ViSP
Main Page
Related Pages
Modules
Classes
Examples
All
Classes
Functions
Variables
Enumerations
Enumerator
Friends
Groups
Pages
servoViper850FourPoints2DArtVelocityInteractionCurrent.cpp
1
/****************************************************************************
2
*
3
* $Id: servoViper850FourPoints2DArtVelocityInteractionCurrent.cpp 4065 2013-01-11 13:32:47Z fspindle $
4
*
5
* This file is part of the ViSP software.
6
* Copyright (C) 2005 - 2013 by INRIA. All rights reserved.
7
*
8
* This software is free software; you can redistribute it and/or
9
* modify it under the terms of the GNU General Public License
10
* ("GPL") version 2 as published by the Free Software Foundation.
11
* See the file LICENSE.txt at the root directory of this source
12
* distribution for additional information about the GNU GPL.
13
*
14
* For using ViSP with software that can not be combined with the GNU
15
* GPL, please contact INRIA about acquiring a ViSP Professional
16
* Edition License.
17
*
18
* See http://www.irisa.fr/lagadic/visp/visp.html for more information.
19
*
20
* This software was developed at:
21
* INRIA Rennes - Bretagne Atlantique
22
* Campus Universitaire de Beaulieu
23
* 35042 Rennes Cedex
24
* France
25
* http://www.irisa.fr/lagadic
26
*
27
* If you have questions regarding the use of this file, please contact
28
* INRIA at visp@inria.fr
29
*
30
* This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
31
* WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
32
*
33
*
34
* Description:
35
* tests the control law
36
* eye-in-hand control
37
* velocity computed in the articular frame
38
*
39
* Authors:
40
* Fabien Spindler
41
*
42
*****************************************************************************/
55
#include <visp/vpConfig.h>
56
#include <visp/vpDebug.h>
// Debug trace
57
58
#include <stdio.h>
59
#include <iostream>
60
#include <fstream>
61
#include <sstream>
62
#include <stdlib.h>
63
#if (defined (VISP_HAVE_VIPER850) && defined (VISP_HAVE_DC1394_2))
64
65
#include <visp/vp1394TwoGrabber.h>
66
#include <visp/vpDisplay.h>
67
#include <visp/vpDisplayGTK.h>
68
#include <visp/vpDisplayX.h>
69
#include <visp/vpDisplayOpenCV.h>
70
#include <visp/vpDot2.h>
71
#include <visp/vpFeatureBuilder.h>
72
#include <visp/vpFeaturePoint.h>
73
#include <visp/vpHomogeneousMatrix.h>
74
#include <visp/vpImage.h>
75
#include <visp/vpIoTools.h>
76
#include <visp/vpMath.h>
77
#include <visp/vpPoint.h>
78
#include <visp/vpPose.h>
79
#include <visp/vpRobotViper850.h>
80
#include <visp/vpServo.h>
81
#include <visp/vpServoDisplay.h>
82
83
#define L 0.05 // to deal with a 10cm by 10cm square
84
85
111
void
compute_pose(
vpPoint
point[],
vpDot2
dot[],
int
ndot,
112
vpCameraParameters
cam,
113
vpHomogeneousMatrix
&cMo,
114
vpTranslationVector
&cto,
115
vpRxyzVector
&cro,
bool
init)
116
{
117
vpHomogeneousMatrix
cMo_dementhon;
// computed pose with dementhon
118
vpHomogeneousMatrix
cMo_lagrange;
// computed pose with dementhon
119
vpRotationMatrix
cRo;
120
vpPose
pose;
121
vpImagePoint
cog;
122
for
(
int
i=0; i < ndot; i ++) {
123
124
double
x=0, y=0;
125
cog = dot[i].
getCog
();
126
vpPixelMeterConversion::convertPoint
(cam,
127
cog,
128
x, y) ;
//pixel to meter conversion
129
point[i].
set_x
(x) ;
//projection perspective p
130
point[i].
set_y
(y) ;
131
pose.
addPoint
(point[i]) ;
132
}
133
134
if
(init ==
true
) {
135
pose.
computePose
(
vpPose::DEMENTHON
, cMo_dementhon) ;
136
// Compute and return the residual expressed in meter for the pose matrix
137
// 'cMo'
138
double
residual_dementhon = pose.
