FORMAT_URL >
Upstream-Name: X Solitaire
Source: ftp://ftp.example.com/pub/games

Files: *

Copyright: Copyright 1998 John Doe <jdoe@example.com>
License: GPL-2+

This program is free software; you can redistribute it

.1
On Debian systems, the full text of the GNU General Public
License version 2 can be found in the file

‘/usr/share/common-licenses/GPL-27.

Files: debian/*
Copyright: Copyright 1998 Jane Smith <jsmith@example.net>

License:
[LICENSE TEXT] (:

Debian Packaging Tutorial 33/55

http://dep.debian.net/deps/dep5/

Modifying the upstream source

Often needed:
» Fix bugs or add customizations that are specific to Debian

» Backport fixes from a newer upstream release

Several methods to do it:
» Modifying the files directly
» Simple
» But no way to track and document the changes
» Using patch systems
» Eases contributing your changes to upstream
» Helps sharing the fixes with derivatives

» Gives more exposure to the changes
http://patch-tracker.debian.org/

©

Debian Packaging Tutorial 34/55

http://patch-tracker.debian.org/

Patch systems

v

Principle: changes are stored as patches in debian/patches/

v

Applied and unapplied during build

v

Past: several implementations — simple-patchsys (cdbs), dpatch, quilt
» Each supports two debian/rules targets:

» debian/rules patch: apply all patches
» debian/rules unpatch: de-apply all patches

» More documentation: http://wiki.debian.org/debian/patches

v

New source package format with built-in patch system: 3.0 (quilt)
» Recommended solution

» You need to learn quilt
http://pkg-perl.alioth.debian.org/howto/quilt.html

©

Debian Packaging Tutorial 35/55

http://wiki.debian.org/debian/patches
http://pkg-perl.alioth.debian.org/howto/quilt.html

Documentation of patches

» Standard headers at the beginning of the patch

» Documented in DEP-3 - Patch Tagging Guidelines
http://dep.debian.net/deps/dep3/

» All patches are published on http://patch-tracker.debian.org/

Description: Fix widget frobnication speeds

Frobnicating widgets too quickly tended to cause explosions.
Forwarded: http://lists.example.com/2010/03/1234.html

Author: John Doe <johndoe-guest@users.alioth.debian.org>
Applied-Upstream: 1.2, http://bzr.foo.com/frobnicator/revision/123
Last-Update: 2010-03-29

--- a/src/widgets.c

+++ b/src/widgets.c
@@ -101,9 +101,6 @@ struct {

©

Debian Packaging Tutorial 36/55

http://dep.debian.net/deps/dep3/
http://patch-tracker.debian.org/

Doing things during installation and removal

» Decompressing the package is sometimes not enough
Create/remove system users, start/stop services, manage alternatives

v

» Done in maintainer scripts
preinst, postinst, prerm, postrm

» Snippets for common actions can be generated by debhelper

Documentation:

» Debian Policy Manual, chapter 6
http://www.debian.org/doc/debian-policy/ch-maintainerscripts.html

A\

» Debian Developer’s Reference, chapter 6.4

http://www.debian.org/doc/developers-reference/best-pkging-practices.html

> http://people.debian.org/~srivasta/MaintainerScripts.html

» Prompting the user
» Must be done with debconf

» Documentation: debconf-devel(7) (debconf-doc package) @

Debian Packaging Tutorial 37/55

http://www.debian.org/doc/debian-policy/ch-maintainerscripts.html
http://www.debian.org/doc/developers-reference/best-pkging-practices.html
http://people.debian.org/~srivasta/MaintainerScripts.html

Monitoring upstream versions

» Specify where to look in debian/watch (See uscan(1))

version=3

http://tmrc.mit.edu/mirror/twisted/Twisted/(\d\.\d)/ \
Twisted-([\d\.I*)\.tar\.bz2

» Debian infrastructure that makes use of debian/watch:
Debian External Health Status
http://dehs.alioth.debian.org/

» Maintainer warned by emails sent to the Package Tracking System
http://packages.qa.debian.org/

» uscan: run a manual check

» uupdate: try to update your package to the latest upstream version

©

Debian Packaging Tutorial 38/55

http://dehs.alioth.debian.org/
http://packages.qa.debian.org/

Packaging with a VCS (SVN, Git, etc.)