computeResidual
(cMo_dementhon);
139
pose.
computePose
(
vpPose::LAGRANGE
, cMo_lagrange) ;
140
double
residual_lagrange = pose.
computeResidual
(cMo_lagrange);
141
142
// Select the best pose to initialize the lowe pose computation
143
if
(residual_lagrange < residual_dementhon)
144
cMo = cMo_lagrange;
145
else
146
cMo = cMo_dementhon;
147
148
}
149
else
{
// init = false; use of the previous pose to initialise LOWE
150
cRo.
buildFrom
(cro);
151
cMo.
buildFrom
(cto, cRo);
152
}
153
pose.
computePose
(
vpPose::LOWE
, cMo) ;
154
cMo.
extract
(cto);
155
cMo.
extract
(cRo);
156
cro.
buildFrom
(cRo);
157
}
158
159
int
160
main()
161
{
162
// Log file creation in /tmp/$USERNAME/log.dat
163
// This file contains by line:
164
// - the 6 computed joint velocities (m/s, rad/s) to achieve the task
165
// - the 6 mesured joint velocities (m/s, rad/s)
166
// - the 6 mesured joint positions (m, rad)
167
// - the 8 values of s - s*
168
std::string username;
169
// Get the user login name
170
vpIoTools::getUserName
(username);
171
172
// Create a log filename to save velocities...
173
std::string logdirname;
174
logdirname =
"/tmp/"
+ username;
175
176
// Test if the output path exist. If no try to create it
177
if
(
vpIoTools::checkDirectory
(logdirname) ==
false
) {
178
try
{
179
// Create the dirname
180
vpIoTools::makeDirectory
(logdirname);
181
}
182
catch
(...) {
183
std::cerr << std::endl
184
<<
"ERROR:"
<< std::endl;
185
std::cerr <<
" Cannot create "
<< logdirname << std::endl;
186
return
(-1);
187
}
188
}
189
std::string logfilename;
190
logfilename = logdirname +
"/log.dat"
;
191
192
// Open the log file name
193
std::ofstream flog(logfilename.c_str());
194
195
try
{
196
vpRobotViper850
robot ;
197
// Load the end-effector to camera frame transformation obtained
198
// using a camera intrinsic model with distortion
199
vpCameraParameters::vpCameraParametersProjType
projModel =
200
vpCameraParameters::perspectiveProjWithDistortion
;
201
robot.
init
(
vpRobotViper850::TOOL_PTGREY_FLEA2_CAMERA
, projModel);
202
203
vpServo
task ;
204
205
vpImage<unsigned char>
I ;
206
int
i ;
207
208
bool
reset =
false
;
209
vp1394TwoGrabber
g(reset);
210
g.setVideoMode(
vp1394TwoGrabber::vpVIDEO_MODE_640x480_MONO8
);
211
g.setFramerate(
vp1394TwoGrabber::vpFRAMERATE_60
);
212
g.open(I) ;
213
214
g.acquire(I) ;
215
216
#ifdef VISP_HAVE_X11
217
vpDisplayX
display(I,100,100,
"Current image"
) ;
218
#elif defined(VISP_HAVE_OPENCV)
219
vpDisplayOpenCV
display(I,100,100,
"Current image"
) ;
220
#elif defined(VISP_HAVE_GTK)
221
vpDisplayGTK
display(I,100,100,
"Current image"
) ;
222
#endif
223
224
vpDisplay::display
(I) ;
225
vpDisplay::flush
(I) ;
226
227
std::cout << std::endl ;
228
std::cout <<
"-------------------------------------------------------"
<< std::endl ;
229
std::cout <<
" Test program for vpServo "
<<std::endl ;
230
std::cout <<
" Eye-in-hand task control, velocity computed in the joint space"
<< std::endl ;
231
std::cout <<
" Use of the Afma6 robot "
<< std::endl ;
232
std::cout <<
" task : servo 4 points on a square with dimention "
<< L <<
" meters"
<< std::endl ;
233
std::cout <<
"-------------------------------------------------------"
<< std::endl ;
234
std::cout << std::endl ;
235
236
237
vpDot2
dot[4] ;
238
vpImagePoint
cog;
239
240
std::cout <<
"Click on the 4 dots clockwise starting from upper/left dot..."
241
<< std::endl;
242
243
for
(i=0 ; i < 4 ; i++) {
244
dot[i].
setGraphics
(
true
) ;
245
dot[i].
initTracking
(I) ;
246
cog = dot[i].
getCog
();
247
vpDisplay::displayCross
(I, cog, 10,
vpColor::blue
) ;
248
vpDisplay::flush
(I);
249
}
250
251
vpCameraParameters
cam ;
252
253
// Update camera parameters
254
robot.
getCameraParameters
(cam, I);
255
256
cam.
printParameters
();
257
258
259
// Sets the current position of the visual feature
260
vpFeaturePoint
p[4] ;
261
for
(i=0 ; i < 4 ; i++)
262
vpFeatureBuilder::create
(p[i], cam, dot[i]);
//retrieve x,y of the vpFeaturePoint structure
263
264
// Set the position of the square target in a frame which origin is
265
// centered in the middle of the square
266
vpPoint
point[4] ;
267
point[0].
setWorldCoordinates
(-L, -L, 0) ;
268
point[1].
setWorldCoordinates
( L, -L, 0) ;
269
point[2].
setWorldCoordinates
( L, L, 0) ;
270
point[3].
setWorldCoordinates
(-L, L, 0) ;
271
272
// Initialise a desired pose to compute s*, the desired 2D point features
273
vpHomogeneousMatrix
cMo;
274
vpTranslationVector
cto(0, 0, 0.5);
// tz = 0.5 meter
275
vpRxyzVector
cro(
vpMath::rad
(0),
vpMath::rad
(10),
vpMath::rad
(20));
276
vpRotationMatrix
cRo(cro);
// Build the rotation matrix
277
cMo.
buildFrom
(cto, cRo);
// Build the homogeneous matrix
278
279
// Sets the desired position of the 2D visual feature
280
vpFeaturePoint
pd[4] ;
281
// Compute the desired position of the features from the desired pose
282
for
(
int
i=0; i < 4; i ++) {
283
vpColVector
cP, p ;
284
point[i].
changeFrame
(cMo, cP) ;
285
point[i].
projection
(cP, p) ;
286
287
pd[i].
set_x
(p[0]) ;
288
pd[i].
set_y
(p[1]) ;
289
pd[i].
set_Z
(cP[2]);
290
}
291
292
// We want to see a point on a point
293
for
(i=0 ; i < 4 ; i++)
294
task.
addFeature
(p[i],pd[i]) ;
295
296
// Set the proportional gain
297
task.
setLambda
(0.3) ;
298
299
// Display task information
300
task.
print
() ;
301
302
// Define the task
303
// - we want an eye-in-hand control law
304
// - articular velocity are computed
305
task.
setServo
(
vpServo::EYEINHAND_L_cVe_eJe
) ;
306
task.
setInteractionMatrixType
(
vpServo::CURRENT
,
vpServo::PSEUDO_INVERSE
) ;
307
task.
print
() ;
308
309
vpVelocityTwistMatrix
cVe ;
310
robot.
get_cVe
(cVe) ;
311
task.
set_cVe
(cVe) ;
312
task.
print
() ;
313
314
// Set the Jacobian (expressed in the end-effector frame)
315
vpMatrix
eJe ;
316
robot.
get_eJe
(eJe) ;
317
task.
set_eJe
(eJe) ;
318
task.
print
() ;
319
320
// Initialise the velocity control of the robot
321
robot.
setRobotState
(
vpRobot::STATE_VELOCITY_CONTROL
) ;
322
323
std::cout <<
"\nHit CTRL-C to stop the loop...\n"
<< std::flush;
324
for
( ; ; ) {
325
// Acquire a new image from the camera
326
g.acquire(I) ;
327
328
// Display this image
329
vpDisplay::display
(I) ;
330
331
try
{
332
// For each point...
333
for
(i=0 ; i < 4 ; i++) {
334
// Achieve the tracking of the dot in the image
335
dot[i].
track
(I) ;
336
// Display a green cross at the center of gravity position in the
337
// image
338
cog = dot[i].
getCog
();
339
vpDisplay::displayCross
(I, cog, 10,
vpColor::green
) ;
340
}
341
}
342
catch
(...) {
343
flog.close() ;
// Close the log file
344
vpTRACE
(
"Error detected while tracking visual features"
) ;
345
robot.
stopMotion
() ;
346
return
(1) ;
347
}
348
349
// During the servo, we compute the pose using LOWE method. For the
350
// initial pose used in the non linear minimisation we use the pose
351
// computed at the previous iteration.