» Several tools to help manage branches and tags for your packaging work:
svn-buildpackage, git-buildpackage

» Example: git-buildpackage
» upstream branch to track upstream with upstream/version tags
» master branch tracks the Debian package
» debian/version tags for each upload
» pristine-tar branch to be able to rebuild the upstream tarball

» Vcs—x* fields in debian/control to locate the repository
» http://wiki.debian.org/Alioth/Git
» http://wiki.debian.org/Alioth/Svn

Vcs-Browser: http://git.debian.org/?p=devscripts/devscripts.git
Vcs-Git: git://git.debian.org/devscripts/devscripts.git

Vcs-Browser: http://svn.debian.org/viewsvn/pkg-perl/trunk/libwww-perl/
Vcs-Svn: svn://svn.debian.org/pkg-perl/trunk/libwww-perl

» VCS-agnostic interface: debcheckout, debcommit, debrelease
» debcheckout grep — checks out the source package from Git @

Debian Packaging Tutorial 39/55

http://wiki.debian.org/Alioth/Git
http://wiki.debian.org/Alioth/Svn

Outline

© Introduction

® Creating source packages

® Building and testing packages

@ Practical session 1: modifying the grep package
® Advanced packaging topics

@ Maintaining packages in Debian

@ Conclusion

® Practical session 2: packaging GNUjump

© Practical session 3: packaging a Java library

©

Debian Packaging Tutorial 40/55

Several ways to contribute to Debian

» Worst way to contribute:

@ Package your own application
® Get it into Debian
® Disappear

» Better ways to contribute:
» Get involved in packaging teams

» Many teams that focus on set of packages, and need help
» List available at http://wiki.debian.org/Teams
» An excellent way to learn from more experienced contributors

» Adopt existing unmaintained packages (orphaned packages)

» Bring new software to Debian

» Only if it's interesting/useful enough, please
» Are there alternatives already packaged in Debian?

©

Debian Packaging Tutorial 41/55

http://wiki.debian.org/Teams

Adopting orphaned packages

» Many unmaintained packages in Debian

» Full list + process: http://www.debian.org/devel/wnpp/
» Installed on your machine: wnpp-alert

» Different states:
» Orphaned: the package is unmaintained
Feel free to adopt it

» RFA: Request For Adopter
Maintainer looking for adopter, but continues work in the meantime
Feel free to adopt it. A mail to the current maintainer is polite

» ITA: Intent To Adopt
Someone intends to adopt the package
You could propose your help!

» RFH: Request For Help
The maintainer is looking for help

» Some unmaintained packages not detected — not orphaned yet

» When in doubt, ask debian-qa@lists.debian.org @
Or #debian-qa On irc.debian.org

Debian Packaging Tutorial 42 /55

http://www.debian.org/devel/wnpp/

Getting your package in Debian

» You do not need any official status to get your package into Debian
© Prepare a source package

® Find a Debian Developer that will sponsor your package

» Official status (when you are already experienced):

» Debian Maintainer (DM):
Permission to upload your own packages
See http://wiki.debian.org/DebianMaintainer

» Debian Developer (DD):
Debian project members; can vote and upload any package

©

Debian Packaging Tutorial 43/55

http://wiki.debian.org/DebianMaintainer

Where to find help?

Help you will need:
» Advice and answers to your questions, code reviews
» Sponsorship for your uploads, once your package is ready

You can get help from:
» Other members of a packaging team

» They know the specifics of your package
» You can become a member of the team

» The Debian Mentors group (if your package doesn't fit in a team)
» http://wiki.debian.org/DebianMentorsFaq
» Mailing list: debian-mentors@lists.debian.org
(also a good way to learn by accident)
» |IRC: #debian-mentors On irc.debian.org
» http://mentors.debian.net/

©

Debian Packaging Tutorial 44 /55

http://wiki.debian.org/DebianMentorsFaq
debian-mentors@lists.debian.org
http://mentors.debian.net/

Official documentation

>

Debian Developers’ Corner
http://www.debian.org/devel/
Links to many resources about Debian development

Debian New Maintainers’ Guide
http://www.debian.org/doc/maint-guide/
An introduction to Debian packaging, but could use an update

Debian Developer’s Reference
http://www.debian.org/doc/developers-reference/
Mostly about Debian procedures, but also some best packaging practices (part 6)

Debian Policy
http://www.debian.org/doc/debian-policy/

» All the requirements that every package must satisfy
» Specific policies for Perl, Java, Python, ...

Ubuntu Packaging Guide
https://wiki.ubuntu.com/PackagingGuide (?)

Debian Packaging Tutorial 45/55

http://www.debian.org/devel/
http://www.debian.org/doc/maint-guide/
http://www.debian.org/doc/developers-reference/
http://www.debian.org/doc/debian-policy/
https://wiki.ubuntu.com/PackagingGuide

Debian dashboards for maintainers

» Source package centric: Package Tracking System (PTS)
http://packages.qa.debian.org/dpkg

» Maintainer/team centric: Developer’s Packages Overview (DDPO)
http://qa.debian.org/developer.php?login=
pkg-ruby-extras-maintainers@lists.alioth.debian.org

©

Debian Packaging Tutorial 46 /55

http://packages.qa.debian.org/dpkg
http://qa.debian.org/developer.php?login=pkg-ruby-extras-maintainers@lists.alioth.debian.org
http://qa.debian.org/developer.php?login=pkg-ruby-extras-maintainers@lists.alioth.debian.org

More interested in Ubuntu?

» Ubuntu mainly manages the divergence with Debian

» No real focus on specific packages
Instead, collaboration with Debian teams

» Usually recommend uploading new packages to Debian first
https://wiki.ubuntu.com/UbuntuDevelopment/NewPackages

» Possibly a better plan:
» Get involved in a Debian team and act as a bridge with Ubuntu
» Help reduce divergence, triage bugs in Launchpad

» Many Debian tools can help:

» Ubuntu column on the Developer’s packages overview
» Ubuntu box on the Package Tracking System
» Receive launchpad bugmail via the PTS

©

Debian Packaging Tutorial 47 /55

https://wiki.ubuntu.com/UbuntuDevelopment/NewPackages

Outline

© Introduction

® Creating source packages

® Building and testing packages

@ Practical session 1: modifying the grep package
® Advanced packaging topics

® Maintaining packages in Debian

@ Conclusion

® Practical session 2: packaging GNUjump

© Practical session 3: packaging a Java library

©

Debian Packaging Tutorial 48 /55

Conclusion

» You now have a full overview of Debian packaging
» But you will need to read more documentation

» Best practices have evolved over the years
» If not sure, use the dh packaging helper, and the 3.0 (quilt) format

» Things that were not covered in this tutorial:
» UCF — manage user changes to configuration files when upgrading
» dpkg triggers — group similar maintainer scripts actions together
» Debian development organization:
» Bug Tracking System (BTS)
» Suites: stable, testing, unstable, experimental, security,

*-updates, backports, ...
» Debian Blends — subsets of Debian targeting specific groups

Feedback: lucas@debian.org @

Debian Packaging Tutorial 49/55

Legal stuff

Copyright ©2011 Lucas Nussbaum — lucas@debian.org

This document is free software: you can redistribute it and/or modify it under either
(at your option):

» The terms of the GNU General Public License as published by the Free Software
Foundation, either version 3 of the License, or (at your option) any later version.
http://wuw.gnu.org/licenses/gpl.html

» The terms of the Creative Commons Attribution-ShareAlike 3.0 Unported License.
http://creativecommons.org/licenses/by-sa/3.0/

©

Debian Packaging Tutorial 50/55

http://www.gnu.org/licenses/gpl.html
http://creativecommons.org/licenses/by-sa/3.0/

Latest version & source code

» Latest version:
http://git.debian.org/?p=collab-maint/packaging-tutorial.git;a=blob_plain;f=
packaging-tutorial.pdf;hb=refs/heads/pdf