352
compute_pose(point, dot, 4, cam, cMo, cto, cro,
false
);
353
354
for
(i=0 ; i < 4 ; i++) {
355
// Update the point feature from the dot location
356
vpFeatureBuilder::create
(p[i], cam, dot[i]);
357
// Set the feature Z coordinate from the pose
358
vpColVector
cP;
359
point[i].
changeFrame
(cMo, cP) ;
360
361
p[i].set_Z(cP[2]);
362
}
363
364
// Get the jacobian of the robot
365
robot.
get_eJe
(eJe) ;
366
// Update this jacobian in the task structure. It will be used to compute
367
// the velocity skew (as an articular velocity)
368
// qdot = -lambda * L^+ * cVe * eJe * (s-s*)
369
task.
set_eJe
(eJe) ;
370
371
vpColVector
v ;
372
// Compute the visual servoing skew vector
373
v = task.
computeControlLaw
() ;
374
375
// Display the current and desired feature points in the image display
376
vpServoDisplay::display
(task,cam,I) ;
377
378
// Apply the computed joint velocities to the robot
379
robot.
setVelocity
(
vpRobot::ARTICULAR_FRAME
, v) ;
380
381
// Save velocities applied to the robot in the log file
382
// v[0], v[1], v[2] correspond to joint translation velocities in m/s
383
// v[3], v[4], v[5] correspond to joint rotation velocities in rad/s
384
flog << v[0] <<
" "
<< v[1] <<
" "
<< v[2] <<
" "
385
<< v[3] <<
" "
<< v[4] <<
" "
<< v[5] <<
" "
;
386
387
// Get the measured joint velocities of the robot
388
vpColVector
qvel;
389
robot.
getVelocity
(
vpRobot::ARTICULAR_FRAME
, qvel);
390
// Save measured joint velocities of the robot in the log file:
391
// - qvel[0], qvel[1], qvel[2] correspond to measured joint translation
392
// velocities in m/s
393
// - qvel[3], qvel[4], qvel[5] correspond to measured joint rotation
394
// velocities in rad/s
395
flog << qvel[0] <<
" "
<< qvel[1] <<
" "
<< qvel[2] <<
" "
396
<< qvel[3] <<
" "
<< qvel[4] <<
" "
<< qvel[5] <<
" "
;
397
398
// Get the measured joint positions of the robot
399
vpColVector
q;
400
robot.
getPosition
(
vpRobot::ARTICULAR_FRAME
, q);
401
// Save measured joint positions of the robot in the log file
402
// - q[0], q[1], q[2] correspond to measured joint translation
403
// positions in m
404
// - q[3], q[4], q[5] correspond to measured joint rotation
405
// positions in rad
406
flog << q[0] <<
" "
<< q[1] <<
" "
<< q[2] <<
" "
407
<< q[3] <<
" "
<< q[4] <<
" "
<< q[5] <<
" "
;
408
409
// Save feature error (s-s*) for the 4 feature points. For each feature
410
// point, we have 2 errors (along x and y axis). This error is expressed
411
// in meters in the camera frame
412
flog << ( task.
getError
() ).t() << std::endl;
413
414
// Flush the display
415
vpDisplay::flush
(I) ;
416
417
// std::cout << "|| s - s* || = " << ( task.getError() ).sumSquare() << std::endl;
418
}
419
420
std::cout <<
"Display task information: "
<< std::endl;
421
task.
print
() ;
422
task.
kill
();
423
flog.close() ;
// Close the log file
424
return
0;
425
}
426
catch
(...)
427
{
428
flog.close() ;
// Close the log file
429
vpERROR_TRACE
(
" Test failed"
) ;
430
return
0;
431
}
432
}
433
434
#else
435
int
436
main()
437
{
438
vpERROR_TRACE
(
"You do not have an afma6 robot or a firewire framegrabber connected to your computer..."
);
439
}
440
441
#endif
example
servo-viper850
servoViper850FourPoints2DArtVelocityInteractionCurrent.cpp
Generated on Thu Oct 24 2013 14:47:35 for ViSP by
1.8.4