» Contribute:
» git clone
git://git.debian.org/collab-maint/packaging-tutorial.git

» apt-get source packaging-tutorial

> http://git.debian.org/?p=collab-maint/packaging-tutorial.git

» Feedback: lucas@debian.org

©

Debian Packaging Tutorial 51/55

http://git.debian.org/?p=collab-maint/packaging-tutorial.git;a=blob_plain;f=packaging-tutorial.pdf;hb=refs/heads/pdf
http://git.debian.org/?p=collab-maint/packaging-tutorial.git;a=blob_plain;f=packaging-tutorial.pdf;hb=refs/heads/pdf
http://git.debian.org/?p=collab-maint/packaging-tutorial.git
mailto:lucas@debian.org

Outline

© Introduction

® Creating source packages

® Building and testing packages

@ Practical session 1: modifying the grep package
® Advanced packaging topics

@ Maintaining packages in Debian

@ Conclusion

@ Practical session 2: packaging GNUjump

© Practical session 3: packaging a Java library

©

Debian Packaging Tutorial 52/55

Practical session 2: packaging GNUjump

© Download GNUjump 1.0.6 from
http://ftp.gnu.org/gnu/gnujump/1.0.6/gnujump-1.0.6.tar.gz

® Create a Debian package for it

» Install build-dependencies so that you can build the package
» Get a basic working package
» Finish filling debian/control and other files

® Enjoy

GN
r
F
F
T
F
F
r
T
F
F
!
T
I
F
f
T
I
F
f
r
T
F
F
F

©

Debian Packaging Tutorial 53/55

http://ftp.gnu.org/gnu/gnujump/1.0.6/gnujump-1.0.6.tar.gz

Outline

© Introduction

® Creating source packages

® Building and testing packages

@ Practical session 1: modifying the grep package
® Advanced packaging topics

® Maintaining packages in Debian

@ Conclusion

® Practical session 2: packaging GNUjump

© Practical session 3: packaging a Java library

©

Debian Packaging Tutorial 54 /55

Practical session 3: packaging a Java library

© Take a quick look at some documentation about Java packaging:

>

>

>

http://wiki.debian.org/Java
http://wiki.debian.org/Java/Packaging
http://www.debian.org/doc/packaging-manuals/java-policy/
http://pkg-java.alioth.debian.org/docs/tutorial.html

Paper and slides from a Debconf10 talk about javahelper:
http://pkg-java.alioth.debian.org/docs/debconf10-javahelper-paper.pdf

http://pkg-java.alioth.debian.org/docs/debconf10-javahelper-slides.pdf

® Download IRClib from http://moepii.sourceforge.net/

® Package it

©

Debian Packaging Tutorial 55/55

http://wiki.debian.org/Java
http://wiki.debian.org/Java/Packaging
http://www.debian.org/doc/packaging-manuals/java-policy/
http://pkg-java.alioth.debian.org/docs/tutorial.html
http://pkg-java.alioth.debian.org/docs/debconf10-javahelper-paper.pdf
http://pkg-java.alioth.debian.org/docs/debconf10-javahelper-slides.pdf
http://moepii.sourceforge.net/

	Introduction
	Debian
	Debian packages
	The Deb package format
	Tools you will need
	General packaging workflow
	Rebuilding dash

	Creating source packages
	Source packages basics
	Retrieving source packages
	Creating a basic source package
	Files in debian/
	Packaging helpers

	Building and testing packages
	Building packages
	Installing and testing packages

	Practical session 1: modifying the grep package
	Advanced packaging topics
	debian/copyright
	Modifying the upstream source
	Doing things during installation and removal
	Packaging with a VCS (SVN, Git & friends)

	Maintaining packages in Debian
	Several ways to contribute to Debian
	Adopting orphaned packages
	Getting your package in Debian
	Where to find help?
	Official documentation
	More interested in Ubuntu?

	Conclusion
	Conclusion
	Legal stuff
	Latest version & source code

	Practical session 2: packaging GNUjump
	Practical session 3: packaging a Java library

